Search results for: Coding Non-coding Classification
544 Fuzzy Set Approach to Study Appositives and Its Impact Due to Positional Alterations
Authors: E. Mike Dison, T. Pathinathan
Abstract:
Computing with Words (CWW) and Possibilistic Relational Universal Fuzzy (PRUF) are the two concepts which widely represent and measure the vaguely defined natural phenomenon. In this paper, we study the positional alteration of the phrases by which the impact of a natural language proposition gets affected and/or modified. We observe the gradations due to sensitivity/feeling of a statement towards the positional alterations. We derive the classification and modification of the meaning of words due to the positional alteration. We present the results with reference to set theoretic interpretations.
Keywords: Appositive, computing with words, PRUF, semantic sentiment analysis, set theoretic interpretations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 839543 Enhancing the Performance of H.264/AVC in Adaptive Group of Pictures Mode Using Octagon and Square Search Pattern
Authors: S. Sowmyayani, P. Arockia Jansi Rani
Abstract:
This paper integrates Octagon and Square Search pattern (OCTSS) motion estimation algorithm into H.264/AVC (Advanced Video Coding) video codec in Adaptive Group of Pictures (AGOP) mode. AGOP structure is computed based on scene change in the video sequence. Octagon and square search pattern block-based motion estimation method is implemented in inter-prediction process of H.264/AVC. Both these methods reduce bit rate and computational complexity while maintaining the quality of the video sequence respectively. Experiments are conducted for different types of video sequence. The results substantially proved that the bit rate, computation time and PSNR gain achieved by the proposed method is better than the existing H.264/AVC with fixed GOP and AGOP. With a marginal gain in quality of 0.28dB and average gain in bitrate of 132.87kbps, the proposed method reduces the average computation time by 27.31 minutes when compared to the existing state-of-art H.264/AVC video codec.Keywords: Block Distortion Measure, Block Matching Algorithms, H.264/AVC, Motion estimation, Search patterns, Shot cut detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729542 A Complexity-Based Approach in Image Compression using Neural Networks
Authors: Hadi Veisi, Mansour Jamzad
Abstract:
In this paper we present an adaptive method for image compression that is based on complexity level of the image. The basic compressor/de-compressor structure of this method is a multilayer perceptron artificial neural network. In adaptive approach different Back-Propagation artificial neural networks are used as compressor and de-compressor and this is done by dividing the image into blocks, computing the complexity of each block and then selecting one network for each block according to its complexity value. Three complexity measure methods, called Entropy, Activity and Pattern-based are used to determine the level of complexity in image blocks and their ability in complexity estimation are evaluated and compared. In training and evaluation, each image block is assigned to a network based on its complexity value. Best-SNR is another alternative in selecting compressor network for image blocks in evolution phase which chooses one of the trained networks such that results best SNR in compressing the input image block. In our evaluations, best results are obtained when overlapping the blocks is allowed and choosing the networks in compressor is based on the Best-SNR. In this case, the results demonstrate superiority of this method comparing with previous similar works and JPEG standard coding.Keywords: Adaptive image compression, Image complexity, Multi-layer perceptron neural network, JPEG Standard, PSNR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221541 Hybrid Knowledge Approach for Determining Health Care Provider Specialty from Patient Diagnoses
Authors: Erin Lynne Plettenberg, Jeremy Vickery
Abstract:
In an access-control situation, the role of a user determines whether a data request is appropriate. This paper combines vetted web mining and logic modeling to build a lightweight system for determining the role of a health care provider based only on their prior authorized requests. The model identifies provider roles with 100% recall from very little data. This shows the value of vetted web mining in AI systems, and suggests the impact of the ICD classification on medical practice.
