Search results for: Coulomb friction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 358

Search results for: Coulomb friction

298 MHD Falkner-Skan Boundary Layer Flow with Internal Heat Generation or Absorption

Authors: G.Ashwini, A.T.Eswara

Abstract:

This paper examines the forced convection flow of incompressible, electrically conducting viscous fluid past a sharp wedge in the presence of heat generation or absorption with an applied magnetic field. The system of partial differential equations governing Falkner - Skan wedge flow and heat transfer is first transformed into a system of ordinary differential equations using similarity transformations which is later solved using an implicit finite - difference scheme, along with quasilinearization technique. Numerical computations are performed for air (Pr = 0.7) and displayed graphically to illustrate the influence of pertinent physical parameters on local skin friction and heat transfer coefficients and, also on, velocity and temperature fields. It is observed that the magnetic field increases both the coefficients of skin friction and heat transfer. The effect of heat generation or absorption is found to be very significant on heat transfer, but its effect on the skin friction is negligible. Indeed, the occurrence of overshoot is noticed in the temperature profiles during heat generation process, causing the reversal in the direction of heat transfer.

Keywords: Heat generation / absorption, MHD Falkner- Skan flow, skin friction and heat transfer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2244
297 Average Turbulent Pipe Flow with Heat Transfer Using a Three-Equation Model

Authors: Khalid Alammar

Abstract:

Aim of this study is to evaluate a new three-equation turbulence model applied to flow and heat transfer through a pipe. Uncertainty is approximated by comparing with published direct numerical simulation results for fully-developed flow. Error in the mean axial velocity, temperature, friction, and heat transfer is found to be negligible.

Keywords: Heat Transfer, Nusselt number, Skin friction, Turbulence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447
296 Fracture Location Characterizations of Dissimilar Friction Stir Welds

Authors: Esther T. Akinlabi, Stephen A. Akinlabi

Abstract:

This paper reports the tensile fracture location characterizations of dissimilar friction stir welds between 5754 aluminium alloy and C11000 copper. The welds were produced using three shoulder diameter tools; namely, 15, 18 and 25 mm by varying the process parameters. The rotational speeds considered were 600, 950 and 1200 rpm while the feed rates employed were 50, 150 and 300 mm/min to represent the low, medium and high settings respectively. The tensile fracture locations were evaluated using the optical microscope to identify the fracture locations and were characterized. It was observed that 70% of the tensile samples failed in the Thermo Mechanically Affected Zone (TMAZ) of copper at the weld joints. Further evaluation of the fracture surfaces of the pulled tensile samples revealed that welds with low Ultimate Tensile Strength either have defects or intermetallics present at their joint interfaces.

Keywords: fracture location, friction stir welding, intermetallics, metallography,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
295 Effect of Robot Configuration Parameters, Masses and Friction on Painlevé Paradox for a Sliding Two-Link (P-R) Robot

Authors: Hassan M. Alkomy, Hesham A. Elkaranshawy, Ahmed S. Ashour, Khaled T. Mohamed

Abstract:

For a rigid body sliding on a rough surface, a range of uncertainty or non-uniqueness of solution could be found, which is termed: Painlevé paradox. Painlevé paradox is the reason of a wide range of bouncing motion, observed during sliding of robotic manipulators on rough surfaces. In this research work, the existence of the paradox zone during the sliding motion of a two-link (P-R) robotic manipulator with a unilateral constraint is investigated. Parametric study is performed to investigate the effect of friction, link-length ratio, total height and link-mass ratio on the paradox zone.

Keywords: Dynamical system, friction, multibody system, Painlevé paradox, robotic systems, sliding robots, unilateral constraint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4737
294 Power Series Solution to Sliding Velocity in Three-Dimensional Multibody Systems with Impact and Friction

Authors: Hesham A. Elkaranshawy, Amr M. Abdelrazek, Hosam M. Ezzat

Abstract:

The system of ordinary nonlinear differential equations describing sliding velocity during impact with friction for a three-dimensional rigid-multibody system is developed. No analytical solutions have been obtained before for this highly nonlinear system. Hence, a power series solution is proposed. Since the validity of this solution is limited to its convergence zone, a suitable time step is chosen and at the end of it a new series solution is constructed. For a case study, the trajectory of the sliding velocity using the proposed method is built using 6 time steps, which coincides with a Runge- Kutta solution using 38 time steps.

