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Metamorphism, Formal Grammars and
Undecidable Code Mutation

Éric Filiol

Abstract— This paper presents a formalisation of the different
existing code mutation techniques (polymorphism and metamor-
phism) by means of formal grammars. While very few theoretical
results are known about the detection complexity of viral mutation
techniques, we exhaustively address this critical issue by considering
the Chomsky classification of formal grammars. This enables us to
determine which family of code mutation techniques are likely to be
detected or on the contrary are bound to remain undetected. As an
illustration we then present, on a formal basis, a proof-of-concept
metamorphic mutation engine denoted PB MOT, whose detection has
been proven to be undecidable.

Keywords— Polymorphism, Metamorphism, Formal Grammars,
Formal Languages, Language Decision, Code Mutation, Word Prob-
lem.

I. INTRODUCTION

Polymorphism and metamorphism are the two techniques
dedicated to hinder sequence-based antiviral detection. The
principle is to cancel as much as possible any potential fixed
element in a malware code that would represent a potential
detection pattern. Polymorphism has formerly been introduced
by Fred Cohen [5] with the concept of Largest Viral Set while
metamorphism has appeared in the early 2000s as a response
to the polymorphism’s inherent limitations.

From a theoretical point of view [20], [21], the core of
a polymorphic malware is its kernel which is made up of an
infection trigger condition1 I(d, p), a payload routine D(d, p),
the corresponding payload trigger condition T (d, p) and a
selection function S(p) (of target programs to infect). It is
precisely the latter function which is in charge of the code
mutation.

Metamorphic viruses differ from polymorphic viruses since
their respective selection function are different. While all
polymorphic forms of a virus share the same kernel, the
metamorphic forms of a virus have a completely different
kernel. Consequently, if detection remains tractable for some
classes of polymorphism – the kernel does not change during
the mutation process and thus can be used as a detection
pattern –, it becomes far different as far as metamorphism
is concerned.

There are very few theoretical results concerning the de-
tection complexity of code mutation techniques. This problem
has been addressed very recently only. D. Spinellis has proved
[17] that detection of bounded-length polymorphic viruses is
an NP-complete problem. Zuo and Zhou [20] have then proved
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that the set Di of polymorphic viruses with an infinite number
of forms is a Σ3-complete set. Unfortunately, no results is
known for other classes of polymorphic viruses and for the
general case of metamorphism. Many open problems still
remain.

Up to now, only very few examples of metamorphic
codes are known to exist. The most sophisticated one is the
MetaPHOR engine whose essential feature is a certain amount
of non-determinism. Experiments in our laboratory showed
that existing antivirus software can be very easily defeated
by MetaPHOR-like technology. However, the analysis of this
engine [9, Chap. 4] has proved that its metamorphic techniques
still belong to trivial classes.

Our research thus focused on the formalisation of metamor-
phism by means of formal grammar and languages. We aimed
at identifying the different possible classes of possible code
mutation techniques. The first results, which are presented in
this paper, enable to assert that detection complexity of code
mutation techniques can be far higher that NP-complete and
that for some well-chosen classes, detection is an undecidable
problem.

The links between polymorphism and formal grammars
has been introduced in [16] for the first time. Unfortunately,
the author did touch on this issue only. Metamorphism is
not addressed at all. Some aspects are dealt with in a very
naive way and we will prove in this paper that some of its
conclusions are totally wrong.

This paper is organised as follows. Section II presents
the main theoretical tools of computability theory we use
throughout this paper. Section III then explains how code
mutation techniques can be modelled by formal grammars and
how their detection can be reduced to the problem of deciding
a language. Section IV will then presents our proof-of-concept
metamorphic engine, denoted POC PBMOT we have designed
in order to validate our theoretical model. In particular, we
will show that detecting this engine is an undecidable problem.
Section V finally concludes and present some future work.

