@article{(Open Science Index):https://publications.waset.org/pdf/10007311,
	  title     = {CompPSA: A Component-Based Pairwise RNA Secondary Structure Alignment Algorithm},
	  author    = {Ghada Badr and  Arwa Alturki},
	  country	= {},
	  institution	= {},
	  abstract     = {The biological function of an RNA molecule depends
on its structure. The objective of the alignment is finding the
homology between two or more RNA secondary structures. Knowing
the common functionalities between two RNA structures allows
a better understanding and a discovery of other relationships
between them. Besides, identifying non-coding RNAs -that is not
translated into a protein- is a popular application in which RNA
structural alignment is the first step A few methods for RNA
structure-to-structure alignment have been developed. Most of these
methods are partial structure-to-structure, sequence-to-structure, or
structure-to-sequence alignment. Less attention is given in the
literature to the use of efficient RNA structure representation and the
structure-to-structure alignment methods are lacking. In this paper,
we introduce an O(N2) Component-based Pairwise RNA Structure
Alignment (CompPSA) algorithm, where structures are given as
a component-based representation and where N is the maximum
number of components in the two structures. The proposed algorithm
compares the two RNA secondary structures based on their weighted
component features rather than on their base-pair details. Extensive
experiments are conducted illustrating the efficiency of the CompPSA
algorithm when compared to other approaches and on different real
and simulated datasets. The CompPSA algorithm shows an accurate
similarity measure between components. The algorithm gives the
flexibility for the user to align the two RNA structures based on
their weighted features (position, full length, and/or stem length).
Moreover, the algorithm proves scalability and efficiency in time and
memory performance.},
	    journal   = {International Journal of Bioengineering and Life Sciences},
	  volume    = {11},
	  number    = {6},
	  year      = {2017},
	  pages     = {444 - 454},
	  ee        = {https://publications.waset.org/pdf/10007311},
	  url   	= {https://publications.waset.org/vol/126},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 126, 2017},