Search results for: Elastic Environment.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3102

Search results for: Elastic Environment.

3042 Dynamic Modeling of Tow Flexible Link Manipulators

Authors: E. Abedi, A. Ahmadi Nadooshan, S. Salehi

Abstract:

Modeling and vibration of a flexible link manipulator with tow flexible links and rigid joints are investigated which can include an arbitrary number of flexible links. Hamilton principle and finite element approach is proposed to model the dynamics of flexible manipulators. The links are assumed to be deflection due to bending. The association between elastic displacements of links is investigated, took into account the coupling effects of elastic motion and rigid motion. Flexible links are treated as Euler-Bernoulli beams and the shear deformation is thus abandoned. The dynamic behavior due to flexibility of links is well demonstrated through numerical simulation. The rigid-body motion and elastic deformations are separated by linearizing the equations of motion around the rigid body reference path. Simulation results are shown on for both position and force trajectory tracking tasks in the presence of varying parameters and unknown dynamics remarkably well. The proposed method can be used in both dynamic simulation and controller design.

Keywords: Flexible manipulator, flexible link, dynamicmodeling, end point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2485
3041 Thermo-Elastic Properties of Artificial Limestone Bricks with Wood Sawdust

Authors: Paki Turgut, Mehmet Gumuscu

Abstract:

In this study, artificial limestone brick samples are produced by using wood sawdust wastes (WSW) having different grades of sizes and limestone powder waste (LPW). The thermo-elastic properties of produced brick samples in various WSW amounts are investigated. At 30% WSW replacement with LPW in the brick sample the thermal conductivity value is effectively reduced and the reduction in the thermal conductivity value of brick sample at 30% WSW replacement with LPW is about 38.9% as compared with control sample. The energy conservation in buildings by using LPW and WSW in masonry brick material production having low thermal conductivity reduces energy requirements. A strong relationship is also found among the thermal conductivity, unit weight and ultrasonic pulse velocity values of brick samples produced. It shows a potential to be used for walls, wooden board substitute, alternative to the concrete blocks, ceiling panels, sound barrier panels, absorption materials etc.

Keywords: Limestone dust, masonry brick, thermo-elastic properties, wood sawdust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2495
3040 Modeling Reflection and Transmission of Elastodiffussive Wave Sata Semiconductor Interface

Authors: A. A. Sharma, B. J. N. Sharma

Abstract:

This paper deals with the study of reflection and transmission characteristics of acoustic waves at the interface of a semiconductor half-space and elastic solid. The amplitude ratios (reflection and transmission coefficients) of reflected and transmitted waves to that of incident wave varying with the incident angles have been examined for the case of quasi-longitudinal wave. The special cases of normal and grazing incidence have also been derived with the help of Gauss elimination method. The mathematical model consisting of governing partial differential equations of motion and charge carriers’ diffusion of n-type semiconductors and elastic solid has been solved both analytically and numerically in the study. The numerical computations of reflection and transmission coefficients has been carried out by using MATLAB programming software for silicon (Si) semiconductor and copper elastic solid. The computer simulated results have been plotted graphically for Si semiconductors. The study may be useful in semiconductors, geology, and seismology in addition to surface acoustic wave (SAW) devices.

Keywords: Quasilongitudinal, reflection and transmission, semiconductors, acoustics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1209
3039 Structural Investigation of Na2O–B2O3–SiO2 Glasses Doped with NdF3

Authors: M. S. Gaafar, S. Y. Marzouk

Abstract:

Sodium borosilicate glasses doped with different content of NdF3 mol % have been prepared by rapid quenching method. Ultrasonic velocities (both longitudinal and shear) measurements have been carried out at room temperature and at ultrasonic frequency of 4 MHz. Elastic moduli, Debye temperature, softening temperature and Poisson's ratio have been obtained as a function of NdF3 modifier content. Results showed that the elastic moduli, Debye temperature, softening temperature and Poisson's ratio have very slight change with the change of NdF3 mol % content. Based on FTIR spectroscopy and theoretical (Bond compression) model, quantitative analysis has been carried out in order to obtain more information about the structure of these glasses. The study indicated that the structure of these glasses is mainly composed of SiO4 units with four bridging oxygens (Q4), and with three bridging and one nonbridging oxygens (Q3).

