Search results for: Acoustic panels
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 339

Search results for: Acoustic panels

279 Construction and Performance Characterization of the Looped-Tube Travelling-Wave Thermoacoustic Engine with Ceramic Regenerator

Authors: Abdulrahman S. Abduljalil, Zhibin Yu, Artur J. Jaworski, Lei Shi

Abstract:

In a travelling wave thermoacoustic device, the regenerator sandwiched between a pair of (hot and cold) heat exchangers constitutes the so-called thermoacoustic core, where the thermoacoustic energy conversion from heat to acoustic power takes place. The temperature gradient along the regenerator caused by the two heat exchangers excites and maintains the acoustic wave in the resonator. The devices are called travelling wave thermoacoustic systems because the phase angle difference between the pressure and velocity oscillation is close to zero in the regenerator. This paper presents the construction and testing of a thermoacoustic engine equipped with a ceramic regenerator, made from a ceramic material that is usually used as catalyst substrate in vehicles- exhaust systems, with fine square channels (900 cells per square inch). The testing includes the onset temperature difference (minimum temperature difference required to start the acoustic oscillation in an engine), the acoustic power output, thermal efficiency and the temperature profile along the regenerator.

Keywords: Regenerator, Temperature gradient, Thermoacoustic, Travelling-wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2236
278 Influence of Confined Acoustic Phonons on the Shubnikov – de Haas Magnetoresistance Oscillations in a Doped Semiconductor Superlattice

Authors: Pham Ngoc Thang, Le Thai Hung, Nguyen Quang Bau

Abstract:

The influence of confined acoustic phonons on the Shubnikov – de Haas magnetoresistance oscillations in a doped semiconductor superlattice (DSSL), subjected in a magnetic field, DC electric field, and a laser radiation, has been theoretically studied based on quantum kinetic equation method. The analytical expression for the magnetoresistance in a DSSL has been obtained as a function of external fields, DSSL parameters, and especially the quantum number m characterizing the effect of confined acoustic phonons. When m goes to zero, the results for bulk phonons in a DSSL could be achieved. Numerical calculations are also achieved for the GaAs:Si/GaAs:Be DSSL and compared with other studies. Results show that the Shubnikov – de Haas magnetoresistance oscillations amplitude decrease as the increasing of phonon confinement effect.

Keywords: Shubnikov–de Haas magnetoresistance oscillations, quantum kinetic equation, confined acoustic phonons, laser radiation, doped semiconductor superlattices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1432
277 Finite Element Analysis of Low-Velocity Impact Damage on Stiffened Composite Panels

Authors: Xuan Sun, Mingbo Tong

Abstract:

To understand the factors which affect impact damage on composite structures, particularly the effects of impact position and ribs. In this paper, a finite element model (FEM) of low-velocity impact damage on the composite structure was established via the nonlinear finite element method, combined with the user-defined materials subroutine (VUMAT) of the ABAQUS software. The structural elements chosen for the investigation comprised a series of stiffened composite panels, representative of real aircraft structure. By impacting the panels at different positions relative to the ribs, the effect of relative position of ribs was found out. Then the simulation results and the experiments data were compared. Finally, the factors which affect impact damage on the structures were discussed. The paper was helpful for the design of stiffened composite structures.

Keywords: Stiffened, Low-velocity, Impact, Abaqus, Impact Energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2488
276 Analyzing of Noise inside a Simple Vehicle Cabin using Boundary Element Method

Authors: A. Soltani, M. Karimi Demneh

Abstract:

In this paper, modeling of an acoustic enclosed vehicle cabin has been carried out by using boundary element method. Also, the second purpose of this study is analyzing of linear wave equation in an acoustic field. The resultants of this modeling consist of natural frequencies that have been compared with resultants derived from finite element method. By using numerical method (boundary element method) and after solution of wave equation inside an acoustic enclosed cabin, this method has been progressed to simulate noise inside a simple vehicle cabin.