Keywords: Impact with friction, nonlinear ordinary differential equations, power series solutions, rough collision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
293 Flow inside Micro-Channel Bounded by Superhydrophobic Surface with Eccentric Micro-Grooves

Authors: Yu Chen, Weiwei Ren, Xiaojing Mu, Feng Zhang, Yi Xu

Abstract:

The superhydrophobic surface is widely used to reduce friction for the flow inside micro-channel and can be used to control/manipulate fluid, cells and even proteins in lab-on-chip. Fabricating micro grooves on hydrophobic surfaces is a common method to obtain such superhydrophobic surface. This study utilized the numerical method to investigate the effect of eccentric micro-grooves on the friction of flow inside micro-channel. A detailed parametric study was conducted to reveal how the eccentricity of micro-grooves affects the micro-channel flow under different grooves sizes, channel heights, Reynolds number. The results showed that the superhydrophobic surface with eccentric micro-grooves induces less friction than the counter part with aligning micro-grooves, which means requiring less power for pumps.

Keywords: Superhydrophobic, transverse grooves, heat transfer, slip length, microfluidics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1040
292 Single Ion Transport with a Single-Layer Graphene Nanopore

Authors: Vishal V. R. Nandigana, Mohammad Heiranian, Narayana R. Aluru

Abstract:

Graphene material has found tremendous applications in water desalination, DNA sequencing and energy storage. Multiple nanopores are etched to create opening for water desalination and energy storage applications. The nanopores created are of the order of 3-5 nm allowing multiple ions to transport through the pore. In this paper, we present for the first time, molecular dynamics study of single ion transport, where only one ion passes through the graphene nanopore. The diameter of the graphene nanopore is of the same order as the hydration layers formed around each ion. Analogous to single electron transport resulting from ionic transport is observed for the first time. The current-voltage characteristics of such a device are similar to single electron transport in quantum dots. The current is blocked until a critical voltage, as the ions are trapped inside a hydration shell. The trapped ions have a high energy barrier compared to the applied input electrical voltage, preventing the ion to break free from the hydration shell. This region is called “Coulomb blockade region”. In this region, we observe zero transport of ions inside the nanopore. However, when the electrical voltage is beyond the critical voltage, the ion has sufficient energy to break free from the energy barrier created by the hydration shell to enter into the pore. Thus, the input voltage can control the transport of the ion inside the nanopore. The device therefore acts as a binary storage unit, storing 0 when no ion passes through the pore and storing 1 when a single ion passes through the pore. We therefore postulate that the device can be used for fluidic computing applications in chemistry and biology, mimicking a computer. Furthermore, the trapped ion stores a finite charge in the Coulomb blockade region; hence the device also acts a super capacitor.

Keywords: Graphene, single ion transport, Coulomb blockade, fluidic computer, super capacitor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 723
291 Additive Friction Stir Manufacturing Process: Interest in Understanding Thermal Phenomena and Numerical Modeling of the Temperature Rise Phase

Authors: A. Lauvray, F. Poulhaon, P. Michaud, P. Joyot, E. Duc

Abstract:

Additive Friction Stir Manufacturing, or AFSM, is a new industrial process that follows the emergence of friction-based processes. The AFSM process is a solid-state additive process using the energy produced by the friction at the interface between a rotating non-consumable tool and a substrate. Friction depends on various parameters like axial force, rotation speed or friction coefficient. The feeder material is a metallic rod that flows through a hole in the tool. There is still a lack in understanding of the physical phenomena taking place during the process. This research aims at a better AFSM process understanding and implementation, thanks to numerical simulation and experimental validation performed on a prototype effector. Such an approach is considered a promising way for studying the influence of the process parameters and to finally identify a process window that seems relevant. The deposition of material through the AFSM process takes place in several phases. In chronological order these phases are the docking phase, the dwell time phase, the deposition phase, and the removal phase. The present work focuses on the dwell time phase that enables the temperature rise of the system due to pure friction. An analytic modeling of heat generation based on friction considers as main parameters the rotational speed and the contact pressure. Another parameter considered influential is the friction coefficient assumed to be variable, due to the self-lubrication of the system with the rise in temperature or the materials in contact roughness smoothing over time. This study proposes through a numerical modeling followed by an experimental validation to question the influence of the various input parameters on the dwell time phase. Rotation speed, temperature, spindle torque and axial force are the main monitored parameters during experimentations and serve as reference data for the calibration of the numerical model. This research shows that the geometry of the tool as well as fluctuations of the input parameters like axial force and rotational speed are very influential on the temperature reached and/or the time required to reach the targeted temperature. The main outcome is the prediction of a process window which is a key result for a more efficient process implementation.