Keywords: Borosilicate glasses, ultrasonic velocity, elastic moduli, FTIR spectroscopy, bond compression model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754
3038 Dynamic Analysis of a Moderately Thick Plate on Pasternak Type Foundation under Impact and Moving Loads

Authors: Neslihan Genckal, Reha Gursoy, Vedat Z. Dogan

Abstract:

In this study, dynamic responses of composite plates on elastic foundations subjected to impact and moving loads are investigated. The first order shear deformation (FSDT) theory is used for moderately thick plates. Pasternak-type (two-parameter) elastic foundation is assumed. Elastic foundation effects are integrated into the governing equations. It is assumed that plate is first hit by a mass as an impact type loading then the mass continues to move on the composite plate as a distributed moving loading, which resembles the aircraft landing on airport pavements. Impact and moving loadings are modeled by a mass-spring-damper system with a wheel. The wheel is assumed to be continuously in contact with the plate after impact. The governing partial differential equations of motion for displacements are converted into the ordinary differential equations in the time domain by using Galerkin’s method. Then, these sets of equations are solved by using the Runge-Kutta method. Several parameters such as vertical and horizontal velocities of the aircraft, volume fractions of the steel rebar in the reinforced concrete layer, and the different touchdown locations of the aircraft tire on the runway are considered in the numerical simulation. The results are compared with those of the ABAQUS, which is a commercial finite element code.

Keywords: Elastic foundation, impact, moving load, thick plate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
3037 Effect of Impact Location upon Sub-Impacts between Beam and Block

Authors: T. F. Jin, X. C. Yin, P. B. Qian

Abstract:

The present investigation is concerned with sub-impacts taken placed when a rigid hemispherical-head block transversely impacts against a beam at different locations. Dynamic substructure technique for elastic-plastic impact is applied to solve numerically this problem. The time history of impact force and energy exchange between block and beam are obtained. The process of sub-impacts is analyzed from the energy exchange point of view. The results verify the influences of the impact location on impact duration, the first sub-impact and energy exchange between the beam and the block.

Keywords: Beam, sub-impact, substructure, elastic-plasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
3036 Elastic Stress Analysis of Composite Cantilever Beam Loaded Uniformly

Authors: A. Kurşun, M. Tunay Çetin, E. Çetin, H. Aykul

Abstract:

In this investigation an elastic stress analysis is carried out a woven steel fiber reinforced thermoplastic cantilever beam loaded uniformly at the upper surface. The composite beam material consists of low density polyethylene as a thermoplastic (LDFE, f.2.12) and woven steel fibers. Granules of the polyethylene are put into the moulds and they are heated up to 160°C by using electrical resistance. Subsequently, the material is held for 5min under 2.5 MPa at this temperature. The temperature is decreased to 30°C under 15 MPa pressure in 3min. Closed form solution is found satisfying both the governing differential equation and boundary conditions. We investigated orientation angle effect on stress distribution of composite cantilever beams. The results show that orientation angle play an important role in determining the responses of a woven steel fiber reinforced thermoplastic cantilever beams and an optimal design of these structures.

Keywords: Cantilever beam, elastic stress analysis, orientation angle, thermoplastic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4261
3035 Optical and Double Folding Model Analysis for Alpha Particles Elastically Scattered from 9Be and 11B Nuclei at Different Energies

Authors: Ahmed H. Amer, A. Amar, Sh. Hamada, I. I. Bondouk, F. A. El-Hussiny

Abstract:

Elastic scattering of α-particles from 9Be and 11B nuclei at different alpha energies have been analyzed. Optical model parameters (OMPs) of α-particles elastic scattering by these nuclei at different energies have been obtained. In the present calculations, the real part of the optical potential are derived by folding of nucleonnucleon (NN) interaction into nuclear matter density distribution of the projectile and target nuclei using computer code FRESCO. A density-dependent version of the M3Y interaction (CDM3Y6), which is based on the G-matrix elements of the Paris NN potential, has been used. Volumetric integrals of the real and imaginary potential depth (JR, JW) have been calculated and found to be energy dependent. Good agreement between the experimental data and the theoretical predictions in the whole angular range. In double folding (DF) calculations, the obtained normalization coefficient Nr is in the range 0.70–1.32.

