Search results for: Bovine yeast
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 131

Search results for: Bovine yeast

71 Modeling Stress-Induced Regulatory Cascades with Artificial Neural Networks

Authors: Maria E. Manioudaki, Panayiota Poirazi

Abstract:

Yeast cells live in a constantly changing environment that requires the continuous adaptation of their genomic program in order to sustain their homeostasis, survive and proliferate. Due to the advancement of high throughput technologies, there is currently a large amount of data such as gene expression, gene deletion and protein-protein interactions for S. Cerevisiae under various environmental conditions. Mining these datasets requires efficient computational methods capable of integrating different types of data, identifying inter-relations between different components and inferring functional groups or 'modules' that shape intracellular processes. This study uses computational methods to delineate some of the mechanisms used by yeast cells to respond to environmental changes. The GRAM algorithm is first used to integrate gene expression data and ChIP-chip data in order to find modules of coexpressed and co-regulated genes as well as the transcription factors (TFs) that regulate these modules. Since transcription factors are themselves transcriptionally regulated, a three-layer regulatory cascade consisting of the TF-regulators, the TFs and the regulated modules is subsequently considered. This three-layer cascade is then modeled quantitatively using artificial neural networks (ANNs) where the input layer corresponds to the expression of the up-stream transcription factors (TF-regulators) and the output layer corresponds to the expression of genes within each module. This work shows that (a) the expression of at least 33 genes over time and for different stress conditions is well predicted by the expression of the top layer transcription factors, including cases in which the effect of up-stream regulators is shifted in time and (b) identifies at least 6 novel regulatory interactions that were not previously associated with stress-induced changes in gene expression. These findings suggest that the combination of gene expression and protein-DNA interaction data with artificial neural networks can successfully model biological pathways and capture quantitative dependencies between distant regulators and downstream genes.

Keywords: gene modules, artificial neural networks, yeast, stress

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464
70 Inulinase Immobilization on Functionalized Magnetic Nanoparticles Prepared with Soy Protein Isolate Conjugated Bovine Serum Albumin for High Fructose Syrup Production

Authors: Homa Torabizadeh, Mohaddeseh Mikani

Abstract:

Inulinase from Aspergillus niger was covalently immobilized on magnetic nanoparticles (MNPs/Fe3O4) covered with soy protein isolate (SPI/Fe3O4) functionalized by bovine serum albumin (BSA) nanoparticles. MNPs are promising enzyme carriers because they separate easily under external magnetic fields and have enhanced immobilized enzyme reusability. As MNPs aggregate simply, surface coating strategy was employed. SPI functionalized by BSA was a suitable candidate for nanomagnetite coating due to its superior biocompatibility and hydrophilicity. Fe3O4@SPI-BSA nanoparticles were synthesized as a novel carrier with narrow particle size distribution. Step by step fabrication monitoring of Fe3O4@SPI-BSA nanoparticles was performed using field emission scanning electron microscopy and dynamic light scattering. The results illustrated that nanomagnetite with the spherical morphology was well monodispersed with the diameter of about 35 nm. The average size of the SPI-BSA nanoparticles was 80 to 90 nm, and their zeta potential was around −34 mV. Finally, the mean diameter of fabricated Fe3O4@SPI-BSA NPs was less than 120 nm. Inulinase enzyme from Aspergillus niger was covalently immobilized through gluteraldehyde on Fe3O4@SPI-BSA nanoparticles successfully. Fourier transform infrared spectra and field emission scanning electron microscopy images provided sufficient proof for the enzyme immobilization on the nanoparticles with 80% enzyme loading.

Keywords: High fructose syrup, inulinase immobilization, functionalized magnetic nanoparticles, soy protein isolate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1263
69 Utilization of Sugarcane Bagasses for Lactic Acid Production by acid Hydrolysis and Fermentation using Lactobacillus sp

Authors: Woranart Jonglertjunya, Nattawadee Pranrawang, Nuanyai Phookongka, Thanasak Sridangtip, Watthana Sawedrungreang, Chularat Krongtaew

Abstract:

Sugarcane bagasses are one of the most extensively used agricultural residues. Using acid hydrolysis and fermentation, conversion of sugarcane bagasses to lactic acid was technically and economically feasible. This research was concerned with the solubility of lignin in ammonium hydroxide, acid hydrolysis and lactic acid fermentation by Lactococcus lactis, Lactobacillus delbrueckii, Lactobacillus plantarum, and Lactobacillus casei. The lignin extraction results for different ammonium hydroxide concentrations showed that 10 % (v/v) NH4OH was favorable to lignin dissolution. Acid hydrolysis can be enhanced with increasing acid concentration and reaction temperature. The optimum glucose and xylose concentrations occurred at 121 ○C for 1 hour hydrolysis time in 10% sulphuric acid solution were 32 and 11 g/l, respectively. In order to investigate the significance of medium composition on lactic acid production, experiments were undertaken whereby a culture of Lactococcus lactis was grown under various glucose, peptone, yeast extract and xylose concentrations. The optimum medium was composed of 5 g/l glucose, 2.5 g/l xylose, 10 g/l peptone and 5 g/l yeast extract. Lactococcus lactis represents the most efficient for lactic acid production amongst those considered. The lactic acid fermentation by Lactococcus lactis after 72 hours gave the highest yield of 1.4 (g lactic acid per g reducing sugar).