II. FORMAL GRAMMARS AND REWRITING SYSTEMS

Let us first recall basic notation and concepts we will
use throughout this paper. We consider a finite set Σ =
{a1, a2, . . . , an} as an alphabet whose elements are called
symbols. A sequence of symbols of Σ is called a chain
b1b2b3 . . . bm with bi ∈ Σ and m ≥ 0. The concatenation of
two chains x and y is the chain xy = b1b2 . . . bmc1c2 . . . cn.
Let A and B two sets of chains defined over Σ. Then we can
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define the following sets:

AB = {xy|x ∈ A, y ∈ B},

A∗ = {x1x2 . . . xn|n ≥ 0, x1, x2, . . . , xn ∈ A},

A+ = {x1x2 . . . xn|n ≥ 1, x1, x2, . . . , xn ∈ A}.

This notation enables us to introduce the concept of formal
grammar.

Definition 1: [14] A formal grammar G is the 4-tuple G =
(N, T, S, R) where:

• N is a set of non-terminal symbols;
• T is an alphabet of terminal symbols with N ∩ T = ∅;
• S ∈ N is the start symbol;
• R is a rewriting system, that is to say a finite set of rules

R ⊆ (T∪N)∗×(T∪N)∗, such that (u, v) ∈ R ⇒ u 	∈ T ∗

(we cannot rewrite chains which contain only terminal
symbols).

The rewriting system (still known as semi-Thue system) over
Σ is in fact a finite subset of Σ∗ × Σ∗. In other words, it is
the set R = {(u1, v1), . . . , (un, vn)}. A pair (u, v) ∈ R is a
rewriting rule or production. It is denoted u ::= v for short
(instead of (u, v) ∈ R).

A rewriting system R enables to define a rewriting relation,
denoted ⇒R which is defined as:

rus ⇒ rvs if and only if (u, v) ∈ R and (r, s) ∈ Σ∗ × Σ∗.

This means that we can build the chain rvs ∈ Σ∗ directly (e.g.
in one step) from the chain rus ∈ Σ∗.

Example 1: [12] Let us consider Σ = {A, a, b, c} and

R = {(A, aAa), (A, bAb), (A, c), (A, aca)}.

A ⇒R aAa

aAa ⇒R aaAaa

aaAaa ⇒R aacaa

This relation allows to define a reflexive and transitive closure
for the relation ⇒. We will denote it ⇒∗

R. This relation is
defined, for every r, g, h in Σ∗ by:

1) if g ⇒R h then g ⇒∗

R h

2) g ⇒∗

R g

3) if g ⇒∗

R r and r ⇒∗

R h then g ⇒∗

R h.
Equivalently, two words are related with respect to this re-
lation, if and only if one can be produced from the another.
As an example, in the previous example, we can replace the
symbol ⇒R by ⇒∗

R.
A Thue system is a semi-Thue system in which the relation

⇒∗

R is symmetric. It is consequently denoted ⇔∗

R. Let us
consider the following example.

Example 2: Let us consider the grammar G = (N, T, S, R)
with T = Σ = {0, 1} ∪ {ε}, N = {S, X, Y } and R defined
by:

S ::= 1S|0S|X

X ::= 0Y

Y ::= 1Y |0Y |Z

Z ::= ε

This grammar builds every chain containing at least one zero.

A formal language is finally defined by the set L(G) = {x ∈
Σ∗|S ⇒∗ x} with respect to the grammar G = (N, T, S, R).
It is nothing more than the “words” (or chains) generated
with respect to this grammar. From this point of view, natural
languages and programming languages are just instances of a
wider concept.

A huge classification work of formal grammars has been
done by Noam Chomsky [3], [4]. This author has identified
four different classes.

• Class 0 grammars (or free grammars). They are all
grammars whose productions may be freely written as
x ::= y where y is an arbitrary chain of symbols taken in
N∪T . These grammars all generate languages that can be
decided by Turing machines. Equivalently, the languages
they generate are recursively enumerable (see [6, Chap.
2]);

• Class 1 grammars (or context-sensitive grammars). The
unique constraint on the production lies in the fact that
the size of words cannot decrease. Consequently, the only
possible productions are in the form of x ::= y as long
as |y| ≥ |x|. This class contains all natural languages.