Keywords: numerical model, additive manufacturing, frictional heat generation, process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 516
290 Development of an Autonomous Friction Gripper for Industrial Robots

Authors: Majid Tolouei-Rad, Peter Kalivitis

Abstract:

Industrial robots become useless without end-effectors that for many instances are in the form of friction grippers. Commonly friction grippers apply frictional forces to different objects on the basis of programmers- experiences. This puts a limitation on the effectiveness of gripping force that may result in damaging the object. This paper describes various stages of design and development of a low cost sensor-based robotic gripper that would facilitate the task of applying right gripping forces to different objects. The gripper is also equipped with range sensors in order to avoid collisions of the gripper with objects. It is a fully functional automated pick and place gripper which can be used in many industrial applications. Yet it can also be altered or further developed in order to suit a larger number of industrial activities. The current design of gripper could lead to designing completely automated robot grippers able to improve the efficiency and productivity of industrial robots.

Keywords: Control system, end-effector, robot, sensor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2892
289 The Impact of Surface Roughness and PTFE/TiF3/FeF3 Additives in Plain ZDDP Oil on the Friction and Wear Behavior Using Thermal and Tribological Analysis under Extreme Pressure Condition

Authors: Gabi N. Nehme, Saeed Ghalambor

Abstract:

The use of titanium fluoride and iron fluoride (TiF3/FeF3) catalysts in combination with polutetrafluoroethylene (PTFE) in plain zinc- dialkyldithiophosphate (ZDDP) oil is important for the study of engine tribocomponents and is increasingly a strategy to improve the formation of tribofilm and provide low friction and excellent wear protection in reduced phosphorus plain ZDDP oil. The influence of surface roughness and the concentration of TiF3/FeF3/PTFE were investigated using bearing steel samples dipped in lubricant solution at 100°C for two different heating time durations. This paper addresses the effects of water drop contact angle using different surface; finishes after treating them with different lubricant combination. The calculated water drop contact angles were analyzed using Design of Experiment software (DOE) and it was determined that a 0.05 μm Ra surface roughness would provide an excellent TiF3/FeF3/PTFE coating for antiwear resistance as reflected in the Scanning electron microscopy (SEM) images and the tribological testing under extreme pressure conditions. Both friction and wear performance depend greatly on the PTFE/and catalysts in plain ZDDP oil with 0.05 % phosphorous and on the surface finish of bearing steel. The friction and wear reducing effects, which was observed in the tribological tests, indicated a better micro lubrication effect of the 0.05 μm Ra surface roughness treated at 100°C for 24 hours when compared to the 0.1 μm Ra surface roughness with the same treatment.

Keywords: Scanning Electron Microscopy (SEM), ZDDP, catalysts, PTFE, friction, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
288 Fabrication and Analysis of Bulk SiCp Reinforced Aluminum Metal Matrix Composites using Friction Stir Process

Authors: M.Puviyarasan, C.Praveen

Abstract:

In this study, Friction Stir Processing (FSP) a recent grain refinement technique was employed to disperse micron-sized (2 *m) SiCp particles into aluminum alloy AA6063. The feasibility to fabricate bulk composites through FSP was analyzed and experiments were conducted at different traverse speeds and wider volumes of the specimens. Micro structural observation were carried out by employing optical microscopy test of the cross sections in both parallel and perpendicular to the tool traverse direction. Mechanical property including micro hardness was evaluated in detail at various regions on the specimen. The composites had an excellent bonding with aluminum alloy substrate and a significant increase of 30% in the micro hardness value of metal matrix composite (MMC) as to that of the base metal has observed. The observations clearly indicate that SiC particles were uniformly distributed within the aluminum matrix.

Keywords: Friction Stir Processing, Metal matrix composite, Bulk composite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047
287 The Shaping of a Triangle Steel Plate into an Equilateral Vertical Steel by Finite-Element Modeling

Authors: Tsung-Chia Chen

Abstract:

The orthogonal processes to shape the triangle steel plate into a equilateral vertical steel are examined by an incremental elasto-plastic finite-element method based on an updated Lagrangian formulation. The highly non-linear problems due to the geometric changes, the inelastic constitutive behavior and the boundary conditions varied with deformation are taken into account in an incremental manner. On the contact boundary, a modified Coulomb friction mode is specially considered. A weighting factor r-minimum is employed to limit the step size of loading increment to linear relation. In particular, selective reduced integration was adopted to formulate the stiffness matrix. The simulated geometries of verticality could clearly demonstrate the vertical processes until unloading. A series of experiments and simulations were performed to validate the formulation in the theory, leading to the development of the computer codes. The whole deformation history and the distribution of stress, strain and thickness during the forming process were obtained by carefully considering the moving boundary condition in the finite-element method. Therefore, this modeling can be used for judging whether a equilateral vertical steel can be shaped successfully. The present work may be expected to improve the understanding of the formation of the equilateral vertical steel.