Keywords: Boundary element method, natural frequency, noise, vehicle cabin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2509
275 Simulations of Cryogenic Cavitation of Low Temperature Fluids with Thermodynamics Effects

Authors: A. Alhelfi, B. Sunden

Abstract:

Cavitation in cryogenic liquids is widely present in contemporary science. In the current study, we re-examine a previously validated acoustic cavitation model which was developed for a gas bubble in liquid water. Furthermore, simulations of cryogenic fluids including the thermal effect, the effect of acoustic pressure amplitude and the frequency of sound field on the bubble dynamics are presented. A gas bubble (Helium) in liquids Nitrogen, Oxygen and Hydrogen in an acoustic field at ambient pressure and low temperature is investigated numerically. The results reveal that the oscillation of the bubble in liquid Hydrogen fluctuates more than in liquids Oxygen and Nitrogen. The oscillation of the bubble in liquids Oxygen and Nitrogen is approximately similar.

Keywords: Cryogenic liquids, cavitation, rocket engineering, ultrasound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2686
274 Characterization and Modeling of Piezoelectric Integrated Micro Speakers for Audio Acoustic Actuation

Authors: J. Mendoza-López, S. Sánchez-Solano, J. L. Huertas-Díaz

Abstract:

An array of piezoelectric micro actuators can be used for radiation of an ultrasonic carrier signal modulated in amplitude with an acoustic signal, which yields audio frequency applications as the air acts as a self-demodulating medium. This application is known as the parametric array. We propose a parametric array with array elements based on existing piezoelectric micro ultrasonic transducer (pMUT) design techniques. In order to reach enough acoustic output power at a desired operating frequency, a proper ratio between number of array elements and array size needs to be used, with an array total area of the order of one cm square. The transducers presented are characterized via impedance, admittance, noise figure, transducer gain and frequency responses.

Keywords: Pizeoelectric, Microspeaker, MEMS, pMUT, Parametric Array

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216
273 Acoustic Source Localization Based On the Extended Kalman Filter for an Underwater Vehicle with a Pair of Hydrophones

Authors: ByungHoon Kang, Jeawook Shin, Ju-man Song, Hyun-Taek Choi, PooGyeon Park

Abstract:

In this study, we consider a special situation that only a pair of hydrophone on a moving underwater vehicle is available to localize a fixed acoustic source of far distance. The trigonometry can be used in this situation by using two different DOA of different locations. Notice that the distance between the two locations should be measured. Therefore, we assume that the vehicle is sailing straightly and the moving distance for each unit time is measured continuously. However, the accuracy of the localization using the trigonometry is highly dependent to the accuracy of DOAs and measured moving distances. Therefore, we proposed another method based on the extended Kalman filter that gives more robust and accurate localization result.

Keywords: Localization, acoustic, underwater, extended Kalman filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2155
272 A New Computational Tool for Noise Prediction of Rotating Surfaces (FACT)

Authors: Ana Vieira, Fernando Lau, João Pedro Mortágua, Luís Cruz, Rui Santos

Abstract:

The air transport impact on environment is more than ever a limitative obstacle to the aeronautical industry continuous growth. Over the last decades, considerable effort has been carried out in order to obtain quieter aircraft solutions, whether by changing the original design or investigating more silent maneuvers. The noise propagated by rotating surfaces is one of the most important sources of annoyance, being present in most aerial vehicles. Bearing this is mind, CEIIA developed a new computational chain for noise prediction with in-house software tools to obtain solutions in relatively short time without using excessive computer resources. This work is based on the new acoustic tool, which aims to predict the rotor noise generated during steady and maneuvering flight, making use of the flexibility of the C language and the advantages of GPU programming in terms of velocity. The acoustic tool is based in the Formulation 1A of Farassat, capable of predicting two important types of noise: the loading and thickness noise. The present work describes the most important features of the acoustic tool, presenting its most relevant results and framework analyses for helicopters and UAV quadrotors.