Keywords: Ontology, logic modeling, electronic medical records, information extraction, vetted web mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 935540 Secure Block-Based Video Authentication with Localization and Self-Recovery
Authors: Ammar M. Hassan, Ayoub Al-Hamadi, Yassin M. Y. Hasan, Mohamed A. A. Wahab, Bernd Michaelis
Abstract:
Because of the great advance in multimedia technology, digital multimedia is vulnerable to malicious manipulations. In this paper, a public key self-recovery block-based video authentication technique is proposed which can not only precisely localize the alteration detection but also recover the missing data with high reliability. In the proposed block-based technique, multiple description coding MDC is used to generate two codes (two descriptions) for each block. Although one block code (one description) is enough to rebuild the altered block, the altered block is rebuilt with better quality by the two block descriptions. So using MDC increases the ratability of recovering data. A block signature is computed using a cryptographic hash function and a doubly linked chain is utilized to embed the block signature copies and the block descriptions into the LSBs of distant blocks and the block itself. The doubly linked chain scheme gives the proposed technique the capability to thwart vector quantization attacks. In our proposed technique , anyone can check the authenticity of a given video using the public key. The experimental results show that the proposed technique is reliable for detecting, localizing and recovering the alterations.Keywords: Authentication, hash function, multiple descriptioncoding, public key encryption, watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938539 Training Radial Basis Function Networks with Differential Evolution
Authors: Bing Yu , Xingshi He
Abstract:
In this paper, Differential Evolution (DE) algorithm, a new promising evolutionary algorithm, is proposed to train Radial Basis Function (RBF) network related to automatic configuration of network architecture. Classification tasks on data sets: Iris, Wine, New-thyroid, and Glass are conducted to measure the performance of neural networks. Compared with a standard RBF training algorithm in Matlab neural network toolbox, DE achieves more rational architecture for RBF networks. The resulting networks hence obtain strong generalization abilities.
Keywords: differential evolution, neural network, Rbf function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049538 Case Studies in Three Domains of Learning: Cognitive, Affective, Psychomotor
Authors: Zeinabsadat Haghshenas
Abstract:
Bloom’s Taxonomy has been changed during the years. The idea of this writing is about the revision that has happened in both facts and terms. It also contains case studies of using cognitive Bloom’s taxonomy in teaching geometric solids to the secondary school students, affective objectives in a creative workshop for adults and psychomotor objectives in fixing a malfunctioned refrigerator lamp. There is also pointed to the important role of classification objectives in adult education as a way to prevent memory loss.Keywords: Adult education, affective domain, cognitive domain, memory loss, psychomotor domain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7181537 Tsunami Modelling using the Well-Balanced Scheme
Authors: Ahmad Izani M. Ismail, Md. Fazlul Karim, Mai Duc Thanh
Abstract:
A well balanced numerical scheme based on stationary waves for shallow water flows with arbitrary topography has been introduced by Thanh et al. [18]. The scheme was constructed so that it maintains equilibrium states and tests indicate that it is stable and fast. Applying the well-balanced scheme for the one-dimensional shallow water equations, we study the early shock waves propagation towards the Phuket coast in Southern Thailand during a hypothetical tsunami. The initial tsunami wave is generated in the deep ocean with the strength that of Indonesian tsunami of 2004.Keywords: Tsunami study, shallow water, conservation law, well-balanced scheme, topography. Subject classification: 86 A 05, 86 A 17.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745536 Performance Evaluation of Music and Minimum Norm Eigenvector Algorithms in Resolving Noisy Multiexponential Signals
Authors: Abdussamad U. Jibia, Momoh-Jimoh E. Salami
Abstract:
Eigenvector methods are gaining increasing acceptance in the area of spectrum estimation. This paper presents a successful attempt at testing and evaluating the performance of two of the most popular types of subspace techniques in determining the parameters of multiexponential signals with real decay constants buried in noise. In particular, MUSIC (Multiple Signal Classification) and minimum-norm techniques are examined. It is shown that these methods perform almost equally well on multiexponential signals with MUSIC displaying better defined peaks.
Keywords: Eigenvector, minimum norm, multiexponential, subspace.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737535 Software Architectural Design Ontology
Authors: Muhammad Irfan Marwat, Sadaqat Jan, Syed Zafar Ali Shah
Abstract:
Software Architecture plays a key role in software development but absence of formal description of Software Architecture causes different impede in software development. To cope with these difficulties, ontology has been used as artifact. This paper proposes ontology for Software Architectural design based on IEEE model for architecture description and Kruchten 4+1 model for viewpoints classification. For categorization of style and views, ISO/IEC 42010 has been used. Corpus method has been used to evaluate ontology. The main aim of the proposed ontology is to classify and locate Software Architectural design information.
Keywords: Software Architecture Ontology, Semantic based Software Architecture, Software Architecture, Ontology, Software Engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4185534 Optimizing the Probabilistic Neural Network Training Algorithm for Multi-Class Identification
Authors: Abdelhadi Lotfi, Abdelkader Benyettou
Abstract:
In this work, a training algorithm for probabilistic neural networks (PNN) is presented. The algorithm addresses one of the major drawbacks of PNN, which is the size of the hidden layer in the network. By using a cross-validation training algorithm, the number of hidden neurons is shrunk to a smaller number consisting of the most representative samples of the training set. This is done without affecting the overall architecture of the network. Performance of the network is compared against performance of standard PNN for different databases from the UCI database repository. Results show an important gain in network size and performance.