Keywords: sugarcane bagasses, acid hydrolysis, lactic acid, fermentation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3517
68 Isolation and Screening of Fungal Strains for β-Galactosidase Production

Authors: Parmjit S. Panesar, Rupinder Kaur, Ram S. Singh

Abstract:

Enzymes are the biocatalysts which catalyze the biochemical processes and thus have a wide variety of applications in the industrial sector. β-Galactosidase (E.C. 3.2.1.23) also known as lactase, is one of the prime enzymes, which has significant potential in the dairy and food processing industries. It has the capability to catalyze both the hydrolytic reaction for the production of lactose hydrolyzed milk and transgalactosylation reaction for the synthesis of prebiotics such as lactulose and galactooligosaccharides. These prebiotics have various nutritional and technological benefits. Although, the enzyme is naturally present in almonds, peaches, apricots and other variety of fruits and animals, the extraction of enzyme from these sources increases the cost of enzyme. Therefore, focus has been shifted towards the production of low cost enzyme from the microorganisms such as bacteria, yeast and fungi. As compared to yeast and bacteria, fungal β-galactosidase is generally preferred as being extracellular and thermostable in nature. Keeping the above in view, the present study was carried out for the isolation of the β-galactosidase producing fungal strain from the food as well as the agricultural wastes. A total of more than 100 fungal cultures were examined for their potential in enzyme production. All the fungal strains were screened using X-gal and IPTG as inducers in the modified Czapek Dox Agar medium. Among the various isolated fungal strains, the strain exhibiting the highest enzyme activity was chosen for further phenotypic and genotypic characterization. The strain was identified as Rhizomucor pusillus on the basis of 5.8s RNA gene sequencing data.

Keywords: β-galactosidase, enzyme, fungus, isolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2596
67 Effect of Modified Atmosphere Packaging and Storage Temperatures on Quality of Shelled Raw Walnuts

Authors: M. Javanmard

Abstract:

This study was aimed at analyzing the effects of packaging (MAP) and preservation conditions on the packaged fresh walnut kernel quality. The central composite plan was used for evaluating the effect of oxygen (0–10%), carbon dioxide (0-10%), and temperature (4-26 °C) on qualitative characteristics of walnut kernels. Also, the response level technique was used to find the optimal conditions for interactive effects of factors, as well as estimating the best conditions of process using least amount of testing. Measured qualitative parameters were: peroxide index, color, decreased weight, mould and yeast counting test, and sensory evaluation. The results showed that the defined model for peroxide index, color, weight loss, and sensory evaluation is significant (p < 0.001), so that increase of temperature causes the peroxide value, color variation, and weight loss to increase and it reduces the overall acceptability of walnut kernels. An increase in oxygen percentage caused the color variation level and peroxide value to increase and resulted in lower overall acceptability of the walnuts. An increase in CO2 percentage caused the peroxide value to decrease, but did not significantly affect other indices (p ≥ 0.05). Mould and yeast were not found in any samples. Optimal packaging conditions to achieve maximum quality of walnuts include: 1.46% oxygen, 10% carbon dioxide, and temperature of 4 °C.

Keywords: Shelled walnut, MAP, quality, storage temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1139
66 Antioxidant and Aِntimicrobial Properties of Peptides as Bioactive Components in Beef Burger

Authors: F. M. Abu-Salem, M. H. Mahmoud, M. H. El-Kalyoubi, A. Y. Gibriel, A. A. Abou-Arab Arab

Abstract:

Dried soy protein hydrolysate powder was added to the burger in order to enhance the oxidative stability as well as decreases the microbial spoilage. The soybean bioactive compounds (soy protein hydrolysate) as antioxidant and antimicrobial were added at level of 1, 2 and 3 %.Chemical analysis and physical properties were affected by protein hydrolysate addition. The TBA values were significantly affected (P < 0.05) by the storage period and the level of soy protein hydrolysate. All the tested soybean protein hydrolysate additives showed strong antioxidant properties. Samples of soybean protein hydrolysate showed the lowest (P < 0.05) TBA values at each time of storage. The counts of all determined microbiological indicators were significantly (P < 0.05) affected by the addition of the soybean protein hydrolysate. Decreasing trends of different extent were also observed in samples of the treatments for total viable counts, Coliform, Staphylococcus aureus, yeast and molds. Storage period was being significantly (P < 0.05) affected on microbial counts in all samples Staphylococcus aureus were the most sensitive microbe followed by Coliform group of the sample containing protein hydrolysate, while molds and yeast count showed a decreasing trend but not significant (P < 0.05) until the end of the storage period compared with control sample. Sensory attributes were also performed, added protein hydrolysate exhibits beany flavor which was clear about samples of 3% protein hydrolysate.