Keywords: Rotor noise, acoustic tool, GPU Programming, UAV noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022
271 On Developing an Automatic Speech Recognition System for Standard Arabic Language

Authors: R. Walha, F. Drira, H. El-Abed, A. M. Alimi

Abstract:

The Automatic Speech Recognition (ASR) applied to Arabic language is a challenging task. This is mainly related to the language specificities which make the researchers facing multiple difficulties such as the insufficient linguistic resources and the very limited number of available transcribed Arabic speech corpora. In this paper, we are interested in the development of a HMM-based ASR system for Standard Arabic (SA) language. Our fundamental research goal is to select the most appropriate acoustic parameters describing each audio frame, acoustic models and speech recognition unit. To achieve this purpose, we analyze the effect of varying frame windowing (size and period), acoustic parameter number resulting from features extraction methods traditionally used in ASR, speech recognition unit, Gaussian number per HMM state and number of embedded re-estimations of the Baum-Welch Algorithm. To evaluate the proposed ASR system, a multi-speaker SA connected-digits corpus is collected, transcribed and used throughout all experiments. A further evaluation is conducted on a speaker-independent continue SA speech corpus. The phonemes recognition rate is 94.02% which is relatively high when comparing it with another ASR system evaluated on the same corpus.

Keywords: ASR, HMM, acoustical analysis, acoustic modeling, Standard Arabic language

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
270 Laser Ultrasonic Diagnostics and Acoustic Emission Technique for Examination of Rock Specimens under Uniaxial Compression

Authors: Elena B. Cherepetskaya, Vladimir A. Makarov, Dmitry V. Morozov, Ivan E. Sas

Abstract:

Laboratory studies of the stress-strain behavior of rocks specimens were conducted by using acoustic emission and laser-ultrasonic diagnostics. The sensitivity of the techniques allowed changes in the internal structure of the specimens under uniaxial compressive load to be examined at micro- and macro scales. It was shown that microcracks appear in geologic materials when the stress level reaches about 50% of breaking strength. Also, the characteristic stress of the main crack formation was registered in the process of single-stage compression of rocks. On the base of laser-ultrasonic echoscopy, 2D visualization of the internal structure of rocky soil specimens was realized, and the microcracks arising during uniaxial compression were registered.

Keywords: Acoustic emission, geomaterial, laser ultrasound, uniaxial compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1372
269 Piezoelectric Approach on Harvesting Acoustic Energy

Authors: Khin Fai Chen, Jee-Hou Ho, Eng Hwa Yap

Abstract:

An Acoustic Micro-Energy Harvester (AMEH) is developed to convert wasted acoustical energy into useful electrical energy. AMEH is mathematically modeled using Lumped Element Modelling (LEM) and Euler-Bernoulli beam (EBB) modelling. An experiment is designed to validate the mathematical model and assess the feasibility of AMEH. Comparison of theoretical and experimental data on critical parameter value such as Mm, Cms, dm and Ceb showed the variances are within 1% to 6%, which is reasonably acceptable. Then, AMEH undergoes bandwidth tuning for performance optimization. The AMEH successfully produces 0.9V/(m/s^2) and 1.79μW/(m^2/s^4) at 60Hz and 400kΩ resistive load which only show variances about 7% compared to theoretical data. At 1g and 60Hz resonance frequency, the averaged power output is about 2.2mW which fulfilled a range of wireless sensors and communication peripherals power requirements. Finally, the design for AMEH is assessed, validated and deemed as a feasible design.

Keywords: Piezoelectric, acoustic, energy harvester, thermoacoustic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3244
268 Environmentally Adaptive Acoustic Echo Suppression for Barge-in Speech Recognition

Authors: Jong Han Joo, Jeong Hun Lee, Young Sun Kim, Jae Young Kang, Seung Ho Choi

Abstract:

In this study, we propose a novel technique for acoustic echo suppression (AES) during speech recognition under barge-in conditions. Conventional AES methods based on spectral subtraction apply fixed weights to the estimated echo path transfer function (EPTF) at the current signal segment and to the EPTF estimated until the previous time interval. However, the effects of echo path changes should be considered for eliminating the undesired echoes. We describe a new approach that adaptively updates weight parameters in response to abrupt changes in the acoustic environment due to background noises or double-talk. Furthermore, we devised a voice activity detector and an initial time-delay estimator for barge-in speech recognition in communication networks. The initial time delay is estimated using log-spectral distance measure, as well as cross-correlation coefficients. The experimental results show that the developed techniques can be successfully applied in barge-in speech recognition systems.