Keywords: Elasto-plastic, finite element, orthogonal pressing process, vertical steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1352
286 Comparison of Numerical and Theoretical Friction Effect in the Wire Winding for Reinforced Structures with Wire Winding

Authors: Amer Ezoji, Mohammad Sedighi

Abstract:

In the article, the wire winding process for the reinforcement of a pressure vessel frame has been studied. Firstly, the importance of the wire winding method has been explained. The main step in the design process is the methodology axial force control and wire winding process. The hot isostatic press and wire winding process introduce. With use the equilibrium term in the pressure vessel and frame, stresses in the frame wires analyzed. A case study frame was studied to control axial force in the hot isostatic press. Frame and them wires simulated then friction effect and wires effect in elastic yoke in the simulation model considered. Then theoretical and simulate resulted compare and vessel pressure import to frame because we assurance wire wounded not received to yielding point.   

Keywords: Wire winding, Frame, stress, friction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052
285 Numerical Modeling of Direct Shear Tests on Sandy Clay

Authors: R. Ziaie Moayed , S. Tamassoki , E. Izadi

Abstract:

Investigation of sandy clay behavior is important since urban development demands mean that sandy clay areas are increasingly encountered, especially for transportation infrastructures. This paper presents the results of the finite element analysis of the direct shear test (under three vertical loading 44, 96 and 192 kPa) and discusses the effects of different parameters such as cohesion, friction angle and Young's modulus on the shear strength of sandy clay. The numerical model was calibrated against the experimental results of large-scale direct shear tests. The results have shown that the shear strength was increased with increase in friction angle and cohesion. However, the shear strength was not influenced by raising the friction angle at normal stress of 44 kPa. Also, the effect of different young's modulus factors on stress-strain curve was investigated.

Keywords: Shear strength, Finite element analysis, Large direct shear test, Sandy clay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5477
284 Friction Stir Welded Joint Aluminum Alloy H20-H20 with Different Type of Tools Mechanical Properties

Authors: Omid A. Zargar

Abstract:

In this project three type of tools, straight cylindrical, taper cylindrical and triangular tool all made of High speed steel (Wc-Co) used for the friction stir welding (FSW) aluminum alloy H20–H20 and the mechanical properties of the welded joint tested by tensile test and vicker hardness test. Besides, mentioned mechanical properties compared with each other to make conclusion. The result helped design of welding parameter optimization for different types of friction stir process like rotational speed, depth of welding, travel speed, type of material, type of joint, work piece dimension, joint dimension, tool material and tool geometry. Previous investigations in different types of materials work pieces; joint type, machining parameter and preheating temperature take placed. In this investigation 3 mentioned tool types that are popular in FSW tested and the results completed other aspects of the process. Hope this paper can open a new horizon in experimental investigation of mechanical properties for friction stir welded joint with other different type of tools like oval shape probe, paddle shape probe, three flat sided probe, and three sided re-entrant probe and other materials and alloys like titanium or steel in near future.

Keywords: Friction stir welding (FSW), tool, CNC milling machine, aluminum alloy H20, Vickers hardness test, tensile test, straight cylindrical tool, taper cylindrical tool, triangular tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2866
283 Transformations of Spatial Distributions of Bio-Polymers and Nanoparticles in Water Suspensions Induced by Resonance-Like Low Frequency Electrical Fields

Authors: A. A. Vasin, N. V. Klassen, A. M. Likhter

Abstract:

Water suspensions of in-organic (metals and oxides) and organic nano-objects (chitozan and collagen) were subjected to the treatment of direct and alternative electrical fields. In addition to quasi-periodical spatial patterning resonance-like performance of spatial distributions of these suspensions has been found at low frequencies of alternating electrical field. These resonances are explained as the result of creation of equilibrium states of groups of charged nano-objects with opposite signs of charges at the interparticle distances where the forces of Coulomb attraction are compensated by the repulsion forces induced by relatively negative polarization of hydrated regions surrounding the nanoparticles with respect to pure water. The low frequencies of these resonances are explained by comparatively big distances between the particles and their big masses with t\respect to masses of atoms constituting molecules with high resonance frequencies. These new resonances open a new approach to detailed modeling and understanding of mechanisms of the influence of electrical fields on the functioning of internal organs of living organisms at the level of cells and neurons.