Keywords: Antioxidant, antimicrobial, isoflavones, bioactive peptide, antioxidant peptides, soybean protein hydrolysate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2238
65 Optimization of Lead Bioremediation by Marine Halomonas sp. ES015 Using Statistical Experimental Methods

Authors: Aliaa M. El-Borai, Ehab A. Beltagy, Eman E. Gadallah, Samy A. ElAssar

Abstract:

Bioremediation technology is now used for treatment instead of traditional metal removal methods. A strain was isolated from Marsa Alam, Red sea, Egypt showed high resistance to high lead concentration and was identified by the 16S rRNA gene sequencing technique as Halomonas sp. ES015. Medium optimization was carried out using Plackett-Burman design, and the most significant factors were yeast extract, casamino acid and inoculums size. The optimized media obtained by the statistical design raised the removal efficiency from 84% to 99% from initial concentration 250 ppm of lead. Moreover, Box-Behnken experimental design was applied to study the relationship between yeast extract concentration, casamino acid concentration and inoculums size. The optimized medium increased removal efficiency to 97% from initial concentration 500 ppm of lead. Immobilized Halomonas sp. ES015 cells on sponge cubes, using optimized medium in loop bioremediation column, showed relatively constant lead removal efficiency when reused six successive cycles over the range of time interval. Also metal removal efficiency was not affected by flow rate changes. Finally, the results of this research refer to the possibility of lead bioremediation by free or immobilized cells of Halomonas sp. ES015. Also, bioremediation can be done in batch cultures and semicontinuous cultures using column technology.

Keywords: Bioremediation, lead, Box–Behnken, Halomonas sp. ES015, loop bioremediation, Plackett-Burman.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1018
64 Optimal Conditions for Carotenoid Production and Antioxidation Characteristics by Rhodotorula rubra

Authors: N. Chanchay, S. Sirisansaneeyakul, C. Chaiyasut, N. Poosaran

Abstract:

This study aims to screen out and to optimize the major nutrients for maximum carotenoid production and antioxidation characteristics by Rhodotorula rubra. It was found that supplementary of 10 g/l glucose as carbon source, 1 g/l ammonium sulfate as nitrogen source and 1 g/l yeast extract as growth factor in the medium provided the better yield of carotenoid content of 30.39 μg/g cell dry weight the amount of antioxidation of Rhodotorula rubra by DPPH, ABTS and MDA method were 1.463%, 34.21% and 34.09 μmol/l, respectively.

Keywords: Carotenoid, Rhodotorula rubra, Antioxidation, DPPH, ABTS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2941
63 Protein Delivery from Polymeric Nanoparticles

Authors: G. Spada, E. Gavini, P. Giunchedi

Abstract:

Aim of this work was to compare the efficacy of two loading methods of proteins onto polymeric nanocarriers: adsorption and encapsulation methods. Preliminary studies of protein loading were done using Bovine Serum Albumin (BSA) as model protein. Nanocarriers were prepared starting from polylactic co-glycolic acid (PLGA) polymer; production methods used are two different variants of emulsion evaporation method. Nanoparticles obtained were analyzed in terms of dimensions by Dynamic Light Scattering and Loading Efficiency of BSA by Bradford Assay. Loaded nanoparticles were then submitted to in-vitro protein dissolution test in order to study the effect of the delivery system on the release rate of the protein.

Keywords: Drug delivery, nanoparticles, PLGA, proteinadsorption, protein encapsulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2511
62 Secondary Ion Mass Spectrometry of Proteins

Authors: Santanu Ray, Alexander G. Shard

Abstract:

The adsorption of bovine serum albumin (BSA), immunoglobulin G (IgG) and fibrinogen (Fgn) on fluorinated selfassembled monolayers have been studied using time of flight secondary ion mass spectrometry (ToF-SIMS) and Spectroscopic Ellipsometry (SE). The objective of the work has to establish the utility of ToF-SIMS for the determination of the amount of protein adsorbed on the surface. Quantification of surface adsorbed proteins was carried out using SE and a good correlation between ToF-SIMS results and SE was achieved. The surface distribution of proteins were also analysed using Atomic Force Microscopy (AFM). We show that the surface distribution of proteins strongly affect the ToFSIMS results.