• Class 2 grammars context-free grammars. They are all
grammars whose productions are in the form of X ::= y

where X is a unique nonterminal symbol and where
y is an element of (N ∪ T )∗. The term X can be
rewritten independently from its context controry to class
1 grammars. Subsets of class 2 grammars are commonly
used to implement programming languages.

• Class 3 grammars (or regular grammars). They are all
grammars whose productions are in the form of X ::= x

or X ::= xY with (X, Y ) ∈ N2 and x ∈ T ∗.

III. POLYMORPHISM, METAMORPHISM AND FORMAL

GRAMMARS

In this section, we will first formalise code mutation in term
of rewriting techniques. We will then be able to exhaustively
address the complexity of code mutation detection according
to the class of the grammar in use.

A. Code mutation and Formal Languages

Let us consider the set of x86 instructions as our working
alphabet. These instructions may be combined according to
(rewriting) rules that completely define every compiler. This
set of rules can be defined as a class 2 formal grammar indeed.
The assembly language is then the language which is generated
by this grammar.

Implementing a polymorphic engine – in particular the
garbage generator which is its most important part – consist in
generating a formal language, denoted polymorphic language,
with its own grammar.

Let us consider a polymorphic engine generated by the
grammar (the example is derived from [16]).

G = {{A, B}, {a, b, c, d, x, y}, S, R}.

Instructions a, b, c and d represent garbage code while instruc-
tions x and y are the decryptor’s instructions (e.g. x = XOR
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[EDI], AL and y = INC EDI). The rewriting system R

can be defined as:

S ::= aS|bS|cS|xA

A ::= aA|bA|cA|dA|yB

B ::= aB|bB|cB|dB|ε

Consequently, our polymorphic language is made up of every
word in the form of

{a, b, c, d}∗x{a, b, c, d}∗y{a, b, c, d}∗.

Every of these words corresponds to a mutated variant of the
initial decryptor. It is thus “easy” (e.g for an antivirus software)
to determine that the word abcddxd is not in this language
with respect to G, contrary to the word adcbxaddbydab.
Other examples of less trivial polymorphic grammars are
presented in [9, Chap. 6].

All this being defined, the essential issue for any antivirus
is to have an algorithm which is able to determine whether a
“word” (a mutated form) belongs to a polymorphic language
or not. But as soon as we consider sophisticated polymorphic
techniques, this ability is very difficult to evaluate. That is
precisely the interest of modelling code mutation with formal
grammars. According to the grammar class, we can get a more
accurate insight of the detection complexity.

B. Antiviral Detection and Language Decision

In order to set up our model, let us consider the following
definition.

Definition 2: [12] Let G = (N, T, S, R) be a grammar and
x ∈ T ∗ a chain with respect to G. The language decision
problem with respect to G consists in determining whether
x ∈ L(G) or not. The language completeness problem is that
which aims at deciding whether L(G) = T ∗ or not.
The first problem models the detection problem of polymor-
phism (once the relevant grammar is known). The second one
models the concepts of non detection and false positive.

In order to address the detection problem, let us just recall
the existing algorithmics tools we have at our disposal’s. They
will thus enable us to give complexity results with the different
instances of this problem. A detailed description of these
tools can be found in any computability handbook (e.g [12]).
The generic tool is a finite automaton. Two different kind of
automata are to be considered.

• Deterministic Finite Automata (DFA). It is the most
simple form of automaton. It may be represented by a
directed graph, whose nodes are the possible states of
the automaton and the arcs joining nodes are labelled by
symbols of the alphabet. The symbols in fact determin-
istically define the transition condition from one state to
another state.

• Non deterministic Finite Automaton (NFA). It is a gen-
eralised automaton. The essential difference with a DFA
comes from the fact that more than one arc with the same
label can start from a node. This means that from one
given state, a condition can result in different effects. As a

result we got a far higher number of evolving capabilities
but also a far higher computing complexity. Moreover,
NFAs allow transitions on the empty strings.