Keywords: Classification, probabilistic neural networks, network optimization, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222533 A Combined Neural Network Approach to Soccer Player Prediction
Authors: Wenbin Zhang, Hantian Wu, Jian Tang
Abstract:
An artificial neural network is a mathematical model inspired by biological neural networks. There are several kinds of neural networks and they are widely used in many areas, such as: prediction, detection, and classification. Meanwhile, in day to day life, people always have to make many difficult decisions. For example, the coach of a soccer club has to decide which offensive player to be selected to play in a certain game. This work describes a novel Neural Network using a combination of the General Regression Neural Network and the Probabilistic Neural Networks to help a soccer coach make an informed decision.
Keywords: General Regression Neural Network, Probabilistic Neural Networks, Neural function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3761532 Analysis of Palm Perspiration Effect with SVM for Diabetes in People
Authors: Hamdi Melih Saraoğlu, Muhlis Yıldırım, Abdurrahman Özbeyaz, Feyzullah Temurtas
Abstract:
In this research, the diabetes conditions of people (healthy, prediabete and diabete) were tried to be identified with noninvasive palm perspiration measurements. Data clusters gathered from 200 subjects were used (1.Individual Attributes Cluster and 2. Palm Perspiration Attributes Cluster). To decrase the dimensions of these data clusters, Principal Component Analysis Method was used. Data clusters, prepared in that way, were classified with Support Vector Machines. Classifications with highest success were 82% for Glucose parameters and 84% for HbA1c parametres.
Keywords: Palm perspiration, Diabetes, Support Vector Machine, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945531 Diagnosis of Ovarian Cancer with Proteomic Patterns in Serum using Independent Component Analysis and Neural Networks
Authors: Simone C. F. Neves, Lúcio F. A. Campos, Ewaldo Santana, Ginalber L. O. Serra, Allan K. Barros
Abstract:
We propose a method for discrimination and classification of ovarian with benign, malignant and normal tissue using independent component analysis and neural networks. The method was tested for a proteomic patters set from A database, and radial basis functions neural networks. The best performance was obtained with probabilistic neural networks, resulting I 99% success rate, with 98% of specificity e 100% of sensitivity.Keywords: Cancer ovarian, Proteomic patterns in serum, independent component analysis and neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830530 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine
Authors: Djamila Benhaddouche, Abdelkader Benyettou
Abstract:
In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.
Keywords: A classifier, Algorithms decision tree, knowledge extraction, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869529 Coding Structures for Seated Row Simulation of an Active Controlled Vibration Isolation and Stabilization System for Astronaut’s Exercise Platform
Authors: Ziraguen O. Williams, Shield B. Lin, Fouad N. Matari, Leslie J. Quiocho
Abstract:
Simulation for seated row exercise was a continued task to assist NASA in analyzing a one-dimensional vibration isolation and stabilization system for astronaut’s exercise platform. Feedback delay and signal noise were added to the simulation model. Simulation runs for this study were conducted in two software simulation tools, Trick and MBDyn, software simulation environments developed at the NASA Johnson Space Center. The exciter force in the simulation was calculated from motion capture of an exerciser during a seated aerobic row exercise. The simulation runs include passive control, active control using a Proportional, Integral, Derivative (PID) controller, and active control using a Piecewise Linear Integral Derivative (PWLID) controller. Output parameters include displacements of the exercise platform, the exerciser, and the counterweight; transmitted force to the wall of spacecraft; and actuator force to the platform. The simulation results showed excellent force reduction in the active controlled system compared to the passive controlled system, which showed less force reduction.