Keywords: Bio-polymers, chitosan, collagen, nanoparticles, coulomb attraction, polarization repulsion, periodical patterning, electrical low frequency resonances, transformations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1124
282 A Comparison of Double Sided Friction Stir Welding in Air and Underwater for 6mm S275 Steel Plate

Authors: Philip Baillie, Stuart W. Campbell, Alexander M. Galloway, Stephen R. Cater, Norman A. McPherson

Abstract:

This study compared the mechanical and microstructural properties produced during friction stir welding (FSW) of S275 structural steel in air and underwater. Post weld tests assessed the tensile strength, micro-hardness, distortion, Charpy impact toughness and fatigue performance in each case. The study showed that there was no significant difference in the strength, hardness or fatigue life of the air and underwater specimens. However, Charpy impact toughness was shown to decrease for the underwater specimens and was attributed to a lower degree of recrystallization caused by the higher rate of heat loss experienced when welding underwater. Reduced angular and longitudinal distortion was observed in the underwater welded plate compared to the plate welded in air.

Keywords: Charpy impact toughness, distortion, fatigue, friction stir welding (FSW), micro-hardness, underwater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2733
281 Polishing Machine Based on High-Pressure Water Jet

Authors: Mohammad A. Khasawneh

Abstract:

The design of high pressure water jet based polishing equipment and its fabrication conducted in this study is reported herein, together with some preliminary test results for assessing its applicability for HMA surface polishing. This study also provides preliminary findings concerning the test variables, such as the rotational speed, the water jet pressure, the abrasive agent used, and the impact angel that were experimentally investigated in this study. The preliminary findings based on four trial tests (two on large slab specimens and two on small size gyratory compacted specimens), however, indicate that both friction and texture values tend to increase with the polishing durations for two combinations of pressure and rotation speed of the rotary deck. It seems that the more polishing action the specimen is subjected to; the aggregate edges are created such that the surface texture values are increased with the accompanied increase in friction values. It may be of interest (but which is outside the scope of this study) to investigate if the similar trend exist for HMA prepared with aggregate source that is sand and gravel.

Keywords: High-pressure, water jet, Friction, Texture, Polishing, Statistical Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052
280 A Parametric Assessment of Friction Damper in Eccentric Braced Frame

Authors: J. Vaseghi, S.Navaei, B. Navayinia, F. Roshantabari

Abstract:

In This paper, the behavior of eccentric braced frame (EBF) is studied with replacing friction damper (FD) in confluence of these braces, in 5 and 10-storey steel frames. For FD system, the main step is to determine the slip load. For this reason, the performance indexes include roof displacement, base shear, dissipated energy and relative performance should be investigated. In nonlinear dynamic analysis, the response of structure to three earthquake records has been obtained and the values of roof displacement, base shear and column axial force for FD and EBF frames have been compared. The results demonstrate that use of the FD in frames, in comparison with the EBF, substantially reduces the roof displacement, column axial force and base shear. The obtained results show suitable performance of FD in higher storey structure in comparison with the EBF.

Keywords: Friction Damper (FD), Slip Load, Nonlinear Dynamic Analysis, Performance Index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2743
279 Semi-Analytic Solution and Hydrodynamics Behavior of Fluid Flow in Micro-Converging plates

Authors: A. Al-Shyyab, A. F. Khadrawi

Abstract:

The hydrodynamics behavior of fluid flow in microconverging plates is investigated analytically. Effects of Knudsen number () on the microchannel hydrodynamics behavior and the coefficient of friction are investigated. It is found that as  increases the slip in the hydrodynamic boundary condition increases. Also, the coefficient of friction decreases as  increases.