We can now formalise the action of any antivirus with respect
to code mutation detection. Without loss of generality, we will
consider NFAs only (in fact it is possible to reduce a NFA to
a DFA, up to an exponential increase of the number of states
[14]).

Definition 3: [12] We say that a chain x = x1x2 . . . xn with
xi ∈ Σ is dedided by an automaton2 A = (Q,Σ, τ, q0, F ) if
there exist a state sequence q1, q2, . . . , qn+1 of Q and a symbol
sequence x1, x2, . . . , xn of Σ∪ {ε} such that qi+1 ∈ τ(qi, xi)
for every i ∈ {1, 2, . . . , n} with q0 = q1. Then we note L(A)
the set of any chain detected by A. It is the language decided
by A. In other words, A decides whether L(A) = L(G) or not.
Consequently, the automaton A is a solution of the language
decision problem with respect to the grammar G.
This definition describes the fact that as soon as an antivirus
software embeds an automaton A which is able to solve
the (polymorphic) decision problem with respect to a given
polymorphic grammar, then it is able to detect any of its
“polymorphic words” (e.g mutated forms). Two critical issues
are then to be considered:

• the relevant complexity of the automaton,
• every time the polymorphic grammar is changing (e.g. the

polymorphic engine is a new one), the antivirus software
mut be upgraded with a new automaton which decides
the new polymorphic language.

The last points underlines the essential interest of metamor-
phic techniques compared to polymorphic ones. That is the
reason why antivirus software are bound to be defeated by
metamorphism. Indeed every new metamorphic mutation aims
at producing a new grammar and a new word generated
by the latter at the same time. Consequently, we define
metamorphism as a grammar whose words are themselves a set
of productions with respect to a grammar. This may be sound
as a naive assumption about antivirus software. Unfortunately,
it is not. It has been proved in [7], [8] that these software still
heavily relies on first- or second generation scanning tech-
niques contrary to what is claimed by the antivirus vendors.

Let us now consider our formal definition of metamorphism.
Definition 4: (Metamorphic Virus) Let G1 = (N, T, S, R)

and G2 = (N ′, T ′, S′, R′) be grammars where T ′ is a set
of formal grammars, S′ is the (starting) grammar G1 and R′

a rewriting system with respect (N ′ ∪ T ′)∗. A metamorphic
virus is thus described by G2 and every of its mutated form
is a word in L(L(G2)).
The notation L(L(G2)) which is more practical, stands for
L(x) for some x ∈ L(G2) where x is a grammar. This
definition describes the fact that from one metamorphic form
to another, the virus kernel is changing: the virus is mutating
and change the mutation rules at the same time. Section IV
will present a proof-of-concept of this formalisation. Defini-
tion 4 in fact somehow relates to two-level grammars (or Van

2The sets Q, Σ and F are the set of the automaton’s possible states, a
finite alphabet and a subset of states that can accepted by the automatom
respectively. The state q0 denotes the initial state whereas τ is the transition
function τ : Q × Σ → Q which maps a state and a symbol to a state.
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Wijngaarden grammars; 2VW grammars for short) [19], [10]
in which grammar G2 can be compared to some extent to the
2VW metagrammar. It is an open problem, at the moment,
to determine whether our construction of Definition 4 is a
particular case of 2VW grammars or not.

As a first consequence, managing metamorphism implies to
have suitable automata at our disposal’s in order to solve the
language decision problem with respect to G2-like grammars.

We now can give complexity results for this problem,
according to the existing grammar classes:

Proposition 1: The language decision problem:
• is undecidable for class 0 grammars;
• has NP-complexity for class 1 and class2 grammars;
• has polynomial complexity for class 3 grammars.