Keywords: ToF-SIMS, Spectroscopic Ellipsometry, Protein, Atomic Force Microscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
61 Integration of FMEA and Human Factor in the Food Chain Risk Assessment

Authors: Mohsen Shirani, Micaela Demichela

Abstract:

During the last decades, a number of food crises such as Bovine Spongiform Encephalopathy (BSE), Mad-Cow disease, Dioxin in chicken food, Food-and-Mouth Disease (FMD), have certainly inflected the reliability of the food industry. Consequently, the trend in applying different scientific methods of risk assessment in food safety has obtained more attentions in the academic and practice. However, lack of practical approach considering entire food supply chain is tangible in the academic literature. In this regard, this paper aims to apply risk assessment tool (FMEA) with integration of Human Factor along the entire supply chain of food production and test the method in a case study of Diary production, and analyze its results.

Keywords: Food Risk Assessment, FMEA, Human Factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3085
60 Genetic Comparison of Two Different Arabian Oryx Populations in UAE Based on Microsatellite Analysis

Authors: Mohammed A. Khidhir, K. Praveen Kumar, Marwa Al-Aseer

Abstract:

This is a genetic comparison study of Arabian Oryx (Oryx leucoryx) population at two different locations (A &B) based on nuclear microsatellite DNA markers. Arabian Oryx is listed as vulnerable and endanger by the World Conservation Union (IUCN). Thirty microsatellite markers from bovine family were applied to investigate the genetic diversity of the Arabian Oryx and to set up a molecular inventory. Among 30 microsatellite markers used, 13 markers were moderately polymorphic. Arabian Oryx at location A has shown better gene diversity over location B. However, mean number of alleles were less than location B. Data of within population inbreeding coefficient indicates inbreeding at both locations (A&B). Based on the analysis of polymorphic microsatellite markers, the study revealed that Arabian Oryx need a genetically designed breeding program.

Keywords: Arabian oryx, Microsatellites

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
59 Determination of Penicillins Residues in Livestock and Marine Products by LC/MS/MS

Authors: Ji Young Song, Soo Jung Hu, Hyunjin Joo, Joung Boon Hwang, Mi Ok Kim, Shin Jung Kang, Dae Hyun Cho

Abstract:

Multi-residue analysis method for penicillins was developed and validated in bovine muscle, chicken, milk, and flatfish. Detection was based on liquid chromatography tandem mass spectrometry (LC/MS/MS). The developed method was validated for specificity, precision, recovery, and linearity. The analytes were extracted with 80% acetonitrile and clean-up by a single reversed-phase solid-phase extraction step. Six penicillins presented recoveries higher than 76% with the exception of Amoxicillin (59.7%). Relative standard deviations (RSDs) were not more than 10%. LOQs values ranged from 0.1 and to 4.5 ug/kg. The method was applied to 128 real samples. Benzylpenicillin was detected in 15 samples and Cloxacillin was detected in 7 samples. Oxacillin was detected in 2 samples. But the detected levels were under the MRL levels for penicillins in samples.

Keywords: Penicillins, livestock product, Multi-residue analysis, LC/MS/MS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3417
58 Protein-Protein Interaction Detection Based on Substring Sensitivity Measure

Authors: Nazar Zaki, Safaai Deris, Hany Alashwal

Abstract:

Detecting protein-protein interactions is a central problem in computational biology and aberrant such interactions may have implicated in a number of neurological disorders. As a result, the prediction of protein-protein interactions has recently received considerable attention from biologist around the globe. Computational tools that are capable of effectively identifying protein-protein interactions are much needed. In this paper, we propose a method to detect protein-protein interaction based on substring similarity measure. Two protein sequences may interact by the mean of the similarities of the substrings they contain. When applied on the currently available protein-protein interaction data for the yeast Saccharomyces cerevisiae, the proposed method delivered reasonable improvement over the existing ones.

Keywords: Protein-Protein Interaction, support vector machine, feature extraction, pairwise alignment, Smith-Waterman score.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
57 Kinetic Parameters for Bioethanol Production from Oil Palm Trunk Juice

Authors: A. H. Norhazimah, C. K. M. Faizal

Abstract:

Abundant and cheap agricultural waste of oil palm trunk (OPT) juice was used to produce bioethanol. Two strains of Saccharomyces cerevisiae and a strain of Pichia stipitis were used to produce bioethanol from the OPT juice. Fermentation was conducted at previously optimized condition at 30oC and without shaking. The kinetic parameters were estimated and calculated. Monod equation and Hinshelwood model is used to relate the specific growth to the concentration of the limiting substrate and also to simulate bioethanol production rate. Among the three strains, single S. cerevisiae Kyokai no. 7 produce the highest ethanol yield of 0.477 g/l.h within the shortest time (12 h). This yeast also produces more than 20 g/l ethanol concentration within 10 h of fermentation.