Keywords: Converging plates, hydrodynamic behavior, microplates, microchannel, slip velocity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1598
278 Bidirectional Pendulum Vibration Absorbers with Homogeneous Variable Tangential Friction: Modelling and Design

Authors: Emiliano Matta

Abstract:

Passive resonant vibration absorbers are among the most widely used dynamic control systems in civil engineering. They typically consist in a single-degree-of-freedom mechanical appendage of the main structure, tuned to one structural target mode through frequency and damping optimization. One classical scheme is the pendulum absorber, whose mass is constrained to move along a curved trajectory and is damped by viscous dashpots. Even though the principle is well known, the search for improved arrangements is still under way. In recent years this investigation inspired a type of bidirectional pendulum absorber (BPA), consisting of a mass constrained to move along an optimal three-dimensional (3D) concave surface. For such a BPA, the surface principal curvatures are designed to ensure a bidirectional tuning of the absorber to both principal modes of the main structure, while damping is produced either by horizontal viscous dashpots or by vertical friction dashpots, connecting the BPA to the main structure. In this paper, a variant of BPA is proposed, where damping originates from the variable tangential friction force which develops between the pendulum mass and the 3D surface as a result of a spatially-varying friction coefficient pattern. Namely, a friction coefficient is proposed that varies along the pendulum surface in proportion to the modulus of the 3D surface gradient. With such an assumption, the dissipative model of the absorber can be proven to be nonlinear homogeneous in the small displacement domain. The resulting homogeneous BPA (HBPA) has a fundamental advantage over conventional friction-type absorbers, because its equivalent damping ratio results independent on the amplitude of oscillations, and therefore its optimal performance does not depend on the excitation level. On the other hand, the HBPA is more compact than viscously damped BPAs because it does not need the installation of dampers. This paper presents the analytical model of the HBPA and an optimal methodology for its design. Numerical simulations of single- and multi-story building structures under wind and earthquake loads are presented to compare the HBPA with classical viscously damped BPAs. It is shown that the HBPA is a promising alternative to existing BPA types and that homogeneous tangential friction is an effective means to realize systems provided with amplitude-independent damping.

Keywords: Amplitude-independent damping, Homogeneous friction, Pendulum nonlinear dynamics, Structural control, Vibration resonant absorbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731
277 Friction Stir Welding of Dissimilar Materials: An Overview

Authors: Mukuna P. Mubiayi, Esther T. Akinlabi

Abstract:

Friction Stir Welding is a solid state welding technique which can be used to produce sound welds between similar and dissimilar materials. Dissimilar welds which include welds between the different series of aluminium alloys, aluminium to magnesium, steel and titanium has been successfully produced by many researchers. This review covers the work conducted in the above mentioned materials and further concludes by showing the need to fully understand the FSW process in order to expand the latter industrially.

Keywords: aluminium, dissimilar materials, FSW, hardness, magnesium, microstructure, steel, tensile test, titanium

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7457
276 Nonlinearity and Spectrum Analysis of Drill Strings with Component Mass Unbalance

Authors: F. Abdul Majeed, H. Karki, Y. Abdel Magid, M. Karkoub

Abstract:

This paper analyses the non linear properties exhibited by a drill string system under various un balanced mass conditions. The drill string is affected by continuous friction in the form of drill bit and well bore hole interactions. This paper proves the origin of limit cycling and increase of non linearity with increase in speed of the drilling in the presence of friction. The spectrum of the frequency response is also studied to detect the presence of vibration abnormalities arising during the drilling process.

Keywords: Drill strings, Nonlinear, Spectrum analysis, Unbalanced mass

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
275 Cellulose Nanocrystals Suspensions as Water-Based Lubricants for Slurry Pump Gland Seals

Authors: Mohammad Javad Shariatzadeh, Dana Grecov

Abstract:

The tribological tests were performed on a new tribometer, in order to measure the coefficient of friction of a gland seal packing material on stainless steel shafts in presence of Cellulose Nanocrystal (CNC) suspension as a sustainable, environmentally friendly, water-based lubricant. To simulate the real situation from the slurry pumps, silica sands were used as slurry particles. The surface profiles after tests were measured by interferometer microscope to characterize the surface wear. Moreover, the coefficient of friction and surface wear were measured between stainless steel shaft and chrome steel ball to investigate the tribological effects of CNC in boundary lubrication region. Alignment of nanoparticles in the CNC suspensions are the main reason for friction and wear reduction. The homogeneous concentrated suspensions showed fingerprint patterns of a chiral nematic liquid crystal. These properties made CNC a very good lubricant additive in water.