Keywords: Elastic scattering of α-particles, optical model parameters, double folding model, nucleon-nucleon interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199
3034 A Self-Consistent Scheme for Elastic-Plastic Asperity Contact

Authors: Xu Jianguo

Abstract:

In this paper, a generalized self-consistent scheme, or “three phase model", is used to set up a micro-mechanics model for rough surface contact with randomly distributed asperities. The dimensionless average real pressure p is obtained as function of the ratio of the real contact area to the apparent contact area, 0 A / A r . Both elastic and plastic materials are considered, and the influence of the plasticity of material on p is discussed. Both two-dimensional and three-dimensional rough surface contact problems are considered.

Keywords: Contact mechanics, plastic deformation, self-consistent scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759
3033 Finite Element Analysis for Damped Vibration Properties of Panels Laminated Porous Media

Authors: Y. Kurosawa, T. Yamaguchi

Abstract:

A numerical method is proposed to calculate damping properties for sound-proof structures involving elastic body, viscoelastic body, and porous media. For elastic and viscoelastic body displacement is modeled using conventional finite elements including complex modulus of elasticity. Both effective density and bulk modulus have complex quantities to represent damped sound fields in the porous media. Particle displacement in the porous media is discretised using finite element method. Displacement vectors as common unknown variables are solved under coupled condition between elastic body, viscoelastic body and porous media. Further, explicit expressions of modal loss factor for the mixed structures are derived using asymptotic method. Eigenvalue analysis and frequency responded were calculated for automotive test panel laminated viscoelastic and porous structures using this technique, the results almost agreed with the experimental results.

Keywords: Damping, Porous Media, Finite Element Method, Computer Aided Engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134
3032 Analytical Proposal to Damage Assessment of Buried Continuous Pipelines during External Blast Loading

Authors: Danesh Nourzadeh, Sepideh Khorshid, Shiro Takada, Khosrow Bargi

Abstract:

In this paper, transversal vibration of buried pipelines during loading induced by underground explosions is analyzed. The pipeline is modeled as an infinite beam on an elastic foundation, so that soil-structure interaction is considered by means of transverse linear springs along the pipeline. The pipeline behavior is assumed to be ideal elasto-plastic which an ultimate strain value limits the plastic behavior. The blast loading is considered as a point load, considering the affected length at some point of the pipeline, in which the magnitude decreases exponentially with time. A closed-form solution for the quasi-static problem is carried out for both elastic and elasticperfect plastic behaviors of pipe materials. At the end, a comparative study on steel and polyethylene pipes with different sizes buried in various soil conditions, affected by a predefined underground explosion is conducted, in which effect of each parameter is discussed.

Keywords: Beam on elastic foundation, Buried pipelines, External explosion, Non-linear quasi-static solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2327
3031 Critical Points of Prefabricated Reinforced Concrete Wall Systems of Multi-storey Buildings

Authors: J. Witzany, T. Čejka, R. Zigler

Abstract:

With respect to the dissipation of energy through plastic deformation of joints of prefabricated wall units, the paper points out the principal importance of efficient reinforcement of the prefabricated system at its joints. The method, quality and amount of reinforcement are essential for reaching the necessary degree of joint ductility. The paper presents partial results of experimental research of vertical joints of prefabricated units exposed to monotonously rising loading and repetitive shear force and formulates a conclusion that the limit state of the structure as a whole is preceded by the disintegration of joints, or that the structure tends to pass from linearly elastic behaviour to non-linearly elastic to plastic behaviour by exceeding the proportional elastic limit in joints.Experimental verification on a model of a 7-storey prefabricated structure revealed weak points in its load-bearing systems, mainly at places of critical points around openings situated in close proximity to vertical joints of mutually perpendicularly oriented walls.

Keywords: dissipative energy, dynamic and cycling load repetitive load, working diagrams of joints

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
3030 Stresses Distribution in Spot, Bonded, and Weld- Bonded Joints during the Process of Axial Load

Authors: Essam A. Al-Bahkali, Mahir H. Es-saheb, Jonny Herwan

Abstract:

In this study the elastic-plastic stress distribution in weld-bonded joint, fabricated from austenitic stainless steel (AISI 304) sheet of 1.00 mm thickness and Epoxy adhesive Araldite 2011, subjected to axial loading is investigated. This is needed to improve design procedures and welding codes, and saving efforts in the cumbersome experiments and analysis. Therefore, a complete 3-D finite element modelling and analysis of spot welded, bonded and weld-bonded joints under axial loading conditions is carried out. A comprehensive systematic experimental program is conducted to determine many properties and quantities, of the base metals and the adhesive, needed for FE modelling, such like the elastic – plastic properties, modulus of elasticity, fracture limit, the nugget and heat affected zones (HAZ) properties, etc. Consequently, the finite element models developed, for each case, are used to evaluate stresses distributions across the entire joint, in both the elastic and plastic regions. The stress distribution curves are obtained, particularly in the elastic regions and found to be consistent and in excellent agreement with the published data. Furthermore, the stresses distributions are obtained in the weld-bonded joint and display the best results with almost uniform smooth distribution compared to spot and bonded cases. The stress concentration peaks at the edges of the weld-bonded region, are almost eliminated resulting in achieving the strongest joint of all processes.

Keywords: Spot Welded, Weld-Bonded, Load-Displacement curve, Stress distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2574
3029 Design and Analysis of an Automobile Bumper with the Capacity of Energy Release Using GMT Materials

Authors: A.R. Mortazavi Moghaddam, M. T. Ahmadian

Abstract:

Bumpers play an important role in preventing the impact energy from being transferred to the automobile and passengers. Saving the impact energy in the bumper to be released in the environment reduces the damages of the automobile and passengers. The goal of this paper is to design a bumper with minimum weight by employing the Glass Material Thermoplastic (GMT) materials. This bumper either absorbs the impact energy with its deformation or transfers it perpendicular to the impact direction. To reach this aim, a mechanism is designed to convert about 80% of the kinetic impact energy to the spring potential energy and release it to the environment in the low impact velocity according to American standard1. In addition, since the residual kinetic energy will be damped with the infinitesimal elastic deformation of the bumper elements, the passengers will not sense any impact. It should be noted that in this paper, modeling, solving and result-s analysis are done in CATIA, LS-DYNA and ANSYS V8.0 software respectively.

Keywords: Bumper, Composite material, Energy Release, GMT, Impact

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6627
3028 Stress and Strain Analysis of Notched Bodies Subject to Non-Proportional Loadings

Authors: A. Ince

Abstract:

In this paper, an analytical simplified method for calculating elasto-plastic stresses strains of notched bodies subject to non-proportional loading paths is discussed. The method was based on the Neuber notch correction, which relates the incremental elastic and elastic-plastic strain energy densities at the notch root and the material constitutive relationship. The validity of the method was presented by comparing computed results of the proposed model against finite element numerical data of notched shaft. The comparison showed that the model estimated notch-root elasto-plastic stresses strains with good accuracy using linear-elastic stresses. The prosed model provides more efficient and simple analysis method preferable to expensive experimental component tests and more complex and time consuming incremental non-linear FE analysis. The model is particularly suitable to perform fatigue life and fatigue damage estimates of notched components subjected to nonproportional loading paths.

Keywords: Elasto-plastic, stress-strain, notch analysis, nonprortional loadings, cyclic plasticity, fatigue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2561
3027 Nonlinear Impact Responses for a Damped Frame Supported by Nonlinear Springs with Hysteresis Using Fast FEA

Authors: T. Yamaguchi, M. Watanabe, M. Sasajima, C. Yuan, S. Maruyama, T. B. Ibrahim, H. Tomita

Abstract:

This paper deals with nonlinear vibration analysis using finite element method for frame structures consisting of elastic and viscoelastic damping layers supported by multiple nonlinear concentrated springs with hysteresis damping. The frame is supported by four nonlinear concentrated springs near the four corners. The restoring forces of the springs have cubic non-linearity and linear component of the nonlinear springs has complex quantity to represent linear hysteresis damping. The damping layer of the frame structures has complex modulus of elasticity. Further, the discretized equations in physical coordinate are transformed into the nonlinear ordinary coupled differential equations using normal coordinate corresponding to linear natural modes. Comparing shares of strain energy of the elastic frame, the damping layer and the springs, we evaluate the influences of the damping couplings on the linear and nonlinear impact responses. We also investigate influences of damping changed by stiffness of the elastic frame on the nonlinear coupling in the damped impact responses.