Keywords: Oil palm trunk, Pichia stipitis, Saccharomyces cerevisiae.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037
56 Comparative Analysis of Total Phenolic Content in Sea Buckthorn Wine and Other Selected Fruit Wines

Authors: Bharti Negi, Gargi Dey

Abstract:

This is the first report from India on a beverage resulting from alcoholic fermentation of the juice of sea buckthorn (Hippophae rhamnoides L) using lab isolated yeast strain. The health promoting potential of the product was evaluated based on its total phenolic content. The most important finding was that under the present fermentation condition, the total phenolic content of the wine product was 689 mg GAE/L. Investigation of influence of bottle ageing on the sea buckthorn wine showed a slight decrease in the phenolic content (534 m mg GAE/L). This study also includes the comparative analysis of the phenolic content of wines from other selected fruit juices like grape, apple and black currant. KeywordsAlcoholic fermentation, Hippophae, Total phenolic content, Wine

Keywords: Alcoholic fermentation, Hippophae, Total phenolic content, Wine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3080
55 Effect of Different Microbial Strains on Biological Pretreatment of Sugarcane Bagasse for Enzymatic Hydrolysis

Authors: Achiraya Jiraprasertwong, Erdogan Gulari, Sumaeth Chavadej

Abstract:

Among agricultural residues, sugarcane bagasse is one of the most convincing raw materials for the production of bioethanol due to its availability, and low cost through enzymatic hydrolysis and yeast fermentation. A pretreatment step is needed to enhance the enzymatic step. In this study, sugarcane bagasse (SCB), one of the most abundant agricultural residues in Thailand, was pretreated biologically with various microorganisms of white-rot fungus—Phanerochaete sordid (SK 7), Cellulomonas sp. (TISTR 784), and strain A 002 (Bacillus subtilis isolated from Thai higher termites). All samples with various microbial pretreatments were further hydrolyzed enzymatically by a commercial enzyme obtained from Aspergillus niger. The results showed that the pretreatment with the white-rot fungus gave the highest glucose concentration around two-fold higher when compared with the others.

Keywords: Sugarcane bagasse, Microorganisms, Pretreatment, Enzymatic hydrolysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2582
54 Observation of the Correlations between Pair Wise Interaction and Functional Organization of the Proteins, in the Protein Interaction Network of Saccaromyces Cerevisiae

Authors: N. Tuncbag, T. Haliloglu, O. Keskin

Abstract:

Understanding the cell's large-scale organization is an interesting task in computational biology. Thus, protein-protein interactions can reveal important organization and function of the cell. Here, we investigated the correspondence between protein interactions and function for the yeast. We obtained the correlations among the set of proteins. Then these correlations are clustered using both the hierarchical and biclustering methods. The detailed analyses of proteins in each cluster were carried out by making use of their functional annotations. As a result, we found that some functional classes appear together in almost all biclusters. On the other hand, in hierarchical clustering, the dominancy of one functional class is observed. In brief, from interaction data to function, some correlated results are noticed about the relationship between interaction and function which might give clues about the organization of the proteins.

Keywords: Pair-wise protein interactions, DIP database, functional correlations, biclustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708
53 Extractive Fermentation of Ethanol Using Vacuum Fractionation Technique

Authors: Weeraya Samnuknit, Apichat Boontawan

Abstract:

A vacuum fractionation technique was introduced to remove ethanol from fermentation broth. The effect of initial glucose and ethanol concentrations were investigated for specific productivity. The inhibitory ethanol concentration was observed at 100 g/L. In order to increase the fermentation performance, the ethanol product was removed as soon as it is produced. The broth was boiled at 35oC by reducing the pressure to 65 mBar. The ethanol/water vapor was fractionated for up to 90 wt% before leaving the column. Ethanol concentration in the broth was kept lower than 25 g/L, thus minimized the product inhibition effect to the yeast cells. For batch extractive fermentation, a high substrate utilization rate was obtained at 26.6 g/L.h and most of glucose was consumed within 21 h. For repeated-batch extractive fermentation, addition of glucose was carried out up to 9 times and ethanol was produced more than 8-fold higher than batch fermentation.