Keywords: Simulation, counterweight, exercise, vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 314528 Association Rule and Decision Tree based Methodsfor Fuzzy Rule Base Generation
Authors: Ferenc Peter Pach, Janos Abonyi
Abstract:
This paper focuses on the data-driven generation of fuzzy IF...THEN rules. The resulted fuzzy rule base can be applied to build a classifier, a model used for prediction, or it can be applied to form a decision support system. Among the wide range of possible approaches, the decision tree and the association rule based algorithms are overviewed, and two new approaches are presented based on the a priori fuzzy clustering based partitioning of the continuous input variables. An application study is also presented, where the developed methods are tested on the well known Wisconsin Breast Cancer classification problem. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302527 Metamorphism, Formal Grammars and Undecidable Code Mutation
Authors: Eric Filiol
Abstract:
This paper presents a formalisation of the different existing code mutation techniques (polymorphism and metamorphism) by means of formal grammars. While very few theoretical results are known about the detection complexity of viral mutation techniques, we exhaustively address this critical issue by considering the Chomsky classification of formal grammars. This enables us to determine which family of code mutation techniques are likely to be detected or on the contrary are bound to remain undetected. As an illustration we then present, on a formal basis, a proof-of-concept metamorphic mutation engine denoted PB MOT, whose detection has been proven to be undecidable.
Keywords: Polymorphism, Metamorphism, Formal Grammars, Formal Languages, Language Decision, Code Mutation, Word Problem
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2427526 Construction of Recombinant E.coli Expressing Fusion Protein to Produce 1,3-Propanediol
Authors: Rosarin Rujananon, Poonsuk Prasertsan, Amornrat Phongdara, Tanate Panrat, Jibin Sun, Sugima Rappert, An-Ping Zeng
Abstract:
In this study, a synthetic pathway was created by assembling genes from Clostridium butyricum and Escherichia coli in different combinations. Among the genes were dhaB1 and dhaB2 from C. butyricum VPI1718 coding for glycerol dehydratase (GDHt) and its activator (GDHtAc), respectively, involved in the conversion of glycerol to 3-hydroxypropionaldehyde (3-HPA). The yqhD gene from E.coli BL21 was also included which codes for an NADPHdependent 1,3-propanediol oxidoreductase isoenzyme (PDORI) reducing 3-HPA to 1,3-propanediol (1,3-PD). Molecular modeling analysis indicated that the conformation of fusion protein of YQHD and DHAB1 was favorable for direct molecular channeling of the intermediate 3-HPA. According to the simulation results, the yqhD and dhaB1 gene were assembled in the upstream of dhaB2 to express a fusion protein, yielding the recombinant strain E. coliBL21 (DE3)//pET22b+::yqhD-dhaB1_dhaB2 (strain BP41Y3). Strain BP41Y3 gave 10-fold higher 1,3-PD concentration than E. coliBL21 (DE3)//pET22b+::yqhD-dhaB1_dhaB2 (strain BP31Y2) expressing the recombinant enzymes simultaneously but in a non-fusion mode. This is the first report using a gene fusion approach to enhance the biological conversion of glycerol to the value added compound 1,3- PD.Keywords: Recombinant E.coli, 1, 3-propanediol, glycerol, fusion protein.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012525 CompPSA: A Component-Based Pairwise RNA Secondary Structure Alignment Algorithm
Authors: Ghada Badr, Arwa Alturki
Abstract:
The biological function of an RNA molecule depends on its structure. The objective of the alignment is finding the homology between two or more RNA secondary structures. Knowing the common functionalities between two RNA structures allows a better understanding and a discovery of other relationships between them. Besides, identifying non-coding RNAs -that is not translated into a protein- is a popular application in which RNA structural alignment is the first step A few methods for RNA structure-to-structure alignment have been developed. Most of these methods are partial structure-to-structure, sequence-to-structure, or structure-to-sequence alignment. Less attention is given in the literature to the use of efficient RNA structure representation and the structure-to-structure alignment methods are lacking. In this paper, we introduce an O(N2) Component-based Pairwise RNA Structure Alignment (CompPSA) algorithm, where structures are given as a component-based representation and where N is the maximum number of components in the two structures. The proposed algorithm compares the two RNA secondary structures based on their weighted component features rather than on their base-pair details. Extensive experiments are conducted illustrating the efficiency of the CompPSA algorithm when compared to other approaches and on different real and simulated datasets. The CompPSA algorithm shows an accurate similarity measure between components. The algorithm gives the flexibility for the user to align the two RNA structures based on their weighted features (position, full length, and/or stem length). Moreover, the algorithm proves scalability and efficiency in time and memory performance.Keywords: Alignment, RNA secondary structure, pairwise, component-based, data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 973524 Attribute Based Comparison and Selection of Modular Self-Reconfigurable Robot Using Multiple Attribute Decision Making Approach
Authors: Manpreet Singh, V. P. Agrawal, Gurmanjot Singh Bhatti
Abstract:
From the last decades, there is a significant technological advancement in the field of robotics, and a number of modular self-reconfigurable robots were introduced that can help in space exploration, bucket to stuff, search, and rescue operation during earthquake, etc. As there are numbers of self-reconfigurable robots, choosing the optimum one is always a concern for robot user since there is an increase in available features, facilities, complexity, etc. The objective of this research work is to present a multiple attribute decision making based methodology for coding, evaluation, comparison ranking and selection of modular self-reconfigurable robots using a technique for order preferences by similarity to ideal solution approach. However, 86 attributes that affect the structure and performance are identified. A database for modular self-reconfigurable robot on the basis of different pertinent attribute is generated. This database is very useful for the user, for selecting a robot that suits their operational needs. Two visual methods namely linear graph and spider chart are proposed for ranking of modular self-reconfigurable robots. Using five robots (Atron, Smores, Polybot, M-Tran 3, Superbot), an example is illustrated, and raking of the robots is successfully done, which shows that Smores is the best robot for the operational need illustrated, and this methodology is found to be very effective and simple to use.