Keywords: Dynamic response, Nonlinear impact response, Finite Element analysis, Numerical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
3026 Biodegradation of Polyhydroxybutyrate-Co- Hydroxyvalerate (PHBV) Blended with Natural Rubber in Soil Environment

Authors: K. Kuntanoo, S. Promkotra, P. Kaewkannetra

Abstract:

According to synthetic plastics obtained from petroleum cause some environmental problems. Therefore, degradable plastics become widely used and studied for replacing the synthetic plastic waste. A biopolymer of poly hydroxybutyrate-co-hydroxyvalerate (PHBV) is subgroups of a main kind of polyhydroxyalkanoates (PHAs). Naturally, PHBV is hard, brittle and low flexible while natural rubber (NR) is high elastic latex. Then, they are blended and the biodegradation of the blended PHBV and NR films were examined in soil environment. The results showed that the degradation occurs predominantly in the bulk of the samples. The order of biodegradability was shown as follows: PHBV> PHBV/NR> NR. After biodegradation, the blended films were characterized by appearance analysis such as Scanning Electron Microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). It was found that the biodegradation mainly occurred at the polymer surface.

Keywords: Biodegradation, polyhydroxyalkanoates (PHAs), Polyhydroxybutyrate-co-hydroxyvalerate (PHBV), natural rubber (NR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3597
3025 Simulating Flow Transients in Conveying Pipeline Systems by Rigid Column and Full Elastic Methods: Pump Combined with Air Chamber

Authors: I. Abuiziah, A. Oulhaj, K. Sebari, D. Ouazar, A. A. Saber

Abstract:

In water pipeline systems, the flow control is an integrated part of the operation, for instance, opening and closing the valves, starting and stopping the pumps, when these operations very quickly performed, they shall cause the hydraulic transient phenomena, which may cause pump and, valve failures and catastrophic pipe ruptures. Fluid transient analysis is one of the more challenging and complicated flow problems in the design and the operation of water pipeline systems. Transient control has become an essential requirement for ensuring safe operation of water pipeline systems. An accurate analysis and suitable protection devices should be used to protect water pipeline systems. The fourth-order Runge-Kutta method has been used to solve the dynamic and continuity equations in the rigid column method, while the characteristics method used to solve these equations in the full elastic methods. This paper presents the problem of modeling and simulating of transient phenomena in conveying pipeline systems based on the rigid column and full elastic methods. Also, it provides the influence of using the protection devices to protect the pipeline systems from damaging due to the gain pressure which occur in the transient state. The results obtained provide that the model is an efficient tool for flow transient analysis and provide approximately identical results by using these two methods. Moreover; using the closed surge tank reduces the unfavorable effects of transients.

Keywords: Flow transient, Pipeline, Air chamber, Numerical model, Protection devices, Elastic method, Rigid column method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4410
3024 Dynamic Stability of Beams with Piezoelectric Layers Located on a Continuous Elastic Foundation

Authors: A. R. Nezamabadi, M. Karami Khorramabadi

Abstract:

This paper studies dynamic stability of homogeneous beams with piezoelectric layers subjected to periodic axial compressive load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Bernoulli-Euler beam theory. Applying the Hamilton's principle, the governing dynamic equation is established. The influences of applied voltage, foundation coefficient and piezoelectric thickness on the unstable regions are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: Dynamic stability, Homogeneous graded beam-Piezoelectric layer, Harmonic balance method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
3023 Ductile Crack Growth in Surface Cracked Pressure Vessels

Authors: Osama A. Terfas, Abdusalam A. Alaktiwi

Abstract:

Pressure vessels are usually operating at temperatures where the conditions of linear elastic fracture mechanics are no longer met because massive plasticity precedes crack propagation. In this work the development of a surface crack in a pressure vessel subject to bending and tension under elastic-plastic fracture mechanics conditions was investigated. Finite element analysis was used to evaluate the hydrostatic stress, the J-integral and crack growth for semi-elliptical surface-breaking cracks. The results showed non-uniform stress triaxiality and crack driving force around the crack front at large deformation levels. Different ductile crack extensions were observed which emphasis the dependent of ductile tearing on crack geometry and type of loading. In bending the crack grew only beneath the surface, and growth was suppressed at the deepest segment. This contrasts to tension where the crack breaks through the thickness with uniform growth along the entire crack front except at the free surface. Current investigations showed that the crack growth developed under linear elastic fracture mechanics conditions will no longer be applicable under ductile tearing scenarios.