Keywords: Ethanol, Extractive fermentation, Product inhibition, Vacuum fractionation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3793
52 Aerobic Bioprocess Control Using Artificial Intelligence Techniques

Authors: M. Caramihai, Irina Severin

Abstract:

This paper deals with the design of an intelligent control structure for a bioprocess of Hansenula polymorpha yeast cultivation. The objective of the process control is to produce biomass in a desired physiological state. The work demonstrates that the designed Hybrid Control Techniques (HCT) are able to recognize specific evolution bioprocess trajectories using neural networks trained specifically for this purpose, in order to estimate the model parameters and to adjust the overall bioprocess evolution through an expert system and a fuzzy structure. The design of the control algorithm as well as its tuning through realistic simulations is presented. Taking into consideration the synergism of different paradigms like fuzzy logic, neural network, and symbolic artificial intelligence (AI), in this paper we present a real and fulfilled intelligent control architecture with application in bioprocess control.

Keywords: Bioprocess, intelligent control, neural nets, fuzzy structure, hybrid techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1248
51 Isolation and Identification of an Acetobacter Strain from Iranian White-Red Cherry with High Acetic Acid Productivity as a Potential Strain for Cherry Vinegar Production in Foodand Agriculture Biotechnology

Authors: K. Beheshti Maal, R. Shafiee

Abstract:

According to FDA (Food and Drug Administration of the United States), vinegar is definedas a sour liquid containing at least 4 grams acetic acid in 100 cubic centimeter (4% solution of acetic acid) of solution that is produced from sugary materials by alcoholic fermentation. In the base of microbial starters, vinegars could be contained of more than 50 types of volatile and aromatic substances that responsible for their sweet taste and smelling. Recently the vinegar industry has a great proportion in agriculture, food and microbial biotechnology. The acetic acid bacteria are from the family Acetobacteraceae. Regarding to the latest version of Bergy-s Mannual of Systematic Bacteriology that has categorized bacteria in the base of their 16s RNA differences, the most important acetic acid genera are included Acetobacter (genus I), Gluconacetobacter (genus VIII) and Gluconobacter (genus IX). The genus Acetobacter that is primarily used in vinegar manufacturing plants is a gram negative, obligate aerobe coccus or rod shaped bacterium with the size 0.6 - 0.8 X 1.0 - 4.0 μm, nonmotile or motile with peritrichous flagella and catalase positive – oxidase negative biochemically. Some strains are overoxidizer that could convert acetic acid to carbon dioxide and water.In this research one Acetobacter native strain with high acetic acid productivity was isolated from Iranian white – red cherry. We used two specific culture media include Carr medium [yeast extract, 3%; ethanol, 2% (v/v); bromocresol green, 0.002%; agar, 2% and distilled water, 1000 ml], Frateur medium [yeast extract, 10 g/l; CaCO3, 20 g/l; ethanol, 20 g/l; agar, 20 g/l and distilled water, 1000 ml] and an industrial culture medium. In addition to high acetic acid production and high growth rate, this strain had a good tolerance against ethanol concentration that was examined using modified Carr media with 5%, 7% and 9% ethanol concentrations. While the industrial strains of acetic acid bacteria grow in the thermal range of 28 – 30 °C, this strain was adapted for growth in 34 – 36 °C after 96 hours incubation period. These dramatic characteristics suggest a potential biotechnological strain in production of cherry vinegar with a sweet smell and different nutritional properties in comparison to recent vinegar types. The lack of growth after 24, 48 and 72 hours incubation at 34 – 36 °C and the growth after 96 hours indicates a good and fast thermal flexibility of this strain as a significant characteristic of biotechnological and industrial strains.

Keywords: Acetobacte, acetic acid bacteria, white – red cherry, food and agriculture biotechnology, industrial fermentation, vinegar

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5019
50 Antidiabetic and Antioxidative Activities of Butyrolactone I from Aspergillus terreus MC751

Authors: Rizna Triana Dewi, Sanro Tachibana, Ahmad Darmawan

Abstract:

The bioassay-guided isolation and purification of an ethyl acetate extract of Aspergillus terreus MC751 led to the characterization of butyrolactone I as an antidiabetic and antioxidant. The antidiabetic activity of butyrolactone I was evaluated by α- glucosidase and α-amylase inhibition assays. Butyrolactone I demonstrated significant concentration-dependent, mixed-type inhibitory activity against yeast α-glucosidase with an IC50 of 54μM. However, the compound exhibited less activity against rat intestinal α-glucosidase and α-amylase. This is the first report on α-glucosidase inhibitory activity of butyrolactone I. The antioxidative activity of butyrolactone I was evaluated based on scavenging effects on 1,1- diphenyl-2-picrylhydrazyl (DPPH) (IC50 =51 μM) and hydrogen peroxide (IC50= 141 μM) radicals as well as a reducing power assay. The results suggest that butyrolactone I is a promising antidiabetic as well as antioxidant and should be considered for clinical trials.