Proof: This proof has been established by summarizing
results given in [11], [14]. As far as class 0 grammars are
concerned, we show that they generate recursively enumer-
able languages (their productions simulate Turing machines).
Consequently, deciding whether x ∈ L(G) or not for given G

and x ∈ Σ reduces the Halting problem.
For class 2, the language decision problem can be solved

with non deterministic pushdown automata while class 1
grammars, it is solved with linear-bounded non deterministic
Turing machines. Lastly, class 3 grammars are solved by
deterministic ones. Hence the results.
Proposition 1 stresses on the fact that the choice of underlying
grammar is essential when designing a polymorphic engine.
It has a direct impact on its resistance against its potential
detection. Quite all known polymorphic engines refer to class
3 grammars. That is the reason why they can be successfully
detected. But contrary to claims in [16] about systematic
detection capabilities, untractability (classes 2 and 1) or even
worse impossibility (class 0) rule out the practical detection
when considering the cases of code mutation engines with
respect to higher classes of grammars. From a practical point
of view, no antivirus can monopolize computer ressources
for minutes or even hours to solve some rather computable
instances of a NP problem. Nowadays, our saving grace is
that malware writers still seem to neglect or ignore what are
the “good” grammars (or the “worst” ones from the defense
point of view). This statement of course only holds for already
detected or detectable malware.

There exist a huge number of theoretical results in the
field of formal languages [2] that can be used to build code
mutation techniques that are untractable or even impossible to
detect. From a general point of view, the approach consists in
considering the undecidability status for some known problem.
In this respect, we may consider the Rice’s Theorem. Let us
consider a trivial property P about a language; in other words,
there exists at least one recursively enumerable language (class
0) L for which P holds and at least one recursively enumerable
language L′ for which P does not.

Theorem 1: (Rice’s Theorem [12]) For any non trivial prop-
erty P with respect of languages, the problem of determining
whether P holds for a language L(M) of a Turing machine
M , in undecidable.
This theorem is essential since it clearly indicates in which
context to look at in order to systematically defeat antivirus.

We will consider this in Section IV.
To end with formal grammars, it is worth giving the

following results, whose proof will be found in [12, §10.4].
Theorem 2: Let Gi = (Ni, Ti, Si, Ri) with i = 1, 2 two

context-free grammars. Deciding whether L(G1) ∩ L(G2) =
∅ or not is an undecidable problem. Determining whether
L(Gi) = T ∗

i or not is undecidable as well.
These two results, in the special context of context-free
grammars illustrates the concepts of false positive (grammar
G1 is not a viral one while grammar indeed is a viral one)
and of non detection, as far as antiviral detection is concerned
[9, Chap. 2 and 4].

IV. UNDECIDABLE MUTATION TECHNIQUES

A. The Word Problem

The word problem has been introduced and formalised by
E. Post in 1950 [15]. Aside the Turing’s Halting problem, it
is one of the most famous problem which is known to be
undecidable. This problem consists in deciding whether two
finite words r and s over an alphabet Σ are equivalent or
not, up to a rewriting system R. In other words, it consists in
deciding whether r ⇒∗

R s or not.
Theorem 3: [15] The word problem with respect to a semi-

Thue system is undecidable.
The proof consists in reducing the word problem to the Halting
problem which is itself undecidable.

Example 3: (Tzeitzin semi-Thue Systems) Let the rewriting
system R defined over the alphabet Σ = {a, b, c, d, e}.

(ac, ca), commutation

(ad, da),
(bc, cb),
(bd, db),

(eca, ce),
(edb, de),

(cca, ccae) deletion/insertion

This semi-Thue system is called Tzeitsin system [18]. It is the
smallest semi-Thue system which is known to be undecidable.
We will denote it T0. As a consequence, any semi-Thue system
which contains T0 is itself undecidable. There exist many other
undecidable Thue systems. We will use in the rest of the paper
the Tzeitsin system T1 defined by:

(ac, ca),
(ad, da),
(bc, cb),
(bd, db),

(eca, ce),
(edb, de),

(cdca, cdcae),
(caaa, aaa),
(daaa, aaa)

 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:2, 2007 

284International Scholarly and Scientific Research & Innovation 1(2) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