Keywords: Acoustic echo suppression, barge-in, speech recognition, echo path transfer function, initial delay estimator, voice activity detector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277
267 Monitoring Sand Transport Characteristics in Multiphase Flow in Horizontal Pipelines Using Acoustic Emission Technology

Authors: M. El-Alej, D. Mba, T. Yan, M. Elforgani

Abstract:

This paper presents an experimental investigation using Acoustic Emission (AE) technology to monitor sand transportation in multiphase flow. The investigations were undertaken on three-phase (air-water-sand) flow in a horizontal pipe where the superficial gas velocity (VSG) had a range of between 0.2msˉ¹ to 2.0msˉ¹ and superficial liquid velocity (VSL) had a range of between 0.2msˉ¹ to 1.0msˉ¹. The experimental findings clearly show a correlation exists between AE energy levels, sand concentration, superficial gas velocity (VSG), and superficial liquid velocity (VSL).

Keywords: Acoustic Emission (AE), multiphase flow, sand monitoring, sand minimum transport condition (MTC), condition monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3541
266 Computational Study of Improving the Efficiency of Photovoltaic Panels in the UAE

Authors: Ben Richard Hughes, Ng Ping Sze Cherisa, Osman Beg

Abstract:

Various solar energy technologies exist and they have different application techniques in the generation of electrical power. The widespread use of photovoltaic (PV) modules in such technologies has been limited by relatively high costs and low efficiencies. The efficiency of PV panels decreases as the operating temperatures increase. This is due to the affect of solar intensity and ambient temperature. In this work, Computational Fluid Dynamics (CFD) was used to model the heat transfer from a standard PV panel and thus determine the rate of dissipation of heat. To accurately model the specific climatic conditions of the United Arab Emirates (UAE), a case study of a new build green building in Dubai was used. A finned heat pipe arrangement is proposed and analyzed to determine the improved heat dissipation and thus improved performance efficiency of the PV panel. A prototype of the arrangement is built for experimental testing to validate the CFD modeling and proof of concept.

Keywords: Computational Fluid Dynamics, Improving Efficiency, Photovoltaic (PV) Panels, Heat-pipe

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3451
265 Effect of Carbon Amount of Dual-Phase Steels on Deformation Behavior Using Acoustic Emission

Authors: Ramin Khamedi, Isa Ahmadi

Abstract:

In this study acoustic emission (AE) signals obtained during deformation and fracture of two types of ferrite-martensite dual phase steels (DPS) specimens have been analyzed in frequency domain. For this reason two low carbon steels with various amounts of carbon were chosen, and intercritically heat treated. In the introduced method, identifying the mechanisms of failure in the various phases of DPS is done. For this aim, AE monitoring has been used during tensile test of several DPS with various volume fraction of the martensite (VM) and attempted to relate the AE signals and failure mechanisms in these steels. Different signals, which referred to 2-3 micro-mechanisms of failure due to amount of carbon and also VM have been seen. By Fast Fourier Transformation (FFT) of signals in distinct locations, an excellent relationship between peak frequencies in these areas and micro-mechanisms of failure were seen. The results were verified by microscopic observations (SEM).

Keywords: Dual Phase Steel, Deformation, Acoustic Emission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2510
264 Acoustic Absorption of Hemp Walls with Ground Granulated Blast Slag

Authors: Oliver Kinnane, Aidan Reilly, John Grimes, Sara Pavia, Rosanne Walker

Abstract:

Unwanted sound reflection can create acoustic discomfort and lead to problems of speech comprehensibility. Contemporary building techniques enable highly finished internal walls resulting in sound reflective surfaces. In contrast, sustainable construction materials using natural and vegetal materials, are often more porous and absorptive. Hemp shiv is used as an aggregate and when mixed with lime binder creates a low-embodied-energy concrete. Cement replacements such as ground granulated blast slag (GGBS), a byproduct of other industrial processes, are viewed as more sustainable alternatives to high-embodied-energy cement. Hemp concretes exhibit good hygrothermal performance. This has focused much research attention on them as natural and sustainable low-energy alternatives to standard concretes. A less explored benefit is the acoustic absorption capability of hemp-based concretes. This work investigates hemp-lime-GGBS concrete specifically, and shows that it exhibits high levels of sound absorption.

