
Abstract—In this paper, a new pseudo affine projection (AP) 
algorithm based on Gauss-Seidel (GS) iterations is proposed for 
acoustic echo cancellation (AEC). It is shown that the algorithm is 
robust against near-end signal variations (including double-talk).

Keywords—pseudo affine projection algorithm, acoustic echo 
cancellation, double-talk. 

I. INTRODUCTION

N echo cancellation systems, an adaptive filter algorithm is 
used to reduce the echo. The echo path is usually modeled 
by a linear filter. The well known normalized least-mean-

square (NLMS) algorithm has been widely used, but 
converges very slowly. The affine projection algorithm (APA) 
can be considered as a generalization of the NLMS algorithm 
that provides a much improved convergence speed compared 
to LMS-type algorithms, although it is sensitive to high level 
of noise [1]. It has a performance that rivals with the more 
complex recursive least-squares (RLS) algorithms in many 
situations. However, the fast affine projection (FAP) 
algorithm proposed in [2,3] suffers from numerical instability 
when implemented with an embedded fast RLS algorithm. A 
key element in other proposed FAP algorithms is the approach 
to solve the encountered linear system. The choice of the 
approach (i.e., direct or iterative) determines the stability and 
robustness of the FAP algorithm. Several proposed FAP 
algorithms use an approximation that leads to simpler 
algorithms if the step size is 1  (non-relaxed case) or close 
to 1 (e.g. 17.0 ) [4-9]. For such values, these algorithms 
have a fast convergence, but they exhibit a high sensitivity to 
noisy inputs. They have been applied in different application 
areas such as AEC [2-5] and [9], active noise control [10-11], 
hearing aid [6-7] etc. All these FAP versions use a fixed step 
size. Better performances in adverse conditions might be 
expected if a variable step size is used.
  In [5] an efficient pseudo affine projection algorithm based 
on Gauss-Seidel method has been proposed for AEC systems. 
In [9] a robust GSPAP algorithm with variable step size, 
called VSS-PAP has been disclosed. Other variable step size 
solutions for the NLMS and AP algorithms have been 
proposed in [12] and [13], respectively. The solution for the 
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NLMS algorithm is a particular case of APA, for a projection 
order equal to 1. It was shown that it was a reliable solution in 
case of near-end signal variations, including double-talk. The 
same step size computational method used in VSS-NLMS can 
be adapted to the much less computational GSPAP algorithm.   

The outline of the paper is as follows. The VSS-GSPAP 
algorithm is described in Section II. In Section III, the 
behavior of VSS-GSPAP algorithm for echo cancellation in 
single-talk and double-talk scenarios is examined. A 
comparison of the proposed algorithm with VSS-PAP is 
performed. Section IV concludes the paper. 

II. THE VSS-GSPAP ALGORITHM

Let us follow the notation used in deriving the DCD-AP 
(see [6]): L is the filter length, K is the projection order,  a 
regularization parameter,  a forgetting factor; nx is the 
input signal, ny  is the desired signal, ne  is the output 
error and ne  is the normalized error. 

T
n Lnxnxnx 1,...,1,X  and nR  is the auto-

correlation matrix of the signal. 
T

n Knnn 1,...,1, , b is an N vector with 
only one nonzero element that is unity at the top. 

TLnunun 1...,,U is the approximated decorrelated 

vector. T
L nhnhn ,...,1H is the filter coefficient vector; 

and P is an N length vector and 1 to0, KiPi is its ith 
element. n is the variable step size respectively at time 
instant n.

More details about the GSPAP algorithm can be found in 
[5]. The step sizes are computed as in [12] (see steps 6-8 from 
Table 1).  The step-size equations of the proposed VSS-
GSPAP do not depend explicitly on the near-end signal, 
although they were derived by taking into account its 
presence, and consequently, a robust behavior under near-end 
signal variations (e.g., background noise variations and 
double-talk) is expected. The total computational complexity 
of the VSS-PAP is 1252 2 KKL  multiplications and 
divisions [9]. The VSS-GSPAP algorithm has 

1032 2 KKL multiplications, 3 divisions and 1 square
root. For typical projection orders, the numerical complexity 
of the considered algorithms is roughly similar. 
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TABLE I THE VSS-GSPAP ALGORITHM

Step Equation 
Initialization ,01ˆ 2

e ,01ˆ 2
s

,01X ,01U ,01H ,01P ,10 8

and IR 1
 For ,...1,0n
1 LnLnnnnn TTRR 1
2   Solve bPR nn (using one GS iteration) 
3