Keywords: Aspergillus terreus MC751, antidiabetic, antioxidant, Butyrolactone I.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2820
49 Study of Microbial Critical Points of Saffron from Farm to Factory in Iran

Authors: N. Khazaei, M. Jouki, A. Kalbasi, H. Tavakolipour, S. Rajabifar, F. Motamedi. Sedeh, A. Jouki

Abstract:

In this research saffron samples were prepared from farms and sampling was done in four states contain : sampling from fresh saffron of petal with forceps , sampling from fresh saffron of petal by hands, sampling from dried sample by warm air in shadow, sampling from dried sample which dried by dryer. Samples collected and kept in sterile tubes and containers and carried to laboratory and maintained until experiment. Microbial experiments were performed to determine microbial load such as total count, Staphylococcus aureus, coli form, E.coli, mold and yeast. Results showed that in picking and drying stages the contamination amount increases in saffron samples. There was a significant difference between the microbial load of picked up saffron by forceps and by hands, and also between dried saffron by warm air in shadow and by dryer.

Keywords: saffron; contaminations; preparation method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126
48 Fermentable Sugars from Palm Empty Fruit Bunch Biomass for Bioethanol Production

Authors: U. A. Asli, H. Hamid, Z.A. Zakaria, A. N. Sadikin, R. Rasit

Abstract:

This study investigated the effect of a dilute acid, lime and ammonia aqueous pretreatment on the fermentable sugars conversion from empty fruit bunch (EFB) biomass. The dilute acid treatment was carried out in an autoclave, at 121ºC with 4% of sulfuric acid. In the lime pretreatment, 3 wt % of calcium hydroxide was used, whereas the third method was done by soaking EFB with 28% ammonia solution. The EFB biomass was then subjected to a two-stage-acid hydrolysis process. Subsequently, the hydrolysate was fermented by using instant baker’s yeast to produce bioethanol. The highest glucose yield was 890 mg/g of biomass, obtained from the sample which underwent lime pretreatment. The highest bioethanol yield of 6.1mg/g of glucose was achieved from acid pretreatment. This showed that the acid pretreatment gave the most fermentable sugars compared to the other two pretreatments.

Keywords: Bioethanol, biomass, empty fruit bunch (EFB), fermentable sugars.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3747
47 Optimization of Lipase Production Using Bacillus subtilis by Response Surface Methodology

Authors: A. Shyamala Devi, K. Chitra Devi, R. Rajendiran

Abstract:

A total of 6 isolates of Bacillus subtilis were isolated from oil mill waste collected in Namakkal district, Tamilnadu, India. The isolated bacteria were screened using lipase screening medium containing Tween 80. BS-3 isolate exhibited a greater clear zone than the others, indicating higher lipase activity. Therefore, this isolate was selected for media optimization studies. Ten process variables were screened using Plackett–Burman design and were further optimized by central composite design of response surface methodology for lipase production in submerged fermentation. Maximum lipase production of 16.627 U/min/ml were predicted in medium containing yeast extract (9.3636g), CaCl2 (0.8986g) and incubation periods (1.813 days). A mean value of 16.98 ± 0.2286 U/min/ml of lipase was acquired from real experiments.

Keywords: Bacillus subtilis, extracellular lipase, Plackett–Burman design, response surface methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4146
46 Bioethanol Production from Enzymatically Saccharified Sunflower Stalks Using Steam Explosion as Pretreatment

Authors: Pilanee Vaithanomsat, Sinsupha Chuichulcherm, Waraporn Apiwatanapiwat

Abstract:

Sunflower stalks were analysed for chemical compositions: pentosan 15.84%, holocellulose 70.69%, alphacellulose 45.74%, glucose 27.10% and xylose 7.69% based on dry weight of 100-g raw material. The most optimum condition for steam explosion pretreatment was as follows. Sunflower stalks were cut into small pieces and soaked in 0.02 M H2SO4 for overnight. After that, they were steam exploded at 207 C and 21 kg/cm2 for 3 minutes to fractionate cellulose, hemicellulose and lignin. The resulting hydrolysate, containing hemicellulose, and cellulose pulp contained xylose sugar at 2.53% and 7.00%, respectively.The pulp was further subjected to enzymatic saccharification at 50 C, pH 4.8 citrate buffer) with pulp/buffer 6% (w/w)and Celluclast 1.5L/pulp 2.67% (w/w) to obtain single glucose with maximum yield 11.97%. After fixed-bed fermentation under optimum condition using conventional yeast mixtures to produce bioethanol, it indicated maximum ethanol yield of 0.028 g/100 g sunflower stalk.