Keywords: Hemp, hempcrete, acoustic absorption, GGBS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712
263 Sound Insulation between Buildings: The Impact Noise Transmission through Different Floor Configurations

Authors: Abdelouahab Bouttout, Mohamed Amara

Abstract:

The present paper examines the impact noise transmission through some floor building assemblies. The Acoubat software numerical simulation has been used to simulate the impact noise transmission through different floor configurations used in Algerian construction mode. The results are compared with the available measurements. We have developed two experimental methods, i) field method, and ii) laboratory method using Brüel and Kjær equipments. The results show that the different cases of floor configurations need some improvement to ensure the acoustic comfort in the receiving apartment. The recommended value of the impact sound level in the receiving room should not exceed 58 dB. The important results obtained in this paper can be used as platform to improve the Algerian building acoustic regulation aimed at the construction of the multi-storey residential building.

Keywords: Impact noise, building acoustic, floor insulation, resilient material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2671
262 Local Buckling of Web-Core and Foam-Core Sandwich Panels

Authors: Ali N. Suri, Ahmad A. Al-Makhlufi

Abstract:

Sandwich construction is widely accepted as a method of construction especially in the aircraft industry. It is a type of stressed skin construction formed by bonding two thin faces to a thick core, the faces resist all of the applied edge loads and provide all or nearly all of the required rigidities, the core spaces the faces to increase cross section moment of inertia about common neutral axis and transmit shear between them provides a perfect bond between core and faces is made.

Material for face sheets can be of metal or reinforced plastics laminates, core material can be metallic cores of thin sheets forming corrugation or honeycomb, or non metallic core of Balsa wood, plastic foams, or honeycomb made of reinforced plastics.

For in plane axial loading web core and web-foam core Sandwich panels can fail by local buckling of plates forming the cross section with buckling wave length of the order of length of spacing between webs.

In this study local buckling of web core and web-foam core Sandwich panels is carried out for given materials of facing and core, and given panel overall dimension for different combinations of cross section geometries.

The Finite Strip Method is used for the analysis, and Fortran based computer program is developed and used.

Keywords: Local Buckling, Finite Strip, Sandwich panels, Web and foam core.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183
261 Modeling and Simulation of Honeycomb Steel Sandwich Panels under Blast Loading

Authors: Sayed M. Soleimani, Nader H. Ghareeb, Nourhan H. Shaker, Muhammad B. Siddiqui

Abstract:

Honeycomb sandwich panels have been widely used as protective structural elements against blast loading. The main advantages of these panels include their light weight due to the presence of voids, as well as their energy absorption capability. Terrorist activities have imposed new challenges to structural engineers to design protective measures for vital structures. Since blast loading is not usually considered in the load combinations during the design process of a structure, researchers around the world have been motivated to study the behavior of potential elements capable of resisting sudden loads imposed by the detonation of explosive materials. One of the best candidates for this objective is the honeycomb sandwich panel. Studying the effects of explosive materials on the panels requires costly and time-consuming experiments. Moreover, these type of experiments need permission from defense organizations which can become a hurdle. As a result, modeling and simulation using an appropriate tool can be considered as a good alternative. In this research work, the finite element package ABAQUS® is used to study the behavior of hexagonal and squared honeycomb steel sandwich panels under the explosive effects of different amounts of trinitrotoluene (TNT). The results of finite element modeling of a specific honeycomb configuration are initially validated by comparing them with the experimental results from literature. Afterwards, several configurations including different geometrical properties of the honeycomb wall are investigated and the results are compared with the original model. Finally, the effectiveness of the core shape and wall thickness are discussed, and conclusions are made.