Keywords: Bending, ductile tearing, fracture toughness, stress triaxiality, tension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2675
3022 Stability of Homogeneous Smart Beams based on the First Order Shear Deformation Theory Located on a Continuous Elastic Foundation

Authors: A. R. Nezamabadi, M. Karami Khorramabadi

Abstract:

This paper studies stability of homogeneous beams with piezoelectric layers subjected to axial load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on first order shear deformation beam theory. Applying the Hamilton's principle, the governing equation is established. The influences of applied voltage, dimensionless geometrical parameter and foundation coefficient on the stability of beam are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: Stability, Homogeneous beam- Piezoelectric layer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431
3021 Comparison of Material Constitutive Models Used in FEA of Low Volume Roads

Authors: Lenka Ševelová, Aleš Florian

Abstract:

Appropriate and progressive tool for analyzing behavior of low volume roads are probabilistic models used in reliability analyses. The necessary part of the probabilistic model is the deterministic model of structural behavior. The FE model of low volume roads is created in the ANSYS software. It is able to determine the state of stress and deformation in any point of the structure and thus generate data required for the reliability analysis. The paper compares two material constitutive models used for modeling of unbound non-homogenous materials used in low volume roads. The first model is linear elastic model according to Hook theory (H model), the second one is nonlinear elastic-plastic Drucker-Prager model (D-P model).

Keywords: FEA, FEM, geotechnical materials, low volume roads, material constitutive models, pavement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2889
3020 Finite Element Modelling of a 3D Woven Composite for Automotive Applications

Authors: Ahmad R. Zamani, Luigi Sanguigno, Angelo R. Maligno

Abstract:

A 3D woven composite, designed for automotive applications, is studied using Abaqus Finite Element (FE) software suite. Python scripts were developed to build FE models of the woven composite in Complete Abaqus Environment (CAE). They can read TexGen or WiseTex files and automatically generate consistent meshes of the fabric and the matrix. A user menu is provided to help define parameters for the FE models, such as type and size of the elements in fabric and matrix as well as the type of matrix-fabric interaction. Node-to-node constraints were imposed to guarantee periodicity of the deformed shapes at the boundaries of the representative volume element of the composite. Tensile loads in three axes and biaxial loads in x-y directions have been applied at different Fibre Volume Fractions (FVFs). A simple damage model was implemented via an Abaqus user material (UMAT) subroutine. Existing tools for homogenization were also used, including voxel mesh generation from TexGen as well as Abaqus Micromechanics plugin. Linear relations between homogenised elastic properties and the FVFs are given. The FE models of composite exhibited balanced behaviour with respect to warp and weft directions in terms of both stiffness and strength.

Keywords: 3D woven composite, meso-scale finite element modelling, homogenisation of elastic material properties, Abaqus Python scripting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 927
3019 Thermomechanical Studies in Glass/Epoxy Composite Specimen during Tensile Loading

Authors: K. M. Mohamed Muneer, Raghu V. Prakash, Krishnan Balasubramaniam

Abstract:

This paper presents the results of thermo-mechanical characterization of Glass/Epoxy composite specimens using Infrared Thermography technique. The specimens used for the study were fabricated in-house with three different lay-up sequences and tested on a servo hydraulic machine under uni-axial loading. Infrared Camera was used for on-line monitoring surface temperature changes of composite specimens during tensile deformation. Experimental results showed that thermomechanical characteristics of each type of specimens were distinct. Temperature was found to be decreasing linearly with increasing tensile stress in the elastic region due to thermo-elastic effect. Yield point could be observed by monitoring the change in temperature profile during tensile testing and this value could be correlated with the results obtained from stress-strain response. The extent of prior plastic deformation in the post-yield region influenced the slopes of temperature response during tensile loading. Partial unloading and reloading of specimens post-yield results in change in slope in elastic and plastic regions of composite specimens.

Keywords: Glass/Epoxy composites, Thermomechanical behavior, Infrared Thermography, Thermoelastic slope, Thermoplastic slope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
3018 Development of Web-Based Remote Desktop to Provide Adaptive User Interfaces in Cloud Platform

Authors: Shuen-Tai Wang, Hsi-Ya Chang

Abstract:

Cloud virtualization technologies are becoming more and more prevalent, cloud users usually encounter the problem of how to access to the virtualized remote desktops easily over the web without requiring the installation of special clients. To resolve this issue, we took advantage of the HTML5 technology and developed web-based remote desktop. It permits users to access the terminal which running in our cloud platform from anywhere. We implemented a sketch of web interface following the cloud computing concept that seeks to enable collaboration and communication among users for high performance computing. Given the development of remote desktop virtualization, it allows to shift the user’s desktop from the traditional PC environment to the cloud platform, which is stored on a remote virtual machine rather than locally. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for online cloud service. This is also made possible by the low administrative costs as well as relatively inexpensive end-user terminals and reduced energy expenses.