Keywords: Enzymatic, steam explosion, sunflower stalk, ethanol production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2406
45 Argon/Oxygen Plasma Surface Modification of Biopolymers for Improvement of Wettability and Wear Resistance

Authors: Binnur Sagbas

Abstract:

Artificial joint replacements such as total knee and total hip prosthesis have been applied to the patients who affected by osteoarthritis. Although different material combinations are used for these joints, biopolymers are most commonly preferred materials especially for acetabular cup and tibial component of hip and knee joints respectively. The main limitation that shortens the service life of these prostheses is wear. Wear is complicated phenomena and it must be considered with friction and lubrication. In this study, micro wave (MW) induced argon+oxygen plasma surface modification were applied on ultra-high molecular weight polyethylene (UHMWPE) and vitamin E blended UHMWPE (VE-UHMWPE) biopolymer surfaces to improve surface wettability and wear resistance of the surfaces. Contact angel measurement method was used for determination of wettability. Ball-on-disc wear test was applied under 25% bovine serum lubrication conditions. The results show that surface wettability and wear resistance of both material samples were increased by plasma surface modification.

Keywords: Artificial joints, plasma surface modification, UHMWPE, vitamin E, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
44 Enzymes Activity in Bovine Cervical Mucus Related to the Time of Ovulation And Insemination

Authors: S. Benbia, A.Kalla, M. Yahia, K. Belhadi, A. Zidani

Abstract:

Forty-five dairy cows were used to compare the enzyme activity of alkaline phosphatase (ALP), lactate dehydrogenase (LDH), α -amylase in the cervical mucus of cows during spontaneous and induced estrus using progestagen or PGF2 α and to determine whether these enzymes affect the fertility in cows with induced estrus, at the time of Al. The animals were assigned to 3 groups (no treatment, a Crestar® for 12 days, a double im injection of PGF2 α). The cows were artificially inseminated (AI). Cervical mucus samples were collected from all cows 3 to 5 min before the AI. The results are summarized as follows: ALP and α -amylase activity for spontaneous estrus were similar to those for induced estrus (P>0.05) . LDH activity levels during spontaneous and PGF2 α induced estrus was significantly lower (P < 0.001) than that in progestagene induced estrus groups. While no difference was found between the first and the third groups. Our result showed a significant difference in LDH activity levels between cows conceived with 2 or more AI and those conceived with 1 AI. The result of this study showed that the enzyme activity in cervical mucus is helpful for detection of ovulation and time of AI.

Keywords: cervical mucus, dairy cow, enzyme, induced, estrus, ovulation, AI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2099
43 Industrial Production and Clinical Application of L-Asparaginase: A Chemotherapeutic Agent

Authors: Soni Yadav, Sitansu Kumar Verma, Jitendra Singh, Ajay Kumar

Abstract:

This article comprises detail information about L-asparaginase, encompassing topic such as various sources of L-asparaginase, mechanism and properties of L-asparaginase. Also describe the production, cultivation and purification of L-asparaginase along with information about the application of L-asparaginase. L-asparaginase catalyzes the conversion reaction to convert asparagine to aspartic acid and ammonia. Asparagine is a nutritional requirement for both normal and tumor cell. Present scenario has found that L-asparaginase has been found to be a best anti tumor or antileukemic agent. In the recent years this enzyme gained application in the field of clinical research pharmacologic and food industry. It has been characterized based on the enzyme assay principle hydrolyzing L-asparagine into L-aspartic acid and ammonia. It has been observed that eukaryotic microorganisms such as yeast and filamentous fungi have a potential for L-asparaginase production. L-asparaginase has been and is still one of the most lengthily studied therapeutic enzymes by scientist and researchers worldwide.

Keywords: L-asparaginase, antitumor, solid state fermentation, chemotherapeutic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6916
42 Determination of Effective Variables on Arachidonic Acid Production by Mortierella alpina CBS 754.68in Solid-State Fermentation using Plackett-Burman Screening Design

Authors: Z. Ghobadi, Z. Hamidi- Esfahani, M. H. Azizi

Abstract:

In the present study, the oleaginous fungus Mortierella alpina CBS 754.68 was screened for arachidonic acidproduction using inexpensive agricultural by-products as substrate. Four oilcakes were analysed to choose the best substrate among them. Sunflower oilcake was the most effective substrate for ARA production followed by soybean, colza and olive oilcakes. In the next step, seven variables including substrate particle size, moisture content, time, temperature, yeast extract supply, glucose supply and glutamate supply were surveyed and effective variables for ARA production were determined using a Plackett-Burman screening design. Analysis results showed that time (12 days), substrate particle size (1-1.4 mm) and temperature (20ºC) were the most effective variables for the highest level of ARA production respectively.

Keywords: Arachidonic acid, Mortierella alpine, Solid-statefermentation, Plackett-Burman design

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2240