Keywords: Blast loading, finite element modeling, steel honeycomb sandwich panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
260 Amplification of Compression Waves in Clean and Bubbly Liquid

Authors: Robert I. Nigmatulin, Raisa Kh. Bolotnova, Nailya K. Vakhitova, Andrey S. Topolnikov, Svetlana I. Konovalova, Nikolai A. Makhota

Abstract:

The theoretical investigation is carried out to describe the effect of increase of pressure waves amplitude in clean and bubbly liquid. The goal of the work is to capture the regime of multiple magnification of acoustic and shock waves in the liquid, which enables to get appropriate conditions to enlarge collapses of micro-bubbles. The influence of boundary conditions and frequency of the governing acoustic field is studied for the case of the cylindrical acoustic resonator. It has been observed the formation of standing waves with large amplitude at resonant frequencies. The interaction of the compression wave with gas and vapor bubbles is investigated for the convergent channel. It is shown theoretically that the chemical reactions, which occur inside gas bubbles, provide additional impulse to the wave, that affect strongly on the collapses of the vapor bubbles

Keywords: acoustics, cavitation, detonation, shock waves

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775
259 A Novel Receiver Algorithm for Coherent Underwater Acoustic Communications

Authors: Liang Zhao, Jianhua Ge

Abstract:

In this paper, we proposed a novel receiver algorithm for coherent underwater acoustic communications. The proposed receiver is composed of three parts: (1) Doppler tracking and correction, (2) Time reversal channel estimation and combining, and (3) Joint iterative equalization and decoding (JIED). To reduce computational complexity and optimize the equalization algorithm, Time reversal (TR) channel estimation and combining is adopted to simplify multi-channel adaptive decision feedback equalizer (ADFE) into single channel ADFE without reducing the system performance. Simultaneously, the turbo theory is adopted to form joint iterative ADFE and convolutional decoder (JIED). In JIED scheme, the ADFE and decoder exchange soft information in an iterative manner, which can enhance the equalizer performance using decoding gain. The simulation results show that the proposed algorithm can reduce computational complexity and improve the performance of equalizer. Therefore, the performance of coherent underwater acoustic communications can be improved greatly.

Keywords: Underwater acoustic communication, Time reversal (TR) combining, joint iterative equalization and decoding (JIED)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686
258 Rarefactive and Compressive Solitary Waves in Warm Plasma with Positrons and Nonthermal Electrons

Authors: Hamid Reza Pakzad

Abstract:

Ion-acoustic solitary waves in a plasma with nonthermal electrons, thermal positrons and warm ions are investigated using Sagdeev-s pseudopotential technique. We study the effects of non-thermal electrons and ion temperature on solitons and show both negative and positive potential waves are possible.

Keywords: Ion acoustic waves, Solitons, Nonlinear phenomena, Sagdeev potential

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1096
257 The Variable Step-Size Gauss-Seidel Pseudo Affine Projection Algorithm

Authors: F. Albu, C. Paleologu

Abstract:

In this paper, a new pseudo affine projection (AP) algorithm based on Gauss-Seidel (GS) iterations is proposed for acoustic echo cancellation (AEC). It is shown that the algorithm is robust against near-end signal variations (including double-talk).

Keywords: pseudo affine projection algorithm, acoustic echo cancellation, double-talk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1394
256 Modeling of Microelectromechanical Systems Diaphragm Based Acoustic Sensor

Authors: Vasudha Hegde, Narendra Chaulagain, H. M. Ravikumar, Sonu Mishra, Siva Yellampalli

Abstract:

Acoustic sensors are extensively used in recent days not only for sensing and condition monitoring applications but also for small scale energy harvesting applications to power wireless sensor networks (WSN) due to their inherent advantages. The natural frequency of the structure plays a major role in energy harvesting applications since the sensor key element has to operate at resonant frequency. In this paper, circular diaphragm based MEMS acoustic sensor is modelled by Lumped Element Model (LEM) and the natural frequency is compared with the simulated model using Finite Element Method (FEM) tool COMSOL Multiphysics. The sensor has the circular diaphragm of 3000 µm radius and thickness of 30 µm to withstand the high SPL (Sound Pressure Level) and also to withstand the various fabrication steps. A Piezoelectric ZnO layer of thickness of 1 µm sandwiched between two aluminium electrodes of thickness 0.5 µm and is coated on the diaphragm. Further, a channel with radius 3000 µm radius and length 270 µm is connected at the bottom of the diaphragm. The natural frequency of the structure by LEM method is approximately 16.6 kHz which is closely matching with that of simulated structure with suitable approximations.