2,
 2

00
7 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

36
9.

pd
f

http://waset.org/publications/1369/Metamorphism,-Formal-Grammars-and-Undecidable-Code-Mutation


B. Code Mutation Based on The Word Problem: the PBMOT
engine

The central principle is to use formal grammars whose
rewriting system is a Thue system which itself contains a
Tzeitsin system or any other system which is known to be
undecidable. From a general point of view, this implies that
the code mutation engine based on such grammars will be
undecidable as well. The core approach to design such an
engine is to practically implement the concept of Definition 4.
In other words, the engine’s rewriting rules (namely the
mutation rules) will change from mutation to mutation. For
that purpose, two main constraints are to be satisfied:

• the rewriting system of G2 contains an undecidable Thue
system;

• every word (hence a grammar) in Li(G2), during the i-
th mutation step, contains an undecidable Thue system
as well.

From an implementation point of view, the central approach
consists in coding the rewriting system of Li(G2) grammars
as words on the alphabet (N ∪ T )∗ where the sets T and N

are those of grammars Gi
1. In other words the set R of rules

(with respect to grammar Gi
1) :

R = {(u1, v1), (u2, v2), . . . , (un, vn)}

is coded as the following word:

u1v1u2v2 . . . un−1vn−1unvn, (1)

made of terminal and non terminal symbols.
The other essential point is to design a grammar G2 which is

able to manipulate such “grammar-words”. The set T ′ contains
words build on (N ∪ T )∗ (Equation 1). As for the set N ′, it
contains symbols which are specific to the grammar G2 but it
can also contains symbols in N . The starting element is a word
in (N ′ ∪ T )∗. We just have to deal with the rewriting system
R′ on words of (N ∪T )∗ with the constraint that R′ ⊃ T0 ou
R′ ⊃ T1.

If the general principle ruling the design of grammar G2 is
simple to grasp, on the other hand its practical construction is
technically far more complex. We will not present here due
to lack of space – it would require tens of pages – but also
not to give ready-to-use techniques that could be misused. We
will give the two core principles of this practical construction
only:

• the final code must be envisaged in functional terms and
not in terms of code (assembly instructions). This point is
critical since it is not the form of the different instructions
but their interactions which is the most important aspect.
If the rewriting rules are not trivial ones, the code muta-
tion, in terms of opcodes, will work in a straightforward
and “natural” way. From a technical point of view, this
means that the rewriting rules have to deeply modify in
words u1v1u2v2 . . . un−1vn−1unvn, both the order of the
uivi and the pairs (ui, vi) themselves at the same level;

• the whole code must be organised in terms of procedures
(or blocks of codes) even if the coding itself is not
structured in this way.

The deep nature of the chosen rules as well as their more
or less sophisticated level will have a direct impact on the
detectability of the engine which embeds them.

As far as our POC PBMOT is concerned, the MetaPHOR
engine code has been considered as a starting point. The design
steps are hereafter presented.

1) the different modules of the MetaPHOR engine have
been analysed in depth[9, Chap. 4]. The set T has then
been built accordingly: it corresponds, up to some minor
differences, to the different possible instructions;

2) in a second step, our analysis aimed at indentifying
the main functionalities involved in the code mutation.
A proto-rewriting (embryonic) system R′

0 has been
first designed, in such way that it includes the T0

system. The system R′

0 is a framework whose essen-
tial role is to perform code mutation itself. In other
words, the rewriting takes the pairs (ui, vi) in words
u1v1u2v2 . . . un−1vn−1unvn into consideration. At this
early stage, the set N is not defined yet;

3) the analysis was then concerned with modifying the
functions involved in the code transformation at a meta-
level (the central point in metamorphism). This part has
enabled to choose the set N of non terminal symbols in
a first step. These symbols are essential since they are
directly implied in the structure of the words in the form
of u1v1u2v2 . . . un−1vn−1unvn at a macro-level. In a
second step, the proto-system R′

0 has been modified and
tuned up in order to achieve the final rewriting system
R′ which includes the T1 system.

