Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32759
Ethanol Fuelled HCCI Engine: A Review

Authors: B. Bahri, A. A. Aziz, M. Shahbakhti, M. F. Muhamad Said

Abstract:

The greenhouse effect and limitations on carbon dioxide emissions concern engine maker and the future of the internal combustion engines should go toward substantially and improved thermal efficiency engine. Homogeneous charge compression ignition (HCCI) is an alternative high-efficiency technology for combustion engines to reduce exhaust emissions and fuel consumption. However, there are still tough challenges in the successful operation of HCCI engines, such as controlling the combustion phasing, extending the operating range, and high unburned hydrocarbon and CO emissions. HCCI and the exploitation of ethanol as an alternative fuel is one way to explore new frontiers of internal combustion engines with an eye towards maintaining its sustainability. This study was done to extend database knowledge about HCCI with ethanol a fuel.

Keywords: Ethanol combustion, Ethanol fuel, HCCI.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1087091

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2769

References:


[1] X. Lu, D. Han, and Z. Huang, Fuel design and management for the control of advanced compression-ignition combustion modes, Progress in Energy and Combustion Science, 37, 741-783, 2011.
[2] M. Yao, Z. Zheng, and H. Liu, Progress and recent trends in homogeneous charge compression ignition (HCCI) engines, Progress in Energy and Combustion Science, 35(5): 398-437, 2009.
[3] N. P. Komninos, and C. D. Rakopoulos, Modeling HCCI combustion of biofuels: A review, Renewable and Sustainable Energy Reviews, 16, 1588-1610, 2012.
[4] H. Zhao, Homogeneous Charge Compression Ignition (HCCI) and Controlled Auto Ignition (CAI) Engines for the Automotive Industry, Woodhead Publishing Limited 2007 (CRC) Press, Boca Raton, Florida).
[5] R. Sankaran, H. G. Im, and J. C. Hewson, analytical model for autoignition in a thermally stratified HCCI engine, Combustion Science and Technology, 179(9): 1963-1989, 2007.
[6] S. M. Aceves, D. L. Flowers, J. Martinez-Frias, J. R. Smith, R. Dibble, M. Au, and J. Girard, HCCI combustion: analysis and experiments, SAE Paper: 2001-01-2077, 2001.
[7] M. Shahbakhti, A. Ghazimirsaied, and C. R. Koch, Experimental study of exhaust temperature variation in a homogeneous charge compression ignition engine, J Automotive Engineering, 224: 1177-1197, 2010.
[8] K. Epping, S. Aceves, R. Bechtold, and J. Dec, The potential of HCCI combustion for high efficiency and low emissions, SAE Paper: 2002-01- 1923, 2002.
[9] H. Santoso, J. Matthews, and W. Cheng, Characteristics of HCCI engine operating in the negative-valve-overlap mode, SAE International, 2005.
[10] D. Blom, M. Karlsson, K. Ekholm, P. Tunestl, and R. Johansson, HCCI engine modeling and control using conservation principles, SAE Paper: 2008-01-0789, 2008.
[11] S. M. Aceves, D. L. Flowers, F. Espinosa-Loza, J. Martinez-Frias, J. Dec, M. Sjoberg, R. W. Dibble, and R. P. Hessel, Spatial Analysis of Emissions Sources for HCCI Combustion at Low Loads Using a Multi- Zone Model, SAE Paper: 2004-01-1910, 2004.
[12] L. Koopmans, H. Strm, S. Lundgren, O. Backlund, and I. Denbratt, Demonstrating a SI-HCCI-SI mode change on a volvo 5-cylinder electronic valve control engine, SAE Paper: 2003-01-0753, 2003.