Keywords: Self-reconfigurable robots, MADM, TOPSIS, morphogenesis, scalability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 888523 Representing Shared Join Points with State Charts: A High Level Design Approach
Authors: Muhammad Naveed, Muhammad Khalid Abdullah, Khalid Rashid, Hafiz Farooq Ahmad
Abstract:
Aspect Oriented Programming promises many advantages at programming level by incorporating the cross cutting concerns into separate units, called aspects. Join Points are distinguishing features of Aspect Oriented Programming as they define the points where core requirements and crosscutting concerns are (inter)connected. Currently, there is a problem of multiple aspects- composition at the same join point, which introduces the issues like ordering and controlling of these superimposed aspects. Dynamic strategies are required to handle these issues as early as possible. State chart is an effective modeling tool to capture dynamic behavior at high level design. This paper provides methodology to formulate the strategies for multiple aspect composition at high level, which helps to better implement these strategies at coding level. It also highlights the need of designing shared join point at high level, by providing the solutions of these issues using state chart diagrams in UML 2.0. High level design representation of shared join points also helps to implement the designed strategy in systematic way.Keywords: Aspect Oriented Software Development, Shared Join Points.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715522 A New Image Psychovisual Coding Quality Measurement based Region of Interest
Authors: M. Nahid, A. Bajit, A. Tamtaoui, E. H. Bouyakhf
Abstract:
To model the human visual system (HVS) in the region of interest, we propose a new objective metric evaluation adapted to wavelet foveation-based image compression quality measurement, which exploits a foveation setup filter implementation technique in the DWT domain, based especially on the point and region of fixation of the human eye. This model is then used to predict the visible divergences between an original and compressed image with respect to this region field and yields an adapted and local measure error by removing all peripheral errors. The technique, which we call foveation wavelet visible difference prediction (FWVDP), is demonstrated on a number of noisy images all of which have the same local peak signal to noise ratio (PSNR), but visibly different errors. We show that the FWVDP reliably predicts the fixation areas of interest where error is masked, due to high image contrast, and the areas where the error is visible, due to low image contrast. The paper also suggests ways in which the FWVDP can be used to determine a visually optimal quantization strategy for foveation-based wavelet coefficients and to produce a quantitative local measure of image quality.
Keywords: Human Visual System, Image Quality, ImageCompression, foveation wavelet, region of interest ROI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497521 QoS Improvement Using Intelligent Algorithm under Dynamic Tropical Weather for Earth-Space Satellite Applications
Authors: Joseph S. Ojo, Vincent A. Akpan, Oladayo G. Ajileye, Olalekan L, Ojo
Abstract:
In this paper, the intelligent algorithm (IA) that is capable of adapting to dynamical tropical weather conditions is proposed based on fuzzy logic techniques. The IA effectively interacts with the quality of service (QoS) criteria irrespective of the dynamic tropical weather to achieve improvement in the satellite links. To achieve this, an adaptive network-based fuzzy inference system (ANFIS) has been adopted. The algorithm is capable of interacting with the weather fluctuation to generate appropriate improvement to the satellite QoS for efficient services to the customers. 5-year (2012-2016) rainfall rate of one-minute integration time series data has been used to derive fading based on ITU-R P. 618-12 propagation models. The data are obtained from the measurement undertaken by the Communication Research Group (CRG), Physics Department, Federal University of Technology, Akure, Nigeria. The rain attenuation and signal-to-noise ratio (SNR) were derived for frequency between Ku and V-band and propagation angle with respect to different transmitting power. The simulated results show a substantial reduction in SNR especially for application in the area of digital video broadcast-second generation coding modulation satellite networks.
