Optical and Double Folding Model Analysis for Alpha Particles Elastically Scattered from 9Be and 11B Nuclei at Different Energies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Optical and Double Folding Model Analysis for Alpha Particles Elastically Scattered from 9Be and 11B Nuclei at Different Energies

Authors: Ahmed H. Amer, A. Amar, Sh. Hamada, I. I. Bondouk, F. A. El-Hussiny

Abstract:

Elastic scattering of α-particles from 9Be and 11B nuclei at different alpha energies have been analyzed. Optical model parameters (OMPs) of α-particles elastic scattering by these nuclei at different energies have been obtained. In the present calculations, the real part of the optical potential are derived by folding of nucleonnucleon (NN) interaction into nuclear matter density distribution of the projectile and target nuclei using computer code FRESCO. A density-dependent version of the M3Y interaction (CDM3Y6), which is based on the G-matrix elements of the Paris NN potential, has been used. Volumetric integrals of the real and imaginary potential depth (JR, JW) have been calculated and found to be energy dependent. Good agreement between the experimental data and the theoretical predictions in the whole angular range. In double folding (DF) calculations, the obtained normalization coefficient Nr is in the range 0.70–1.32.

Keywords: Elastic scattering of α-particles, optical model parameters, double folding model, nucleon-nucleon interaction.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1338828

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200

References:


[1] SH. Hamada, N. Burtebayev and N. Amangeld, International Journal of Modern Physics E, 22 (2013) 1350058.
[2] H. Abele et al., Z. Phys. A - Atomic Nuclei 326 (1987) 373-381.
[3] G. R. Satchler and W. G. love, Phys. Rep. 55(1979)183.
[4] H. Feshbach, Theoretical Nuclear Physics, Vol. II (Wiley, New York, 1992).
[5] M. E. Brandan and G. R. Satchler, Phys. Rep. 285 (1997) 143.
[6] G. Bertsch, J. Borysowicz, H. McManus, and W. G. Love, Nucl. Phys. A284 (1977) 399.
[7] N. Anantaraman, H. Toki, and G. F. Bertsch, Nucl. Phys. A398 (1983) 269.
[8] D. A. Goldberg, S. M. Smith, H. G. Pugh, P. G. Roos, and N. S. Wall, Phys. Rev. C 7(1973)1938.
[9] D. A. Goldberg, S. M. Smith, and G. F. Burdzik, Phys. Rev. C 10(1974) 1362.
[10] H. G. Bohlen, M. R. Clover, G. Ingold, H. Lettau, and W. von Oertzen, Z. Phys. A 308 (1982) 121.
[11] H. G. Bohlen et al, Z. Phys. A 322 (1985)241.
[12] E. Stiliaris et al, Phys. Lett. B223 (1989)291.
[13] A. A. Ogloblin, Dao T. Khoa, Y. Kondo, Yu. A. Glukhov, A.S. Dem’yanova, M. V. Rozhkov, G. R. Satchler, and S. A. Goncharov, Phys. Rev. C 57(1998)1797.
[14] A. M. Kobos, B. A. Brown, P. E. Hodgson, G. R. Satchler, and A. Budzanowski, Nucl. Phys. A384 (1982) 65.
[15] Dao T. Khoa and W. von Oertzen, Phys. Lett. B 304 (1993) 8.
[16] Dao T. Khoa and W. von Oertzen, Phys. Lett. B 342 (1995) 6.
[17] H. A. Bethe, Annu. Rev. Nucl. Sci. 21(1971)93; W. D. Myers, Nucl. Phys. A204 (1973) 465.
[18] Dao T. Khoa, G. R. Satchler, and W. von Oertzen, Phys. Rev. C 56 (1997) 954.
[19] Dao T. Khoa et al, Phys. Rev. Lett. 74(1995)34.
[20] N. Burtebaev et al, Physics of Atomic Nuclei, 68 (2005) pp. 1303–1313.
[21] J.D.GOSS et al., physical review C, 7(1973). NEW.
[22] T. Stovall, J. Goldemberg and D. B. Isabelle, Nucl. Phys. 86 (1966) 225.
[23] D. T. Khoa et al., J. Phys. G: Nucl. Part. Phys. 34 (2007) R111.
[24] Takuji Yanabu, Sukeaki Yamashita, Shigeru Kakigi, Dai-Ca Nguyen, Kiyohiko Takimoto, Yasumasa Yamada, and Kouya Ogino, Phys. Soc. Jpn. 19(1964) p. 1818-1823.
[25] N. Burtebaev, Voprosy Atomn. Nauki i Tekhniki, Ser. Fiz. Yad. Reak., 2002 (2002) p.137.
[26] Robert G. Summers-Gill, Phys. Rev. 109 (1958) 591.
[27] A. E. Denisov, R. P. Kolalis, V. S. Sadkovsky and G. A. Feofilov, Yadernaya Fizika, 24(1976) p.249
[28] I. J. Thompson, Comput. Phys. Rep. 167 (1988) 7.