[13] M. Canova, F. Chiara, J. Cowgill, S. Midlam-Mohler, Y. Guezennec, and G. Rizzoni, Experimental characterization of mixed-mode HCCI/DI combustion on a common rail diesel engine, SAE Paper: 2007-24-0085, 2007.
[14] F. Agrell, H.-E. Angstrm, B. Eriksson, J. Wikander, and J. Linderyd, Integrated simulation and engine test of closed loop hcci control by aid of variable valve timings, SAE Paper: 2003-01-0748, 2003.
[15] G. Haraldsson, P. Tunestl, B. Johansson, and J. Hyvnen, HCCI closedloop combustion control using fast thermal management, SAE Paper: 2004-01-0943, 2004.
[16] G. Haraldsson, P. Tunestl, B. Johansson, and J. Hyvnen, HCCI Combustion Phasing in a Multi Cylinder Engine Using Variable Compression Ratio, SAE Paper: 2002-01-2858, 2002.
[17] G. Haraldsson, P. Tunestl, B. Johansson, and J. Hyvnen, HCCI Combustion Phasing with Closed-Loop Combustion Control Using Variable Compression Ratio in a Multi Cylinder Engine, SAE Paper: 2003-01-1830, 2003.
[18] J. Hyvnen, G. Haraldsson, and B. Johansson, Supercharging HCCI to extend the operating range in a multi-cylinder VCR-HCCI engine, SAE Paper 2003-01-3214, 2003.
[19] J.-O. Olsson, P. Tunestl, and B. Johansson, Closed-loop control of an HCCI engine, SAE Paper: 2001-01-1896, 2001.
[20] M. Sjoberg, and J. E. Dec, Ethanol autoignition characteristics and HCCI performance for wide ranges of engine speed, load and boost, V119-3, 3(1): 84-106, 2010.
[21] C. S. Goh, K. T. Tan, K. T. Lee, and S. Bhatia, Bio-ethanol from lignocellulose: Status, perspectives and challenges in Malaysia. Bioresource Technology, 101(13): 4834-4841, 2010.
[22] D. Dai, Z. Hu, G. Pu, H. Li, and C. Wang, Energy efficiency and potentials of cassava fuel ethanol in Guangxi region of China. Energy Conversion and Management, 47(1314): 1686-1699, 2006.
[23] M. J. Christie, N. Fortino, and H. Yilmaz, Parameter optimization of a turbo charged direct injection flex fuel si engine, SAE Int. J. Engines, 2(1): 123-133, 2009.
[24] M., Christensen, B. Johansson, and P. Einewall. Homogeneous charge compression ignition (HCCI) using isooctane, ethanol and natural gas- a comparison with spark ignition operation, SAE Paper: 972874, 1997.
[25] M. Christensen, and B. Johansson, Homogeneous charge compression ignition with water injection, SAE Paper: 1999-01-0182, 1999.
[26] C. K. W Ng, and M. J. Thomson Modelling of the effect of fuel reforming and EGR on the acceptable operating range of an ethanol HCCI engine, International Journal of Vehicle Design, 44(1-2): 107-123, 2004.
[27] D. Yap, A. Megaritis, and M. L. Wyszynski, An investigation into bioethanol homogeneous charge compression ignition (HCCI) engine operation with residual gas trapping, Energy and Fuels, 18(5): 1315- 1323, 2004.
[28] D. Yap, J. Karlovsky, A. Megaritis, M. L. Wyszynski, and H. Xu, An investigation into propane homogeneous charge compression ignition (HCCI) engine operation with residual gas trapping, Fuel, 84(18): 2372- 2379, 2005.
[29] Y. Zhang, B.-Q. He, H. Xie, and H. Zhao, The combustion and emission characteristics of ethanol on a port fuel injection HCCI engine, SAE Paper: 2006-01-0631, 2006.
[30] J. H. Mack, R. W. Dibble, B. A. Buchholz, and D. L. Flowers, The Effect of the Di-tertiary butyl peroxide (DTBP) additive on HCCI combustion of fuel blends of ethanol and diethyl ether, SAE Paper: 2005- 01-2135, 2005.