Keywords: Virtualization, Remote Desktop, HTML5, Cloud Computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3255
3017 Frictionless Contact Problem Between Two Orthotropic Elastic Layers

Authors: V. Kahya, A. Birinci, R. Erdol

Abstract:

A frictionless contact problem for a two-layer orthotropic elastic medium loaded through a rigid flat stamp is considered. It is assumed that tensile tractions are not allowed and only compressive tractions can be transmitted across the interface. In the solution, effect of gravity is taken into consideration. If the external load on the rigid stamp is less than or equal to a critical value, continuous contact between the layers is maintained. The problem is expressed in terms of a singular integral equation by using the theory of elasticity and the Fourier transforms. Numerical results for initial separation point, critical separation load and contact stress distribution are presented.

Keywords: Frictionless contact, Initial separation, Orthotropicmaterial, Singular integral equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
3016 Optical and Double Folding Analysis for 6Li+16O Elastic Scattering

Authors: Abd Elrahman Elgamala, N. Darwish, I. Bondouk, Sh. Hamada

Abstract:

Available experimental angular distributions for 6Li elastically scattered from 16O nucleus in the energy range 13.0–50.0 MeV are investigated and reanalyzed using optical model of the conventional phenomenological potential and also using double folding optical model of different interaction models: DDM3Y1, CDM3Y1, CDM3Y2, and CDM3Y3. All the involved models of interaction are of M3Y Paris except DDM3Y1 which is of M3Y Reid and the main difference between them lies in the different values for the parameters of the incorporated density distribution function F(ρ). We have extracted the renormalization factor NR for 6Li+16O nuclear system in the energy range 13.0–50.0 MeV using the aforementioned interaction models.

Keywords: Elastic scattering, optical model, folding potential, density distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 555
3015 Stability of Square Plate with Concentric Cutout

Authors: B. S. Jayashankarbabu, Karisiddappa

Abstract:

The finite element method is used to obtain the elastic buckling load factor for square isotropic plate containing circular, square and rectangular cutouts. ANSYS commercial finite element software had been used in the study. The applied inplane loads considered are uniaxial and biaxial compressions. In all the cases the load is distributed uniformly along the plate outer edges. The effects of the size and shape of concentric cutouts with different plate thickness ratios and the influence of plate edge conditions, such as SSSS, CCCC and mixed boundary condition SCSC on the plate buckling strength have been considered in the analysis.

Keywords: Concentric cutout, Elastic buckling, Finite element method, Inplane loads, Thickness ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3229
3014 Mechanical Buckling of Functionally Graded Engesser-Timoshenko Beams Located on a Continuous Elastic Foundation

Authors: M. Karami Khorramabadi, A. R. Nezamabadi

Abstract:

This paper studies mechanical buckling of functionally graded beams subjected to axial compressive load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Engesser-Timoshenko beam theory. Applying the Hamilton's principle, the equilibrium equation is established. The influences of dimensionless geometrical parameter, functionally graded index and foundation coefficient on the critical buckling load of beam are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: Mechanical Buckling, Functionally graded beam- Engesser-Timoshenko beam theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
3013 Development of 25A-Size Three-Layer Metal Gasket by Using FEM Simulation

Authors: Shigeyuki Haruyama, I Made Gatot Karohika, Akinori Sato, Didik Nurhadiyanto, Ken Kaminishi

Abstract:

Contact width and contact stress are important design parameters for optimizing corrugated metal gasket performance based on elastic and plastic contact stress. In this study, we used a three-layer metal gasket with Al, Cu, Ni as the outer layer, respectively. A finite element method was employed to develop simulation solution. The gasket model was simulated by using two simulation stages which are forming and tightening simulation. The simulation result shows that aluminum with tangent modulus, Ehal = Eal/150 has the highest slope for contact width. The slope of contact width for plastic mode gasket was higher than the elastic mode gasket.

Keywords: Contact width, contact stress, layer, metal gasket, corrugated, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616