Keywords: Gland seal, lubricant additives, nanocrystalline cellulose, water-based lubricants.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 813
274 Numerical Investigation of the Effect of Geometrical Shape of Plate Heat Exchangers on Heat Transfer Efficiency

Authors: Hamed Sanei, Mohammad Bagher Ayani

Abstract:

Optimizations of Plate Heat Exchangers (PHS) have received great attention in the past decade. In this study, heat transfer and pressure drop coefficients are compared for rectangular and circular PHS employing numerical simulations. Plates are designed to have equivalent areas. Simulations were implemented to investigate the efficiency of PHSs considering heat transfer, friction factor and pressure drop. Amount of heat transfer and pressure drop was obtained for different range of Reynolds numbers. These two parameters were compared with aim of F "weighting factor correlation". In this comparison, the minimum amount of F indicates higher efficiency. Results reveal that the F value for rectangular shape is less than circular plate, and hence using rectangular shape of PHS is more efficient than circular one. It was observed that, the amount of friction factor is correlated to the Reynolds numbers, such that friction factor decreased in both rectangular and circular plates with an increase in Reynolds number. Furthermore, such simulations revealed that the amount of heat transfer in rectangular plate is more than circular plate for different range of Reynolds numbers. The difference is more distinct for higher Reynolds number. However, amount of pressure drop in circular plate is less than rectangular plate for the same range of Reynolds numbers which is considered as a negative point for rectangular plate efficiency. It can be concluded that, while rectangular PHSs occupy more space than circular plate, the efficiency of rectangular plate is higher.

Keywords: Chevron corrugated-plate heat exchanger, heat transfer, friction factor, Reynolds numbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2837
273 Wear and Friction Analysis of Sintered Metal Powder Self Lubricating Bush Bearing

Authors: J. K. Khare, Abhay Kumar Sharma, Ajay Tiwari, Amol A. Talankar

Abstract:

Powder metallurgy (P/M) is the only economic way to produce porous parts/products. P/M can produce near net shape parts hence reduces wastage of raw material and energy, avoids various machining operations. The most vital use of P/M is in production of metallic filters and self lubricating bush bearings and siding surfaces. The porosity of the part can be controlled by varying compaction pressure, sintering temperature and composition of metal powder mix. The present work is aimed for experimental analysis of friction and wear properties of self lubricating copper and tin bush bearing. Experimental results confirm that wear rate of sintered component is lesser for components having 10% tin by weight percentage. Wear rate increases for high tin percentage (experimented for 20% tin and 30% tin) at same sintering temperature. Experimental results also confirms that wear rate of sintered component is also dependent on sintering temperature, soaking period, composition of the preform, compacting pressure, powder particle shape and size. Interfacial friction between die and punch, between inter powder particles, between die face and powder particle depends on compaction pressure, powder particle size and shape, size and shape of component which decides size & shape of die & punch, material of die & punch and material of powder particles.

Keywords: Interfacial friction, porous bronze bearing, sintering temperature, wear rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3974
272 Effect of Taper Pin Ratio on Microstructure and Mechanical Property of Friction Stir Welded AZ31 Magnesium Alloy

Authors: N. H. Othman, N. Udin, M. Ishak, L. H. Shah

Abstract:

This study focuses on the effect of pin taper tool ratio on friction stir welding of magnesium alloy AZ31. Two pieces of AZ31 alloy with thickness of 6 mm were friction stir welded by using the conventional milling machine. The shoulder diameter used in this experiment is fixed at 18 mm. The taper pin ratio used are varied at 6:6, 6:5, 6:4, 6:3, 6:2 and 6:1. The rotational speeds that were used in this study were 500 rpm, 1000 rpm and 1500 rpm, respectively. The welding speeds used are 150 mm/min, 200 mm/min and 250 mm/min. Microstructure observation of welded area was studied by using optical microscope. Equiaxed grains were observed at the TMAZ and stir zone indicating fully plastic deformation. Tool pin diameter ratio 6/1 causes low heat input to the material because of small contact surface between tool surface and stirred materials compared to other tool pin diameter ratio. The grain size of stir zone increased with increasing of ratio of rotational speed to transverse speed due to higher heat input. It is observed that worm hole is produced when excessive heat input is applied. To evaluate the mechanical properties of this specimen, tensile test was used in this study. Welded specimens using taper pin ratio 6:1 shows higher tensile strength compared to other taper pin ratio up to 204 MPa. Moreover, specimens using taper pin ratio 6:1 showed better tensile strength with 500 rpm of rotational speed and 150mm/min welding speed.