[31] J. H. Mack, D. L. Flowers, B. A. Buchholz, and R. W. Dibble, Investigation of HCCI combustion of diethyl ether and ethanol mixtures using carbon 14 tracing and numerical simulations, Proceedings of the Combustion Institute, 30(2): 2693-2700, 2005.
[32] H. Xie, Z. Wei, B. He, and H. Zhao, Comparison of HCCI combustion respectively fueled with gasoline, ethanol and methanol through the trapped residual gas strategy, SAE Paper: 2006-01-0635, 2006.
[33] G. Gnanam, A. Sobiesiak, G. Readerand, C. Zhang, An HCCI engine fuelled with iso-octane and ethanol, SAE Paper: 2006-01-3246, 2006.
[34] D. L. Flowers, S. M. Aceves, and J. M. Frias, Improving Ethanol Life Cycle Energy Efficiency by Direct Utilization of Wet Ethanol in HCCI Engines, SAE Paper: 2007-01-1867, 2007.
[35] A. Megaritis, D. Yap, and M. L. Wyszynski, Effect of water blending on bioethanol HCCI combustion with forced induction and residual gas trapping. Energy, 32(12): 2396-2400, 2007.
[36] A. Megaritis, D. Yap, and M. L. Wyszynski, Effect of inlet valve timing and water blending on bioethanol HCCI combustion using forced induction and residual gas trapping. Fuel, 87(6): 732-739, 2008.
[37] G. M. Shaver, M. J. Roelle, and J. Christian Gerdes, Modeling cycle-tocycle dynamics and mode transition in HCCI engines with variable valve actuation, Control Engineering Practice, 14(3): 213-222, 2006.
[38] J. P. Szybist, Fuel-Specific Effect of Exhaust Gas Residuals on HCCI Combustion: A Modeling Study, SAE Paper: 2008-01-2402, 2008.
[39] A. Viggiano, and V .Magi, Multidimensional simulation of ethanol HCCI engines, SAE Paper: 2009-24-0031, 2009.
[40] A.Vressner, R. Egnell, and B. Johansson, Combustion Chamber Geometry Effects on the Performance of an Ethanol Fueled HCCI Engine. SAE Paper: 2008-01-1656, 2008.
[41] T. Joelsson, R. Yu, X. S. Bai, A. Vressner, and B. Johansson, Large eddy simulation and experiments of the auto-ignition process of lean ethanol/air mixture in HCCI engines, SAE Int. J. Fuels Lubr., 1(1): 1110-1119, 2008.
[42] J. H. Mack, S. M. Aceves, and R. W. Dibble, Demonstrating direct use of wet ethanol in a homogeneous charge compression ignition (HCCI) engine. Energy, 34(6): 782-787, 2009.
[43] R. K. Maurya, and A. K. Agarwal, Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition (HCCI) combustion engine, Applied Energy, 88(4): 1169-1180, 2011.
[44] M. Sjoberg, and J. E. Dec, Effects of EGR and its constituents on HCCI autoignition of ethanol. Proceedings of the Combustion Institute, 33(2): 3031-3038, 2011.
[45] A. Viggiano, and V. Magi, A comprehensive investigation on the emissions of ethanol HCCI engines, Applied Energy, 93(0): 277-287, 2012.
[46] S. Saxena, S. Schneider, S. Aceves, and R. Dibble, Wet ethanol in HCCI engines with exhaust heat recovery to improve the energy balance of ethanol fuels, Applied Energy, 98(0): 448-457, 2012.
[47] B. Bahri, A. A. Aziz, M. Shahbakhti, and M. F. Muhamad Said, Misfire detection based on statistical analysis for an ethanol fuelled HCCI engine, International Review of Mechanical Engineering (IREME), 6 (6): 1276-1282, 2012.
[48] B. Bahri, A. A. Aziz, M. Shahbakhti, and M. F. Muhamad Said, Understanding and detecting misfire in an HCCI engine fuelled with ethanol, Applied Energy, 108(0): 24-33, 2013.