Keywords: Fuzzy logic, intelligent algorithm, Nigeria, QoS, satellite applications, tropical weather.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 817520 Building Relationship Network for Machine Analysis from Wear Debris Measurements
Authors: Qurban A Memon, Mohammad S. Laghari
Abstract:
Integration of system process information obtained through an image processing system with an evolving knowledge database to improve the accuracy and predictability of wear debris analysis is the main focus of the paper. The objective is to automate intelligently the analysis process of wear particle using classification via self-organizing maps. This is achieved using relationship measurements among corresponding attributes of various measurements for wear debris. Finally, visualization technique is proposed that helps the viewer in understanding and utilizing these relationships that enable accurate diagnostics.Keywords: Relationship Network, Relationship Measurement, Self-organizing Clusters, Wear Debris Analysis, Kohonen Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937519 Ranking - Convex Risk Minimization
Authors: Wojciech Rejchel
Abstract:
The problem of ranking (rank regression) has become popular in the machine learning community. This theory relates to problems, in which one has to predict (guess) the order between objects on the basis of vectors describing their observed features. In many ranking algorithms a convex loss function is used instead of the 0-1 loss. It makes these procedures computationally efficient. Hence, convex risk minimizers and their statistical properties are investigated in this paper. Fast rates of convergence are obtained under conditions, that look similarly to the ones from the classification theory. Methods used in this paper come from the theory of U-processes as well as empirical processes.
Keywords: Convex loss function, empirical risk minimization, empirical process, U-process, boosting, euclidean family.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414518 On the Combination of Patient-Generated Data with Data from a Secure Clinical Network Environment – A Practical Example
Authors: Jeroen S. de Bruin, Karin Schindler, Christian Schuh
Abstract:
With increasingly more mobile health applications appearing due to the popularity of smartphones, the possibility arises that these data can be used to improve the medical diagnostic process, as well as the overall quality of healthcare, while at the same time lowering costs. However, as of yet there have been no reports of a successful combination of patient-generated data from smartphones with data from clinical routine. In this paper we describe how these two types of data can be combined in a secure way without modification to hospital information systems, and how they can together be used in a medical expert system for automatic nutritional classification and triage.
Keywords: Data integration, disease-related malnutrition, expert systems, mobile health.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199517 Cluster Analysis for the Statistical Modeling of Aesthetic Judgment Data Related to Comics Artists
Authors: George E. Tsekouras, Evi Sampanikou
Abstract:
We compare three categorical data clustering algorithms with respect to the problem of classifying cultural data related to the aesthetic judgment of comics artists. Such a classification is very important in Comics Art theory since the determination of any classes of similarities in such kind of data will provide to art-historians very fruitful information of Comics Art-s evolution. To establish this, we use a categorical data set and we study it by employing three categorical data clustering algorithms. The performances of these algorithms are compared each other, while interpretations of the clustering results are also given.Keywords: Aesthetic judgment, comics artists, cluster analysis, categorical data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633516 Expressive Modes and Species of Language
Authors: Richard Elling Moe
Abstract:
Computer languages are usually lumped together into broad -paradigms-, leaving us in want of a finer classification of kinds of language. Theories distinguishing between -genuine differences- in language has been called for, and we propose that such differences can be observed through a notion of expressive mode. We outline this concept, propose how it could be operationalized and indicate a possible context for the development of a corresponding theory. Finally we consider a possible application in connection with evaluation of language revision. We illustrate this with a case, investigating possible revisions of the relational algebra in order to overcome weaknesses of the division operator in connection with universal queries.Keywords: Expressive mode, Computer language species, Evaluation of revision, Relational algebra, Universal database queries
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1325515 Ottoman Script Recognition Using Hidden Markov Model
Authors: Ayşe Onat, Ferruh Yildiz, Mesut Gündüz
Abstract:
In this study, an OCR system for segmentation, feature extraction and recognition of Ottoman Scripts has been developed using handwritten characters. Detection of handwritten characters written by humans is a difficult process. Segmentation and feature extraction stages are based on geometrical feature analysis, followed by the chain code transformation of the main strokes of each character. The output of segmentation is well-defined segments that can be fed into any classification approach. The classes of main strokes are identified through left-right Hidden Markov Model (HMM).Keywords: Chain Code, HMM, Ottoman Script Recognition, OCR
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317