Keywords: Acoustic sensor, diaphragm based, lumped element modeling, natural frequency, piezoelectric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 982
255 Optimization of Loudspeaker Part Design Parameters by Air Viscosity Damping Effect

Authors: Yue Hu, Xilu Zhao, Takao Yamaguchi, Manabu Sasajima, Yoshio Koike, Akira Hara

Abstract:

This study optimized the design parameters of a cone loudspeaker as an example of high flexibility of the product design. We developed an acoustic analysis software program that considers the impact of damping caused by air viscosity. In sound reproduction, it is difficult to optimize each parameter of the loudspeaker design. To overcome the limitation of the design problem in practice, this study presents an acoustic analysis algorithm to optimize the design parameters of the loudspeaker. The material character of cone paper and the loudspeaker edge were the design parameters, and the vibration displacement of the cone paper was the objective function. The results of the analysis showed that the design had high accuracy as compared to the predicted value. These results suggested that although the parameter design is difficult, with experience and intuition, the design can be performed easily using the optimized design found with the acoustic analysis software.

Keywords: Air viscosity, design parameters, loudspeaker, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1154
254 Numerical Simulations of Acoustic Imaging in Hydrodynamic Tunnel with Model Adaptation and Boundary Layer Noise Reduction

Authors: Sylvain Amailland, Jean-Hugh Thomas, Charles Pézerat, Romuald Boucheron, Jean-Claude Pascal

Abstract:

The noise requirements for naval and research vessels have seen an increasing demand for quieter ships in order to fulfil current regulations and to reduce the effects on marine life. Hence, new methods dedicated to the characterization of propeller noise, which is the main source of noise in the far-field, are needed. The study of cavitating propellers in closed-section is interesting for analyzing hydrodynamic performance but could involve significant difficulties for hydroacoustic study, especially due to reverberation and boundary layer noise in the tunnel. The aim of this paper is to present a numerical methodology for the identification of hydroacoustic sources on marine propellers using hydrophone arrays in a large hydrodynamic tunnel. The main difficulties are linked to the reverberation of the tunnel and the boundary layer noise that strongly reduce the signal-to-noise ratio. In this paper it is proposed to estimate the reflection coefficients using an inverse method and some reference transfer functions measured in the tunnel. This approach allows to reduce the uncertainties of the propagation model used in the inverse problem. In order to reduce the boundary layer noise, a cleaning algorithm taking advantage of the low rank and sparse structure of the cross-spectrum matrices of the acoustic and the boundary layer noise is presented. This approach allows to recover the acoustic signal even well under the boundary layer noise. The improvement brought by this method is visible on acoustic maps resulting from beamforming and DAMAS algorithms.

Keywords: Acoustic imaging, boundary layer noise denoising, inverse problems, model adaptation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 938
253 Evaluation of the Accuracy of Time of Arrival Source Location Algorithm of Acoustic Emission in Concrete-Mortar Structure

Authors: Hisham A. Elfergani, Ayad A. Abdalla, Ahmed R. Ballil

Abstract:

Acoustic Emission (AE) is one of the most effective non-destructive tests that can be used to detect the defect process as it is occurring. AE techniques can be used to monitor a wide range of structures and materials such as metals, non-metals and combinations of these when load is applied. The current work investigates the effectiveness and accuracy of TOA method in AE tests involving reinforced composite concrete-mortar structures. A series of experimental tests were performed using the Hsu-Neilson (H-N) source to study 2-D location accuracy using this method on concrete-mortar (400×400 mm) specimens. Four AE sensors (R3I – resonant frequency 30 kHz) were mounted to the mortar surface and six sources were performed at each point of preselected locations on the upper surface of the mortar. Results show that the TOA method can be used effectively to locate signals on composite concrete/mortar specimen and has high accuracy.