Keywords: Friction stir welding, magnesium AZ31, cylindrical taper tool, taper pin ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
271 Estimation of Asphalt Pavement Surfaces Using Image Analysis Technique

Authors: Mohammad A. Khasawneh

Abstract:

Asphalt concrete pavements gradually lose their skid resistance causing safety problems especially under wet conditions and high driving speeds. In order to enact the actual field polishing and wearing process of asphalt pavement surfaces in a laboratory setting, several laboratory-scale accelerated polishing devices were developed by different agencies. To mimic the actual process, friction and texture measuring devices are needed to quantify surface deterioration at different polishing intervals that reflect different stages of the pavement life. The test could still be considered lengthy and to some extent labor-intensive. Therefore, there is a need to come up with another method that can assist in investigating the bituminous pavement surface characteristics in a practical and time-efficient test procedure.

The purpose of this paper is to utilize a well-developed image analysis technique to characterize asphalt pavement surfaces without the need to use conventional friction and texture measuring devices in an attempt to shorten and simplify the polishing procedure in the lab.

Promising findings showed the possibility of using image analysis in lieu of the labor-sensitive-variable-in-nature friction and texture measurements. It was found that the exposed aggregate surface area of asphalt specimens made from limestone and gravel aggregates produced solid evidence of the validity of this method in describing asphalt pavement surfaces. Image analysis results correlated well with the British Pendulum Numbers (BPN), Polish Values (PV) and Mean Texture Depth (MTD) values.

Keywords: Friction, Image Analysis, Polishing, Statistical Analysis, Texture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2559
270 A Review on Bearing Capacity Factor Nγ of Shallow Foundations with Different Shapes

Authors: S. Taghvamanesh, R. Ziaie Moayed

Abstract:

There are several methods for calculating the bearing capacity factors of foundations and retaining walls. In this paper, the bearing capacity factor Nγ (shape factor) for different types of foundation have been investigated. The formula for bearing capacity on c–φ–γ soil can still be expressed by Terzaghi’s equation except that the bearing capacity factor Nγ depends on the surcharge ratio, and friction angle φ. It is apparent that the value of Nγ increases irregularly with the friction angle of the subsoil, which leads to an excessive increment in Nγ of foundations with larger width. Also, the bearing capacity factor Nγ will significantly decrease with an increase in foundation`s width. It also should be highlighted that the effect of shape and dimension will be less noticeable with a decrease in the relative density of the soil. Hence, the bearing capacity factor Nγ relatively depends on foundation`s width, surcharge and roughness ratio. This paper presents the results of various studies conducted on the bearing capacity factor Nγ of: different types of shallow foundation and foundations with irregular geometry (ring footing, triangular footing, shell foundations and etc.) Further studies on the effect of bearing capacity factor Nγ on mat foundations and the characteristics of this factor with or without consideration for the presence of friction between soil and foundation are recommended.

Keywords: Bearing capacity, Bearing capacity factor, irregular foundation, shallow foundation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 761
269 Moderation in Temperature Dependence on Counter Frictional Coefficient and Prevention of Wear of C/C Composites by Synthesizing SiC around Surface and Internal Vacancies

Authors: Noboru Wakamoto, Kiyotaka Obunai, Kazuya Okubo, Toru Fujii

Abstract:

The aim of this study is to moderate the dependence of counter frictional coefficient on temperature between counter surfaces and to reduce the wear of C/C composites at low temperature. To modify the C/C composites, Silica (SiO2) powders were added into phenolic resin for carbon precursor. The preform plate of the precursor of C/C composites was prepared by conventional filament winding method. The C/C composites plates were obtained by carbonizing preform plate at 2200 °C under an argon atmosphere. At that time, the silicon carbides (SiC) were synthesized around the surfaces and the internal vacancies of the C/C composites. The frictional coefficient on the counter surfaces and specific wear volumes of the C/C composites were measured by our developed frictional test machine like pin-on disk type. The XRD indicated that SiC was synthesized in the body of C/C composite fabricated by current method. The results of friction test showed that coefficient of friction of unmodified C/C composites have temperature dependence when the test condition was changed. In contrast, frictional coefficient of the C/C composite modified with SiO2 powders was almost constant at about 0.27 when the temperature condition was changed from Room Temperature (RT) to 300 °C. The specific wear rate decreased from 25×10-6 mm2/N to 0.1×10-6 mm2/N. The observations of the surfaces after friction tests showed that the frictional surface of the modified C/C composites was covered with a film produced by the friction. This study found that synthesizing SiC around surface and internal vacancies of C/C composites was effective to moderate the dependence on the frictional coefficient and reduce to the abrasion of C/C composites.

Keywords: C/C composites, frictional coefficient, SiC, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 829