11/ nnnTn UPPU

4 1nnnz T HX
5 nznyne
6 nznynn ss

2222 11ˆˆ
7 nenn ee

222 11ˆˆ
8

n
n

n
e

s
2

2

ˆ
ˆ

1

8

nn
nenne

T UU
9 ,1 nennn UHH

Total: 1032 2 KKL  Mults + 3 div + 1 sqrt 

III. SIMULATIONS

The simulations were performed in an AEC context and the 
VSS-PAP and VSS-GSPAP were compared. The length of the 
adaptive filter is set to 512 coefficients. The measured impulse 
response of the acoustic echo path is plotted in Fig. 1(a) (the 
sampling rate is 8 kHz); its entire length has 1024 coefficients. 
This length is truncated to the first 512 coefficients [before the 
dotted line in Fig. 1(a)] for a first set of experiments 
performed in an exact modeling case. Then, the entire length 
of the acoustic impulse response is used for a second set of 
experiments performed in the under-modeling case [13]. The 
value of the projection order for all simulations was 4K .

The simulations are performed in an exact modeling 
scenario ( 512LN ), and in an under-modeling scenario, 
using the entire acoustic impulse response from Fig. 1(a), 
while the length of the adaptive filter remains the same 
( 512,1024 LN ). The performance for the first scenario is 
evaluated in terms of the normalized misalignment (in dB), 
defined as hHh /log20 10 . In the second scenario, the 
expression of the normalized misalignment is evaluated by 
padding the vector of the adaptive filter coefficients with N – 

L zeros, i.e., h0Hh /log20 10
T
N-L . The forgetting 

factor  is computed as in [14]. 

Fig. 1 (a) Measured room acoustic impulse response; (b) Far-end 
speech signal used in the experiments; (c) The used background 
noise with variable SNR; (d) Near-end speech signal used in the 

double-talk case

 In the following experiments, in order to approach the 
context of typical AEC applications, only the speech sequence 
from Fig. 1(b) will be used as the far-end signal. Single-talk 
and double-talk scenarios are considered. 

A. Single-talk scenario 
For the first set of simulations we considered a variation of 

the background noise [9] (i.e., the SNR decreases from 20 dB 
to 10 dB after 14 seconds from the debut of the adaptive 
process, for a period of 14 seconds – shown in Fig. 1(c)) is 
considered in Fig. 2 and 3.  The behavior of VSS-PAP and 
VSS-GSPAP is evaluated in the exact modeling case (Fig. 2) 
and the under-modeling case (Fig. 3). It can be noticed that 
the proposed algorithm is better than VSS-PAP algorithm in 
this situation.

Fig. 2 Misalignments of VSS-PAP and VSS-GSPAP. Single-talk 
case, L=512, exact modeling scenario, variable background noise 
(SNR decreases from 30 dB to 10 dB for 20000 samples). 
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Fig. 3 Misalignments of VSS-PAP and VSS-GSPAP. Single-talk 
case, L=512, under-modeling scenario, variable background noise 
(SNR decreases from 30 dB to 10 dB for 20000 samples). 

Fig. 4 shows the misalignment curve in case of exact 
modeling while Fig. 5 considers the under-modelling case and 
a sudden change of the acoustic path. The acoustic impulse 
response of Fig. 1a was shifted to the right by 12 samples after 
26000 samples from the debut of the adaptive process. 

The robustness of the VSS-GSPAP algorithm in the under-
modelling case and its close performance to VSS-PAP is 
verified. It can be noticed the losses in performance in the 
under-modeling case for both algorithms. Their tracking 
capabilities are good.

Fig. 4. Misalignments of VSS-PAP and VSS-GSPAP. Single-talk 
case, L=512, exact modeling scenario, SNR=30 dB. 

Fig. 5. Misalignments of VSS-PAP and VSS-GSPAP. Single-talk 
case, L=512, under-modeling scenario, SNR=30 dB, echo path 
change after 26000 samples. 

B. Double-talk scenario 
Perhaps the most challenging problem in echo cancellation 

is the double-talk situation. Such a scenario is considered in 
the simulations using the speech signals from Fig. 1(b) and 
Fig. 1(d). In Figs. 6 and 7, the VSS-PAP and VSS-GSPAP 
algorithms are involved. It can be noticed from Figs. 9 and 10 
that the VSS-GSPAP algorithm is superior to VSS-PAP 
algorithm in both exact modeling and under-modeling cases. 

Fig. 6 Misalignments of VSS-PAP and VSS-GSPAP. Double-talk 
case, L=512, exact modeling scenario, SNR=30 dB. 
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Fig. 7. Misalignments of VSS-PAP and VSS-GSPAP. Double-talk case, 
L=512, under-modeling scenario, SNR=30 dB.

IV. CONCLUSION

A VSS-GSPAP algorithm suitable for AEC applications has 
been proposed in this paper. A variable step size was used in 
order to take into account the existence and the non-
stationarity nature of the near-end signal as well as the under-
modeling noise. The simulation results performed in an AEC 
context showed its superior robustness to near-end signal 
variations like the increase of the background noise or double-
talk than VSS-PAP algorithm.  
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