Keywords: Acoustic emission, time of arrival, composite materials, reinforced concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 589
252 Influence of Single and Multiple Skin-Core Debonding on Free Vibration Characteristics of Innovative GFRP Sandwich Panels

Authors: Indunil Jayatilake, Warna Karunasena, Weena Lokuge

Abstract:

An Australian manufacturer has fabricated an innovative GFRP sandwich panel made from E-glass fiber skin and a modified phenolic core for structural applications. Debonding, which refers to separation of skin from the core material in composite sandwiches, is one of the most common types of damage in composites. The presence of debonding is of great concern because it not only severely affects the stiffness but also modifies the dynamic behaviour of the structure. Generally it is seen that the majority of research carried out has been concerned about the delamination of laminated structures whereas skin-core debonding has received relatively minor attention. Furthermore it is observed that research done on composite slabs having multiple skin-core debonding is very limited. To address this gap, a comprehensive research investigating dynamic behaviour of composite panels with single and multiple debonding is presented. The study uses finite-element modelling and analyses for investigating the influence of debonding on free vibration behaviour of single and multilayer composite sandwich panels. A broad parametric investigation has been carried out by varying debonding locations, debonding sizes and support conditions of the panels in view of both single and multiple debonding. Numerical models were developed with Strand7 finite element package by innovatively selecting the suitable elements to diligently represent their actual behavior. Three-dimensional finite element models were employed to simulate the physically real situation as close as possible, with the use of an experimentally and numerically validated finite element model. Comparative results and conclusions based on the analyses are presented. For similar extents and locations of debonding, the effect of debonding on natural frequencies appears greatly dependent on the end conditions of the panel, giving greater decrease in natural frequency when the panels are more restrained. Some modes are more sensitive to debonding and this sensitivity seems to be related to their vibration mode shapes. The fundamental mode seems generally the least sensitive mode to debonding with respect to the variation in free vibration characteristics. The results indicate the effectiveness of the developed three dimensional finite element models in assessing debonding damage in composite sandwich panels.

Keywords: Debonding, free vibration behaviour, GFRP sandwich panels, three dimensional finite element modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1982
251 The Design of Acoustic Horns for Ultrasonic Aided Tube Double Side Flange Making

Authors: Kuen-Ming Shu, Jyun-Wei Chen

Abstract:

Encapsulated O-rings are specifically designed to address the problem of sealing the most hostile chemicals and extreme temperature applications. Ultrasonic vibration hot embossing and ultrasonic welding techniques provide a fast and reliable method to fabricate encapsulated O-ring. This paper performs the design and analysis method of the acoustic horns with double extrusion to process tube double side flange simultaneously. The paper deals with study through Finite Element Method (FEM) of ultrasonic stepped horn used to process a capsulated O-ring, the theoretical dimensions of horns, and their natural frequencies and amplitudes are obtained through the simulations of COMOSOL software. Furthermore, real horns were fabricated, tested and verified to proof the practical utility of these horns. 

Keywords: Encapsulated O-rings, ultrasonic vibration hot embossing, flange making, acoustic horn, finite element analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3365
250 Acoustic and Thermal Insulating Materials Based On Natural Fibres Used in Floor Construction

Authors: J. Hroudova, J. Zach

Abstract:

The majority of contemporary insulation materials commonly used in the building industry is made from non-renewable raw materials; furthermore, their production often brings high energy costs. A long-term trend as far as sustainable development is concerned has been the reduction of energy and material demands of building material production. One of the solutions is the possibility of using easily renewable natural raw material sources which are considerably more ecological and their production is mostly less energy-consuming compared to the production of normal insulations (mineral wool, polystyrene). The paper describes the results of research focused on the development of thermal and acoustic insulation materials based on natural fibres intended for floor constructions. Given the characteristic open porosity of natural fibre materials, the hygrothermal behaviour of the developed materials was studied. Especially the influence of relative humidity and temperature on thermal insulation properties was observed.

Keywords: Green thermal and acoustic insulating materials, natural fibres, technical hemp, flax, floor construction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3164