The critical point lies in the mutation of a word in the form
of

u1v1u2v2 . . . un−1vn−1unvn

into a system

R = {(u1, v1), (u2, v2), . . . , (un, vn)}.

Indeed, the successive rewriting steps may induce variations of
size in subwords ui and vi. It is thus necessary to record and
update all these variations. In the same or equivalent way as
the MetaPHOR engine does, the rewriting management must
take the conditional or not jumps into account.

We now can state the following result.
Proposition 2: The detection of POC PBMOT-based meta-

morphic codes is an undecidable problem.

Sketch of Proof.
Every mutated form νi is a word in the form of

L(Li(G2)) = L(ui
1v

i
1u

i
2v

i
2 . . . ui

n−1v
i
n−1u

i
nvi

n).

Detecting such a code consists in deciding whether two words

νi = ui
1v

i
1u

i
2v

i
2 . . . ui

n−1v
i
n−1u

i
nvi

n

and

νj = u
j
1v

j
1u

j
2v

j
2 . . . u

j
n−1v

j
n−1u

j
nvj

n,
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with j > i, are such that νi ⇔∗

G2
νj . Grammar G2 contains

T0 and T1 systems, which are undecidable systems. Hence the
result. �

Remark. Proposition 2 refers to sequence based detection,
in other words not in an execution context. In particular, it
implies that potential successful detection is bound to consider
another approach like behaviour monitoring. In this latter case,
it not sure that antivirus software would be more efficient at
detecting a PB MOT-like metamorphic engine [8].

C. Discussion

In [13], it has been suggested that metamorphic viruses are
ultimately constrained in complexity. To quote the authors “...a
metamorphic must be able to disassemble and reverse itself.
Thus a metamorphic virus cannot utilize [...] techniques that
make it harder or impossible for its code to be disassembled
or reverse engineered by itself.” So what about the detection
of PB MOT metamorphic codes? Two different aspects are to
be considered:

• any sequence-based detection will fail since mutation is
based on indecidable problems as stated by Proposition 2;

• in an execution context, indeed the code has to disassem-
bly itself into a code that the processor is able to run in
order the virus operates. That means that once the code
is unprotected, it may be analysed. From a theoretical
point of view, this is true but antivirus and virus are
not bound to play the same game. As shown in [1], [9]
with τ -obfuscation, a metamorphic malware can delay
its own disassembly more than the antivirus can accept.
While indeed ultimately constrained in complexity, any
metamorphic malware can reverse engineer itself in an
arbitrary time τ contrary to any antivirus, which is a
commercial product before anything else.

V. FUTURE WORK AND CONCLUSION

Mutation code techniques are very efficient at practically
hindering or even forbidding antiviral detection. But those
techniques must be efficient enough. The theoretical approach
with formal grammars is a new, promising way to system-
atically distinguish efficient techniques from non trivial or
unefficient ones. Until now, known (theoretically detected)
metamorphic codes refer to rather naive or trivial instances
for which detection remains “easy”.

Existing mutation code techniques, by definition, aim at
preventing sequence-based detection, in a broader meaning of
the term. On the other hand, some behaviours may represent
useful invariant that could be considered by antivirus in the
future. Consequently, the next step is likely to be behavioural
polymorphism/metamorphism: code behaviours both at the
micro- and the macro level would change from replication
to replication. Current work in our laboratory already shows
that this approach is not only powerful but also very worrying
in terms of antiviral detection and protection.

It is nothing but very likely that if technical solutions to
detect metamorphic codes exist, they would be non suitable
for commercially-viable antivirus software. This is essentially

due to the intrinsic algorithmic complexity of the detection
algorithms. On the other hand, grammar-based formalisation
should help antivirus programmers to identify and choose
more powerful detectors to better manage existing code mu-
tation techniques. Second generation scanners do not explore
all the might of deterministic and non deterministic automata.
As a consequence, existing antivirus can still be defeated by
classical code mutation techniques.
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