Search results for: attribute based access control
13369 Development of Wind Turbine Simulator for Generator Torque Control
Authors: Jae-Kyung Lee, Joon-Young Park, Ki-Yong Oh, Jun-Shin Park
Abstract:
Wind turbine should be controlled to capture maximum wind energy and to prevent the turbine from being stalled. To achieve those two goals, wind turbine controller controls torque on generator and limits input torque from wind by pitching blade. Usually, torque on generator is controlled using inverter torque set point. However, verifying a control algorithm in actual wind turbine needs a lot of efforts to test and the actual wind turbine could be broken while testing a control algorithm. So, several software have developed and commercialized by Garrad Hassan, GH Bladed, and NREL, FAST. Even though, those programs can simulate control system modeling with subroutines or DLLs. However, those simulation programs are not able to emulate detailed generator or PMSG. In this paper, a small size wind turbine simulator is developed with induction motor and small size drive train. The developed system can simulate wind turbine control algorithm in the region before rated power.Keywords: Wind turbine, simulator, wind turbine control, wind turbine torque control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 312913368 Adaptive Neural Network Control of Autonomous Underwater Vehicles
Authors: Ahmad Forouzantabar, Babak Gholami, Mohammad Azadi
Abstract:
An adaptive neural network controller for autonomous underwater vehicles (AUVs) is presented in this paper. The AUV model is highly nonlinear because of many factors, such as hydrodynamic drag, damping, and lift forces, Coriolis and centripetal forces, gravity and buoyancy forces, as well as forces from thruster. In this regards, a nonlinear neural network is used to approximate the nonlinear uncertainties of AUV dynamics, thus overcoming some limitations of conventional controllers and ensure good performance. The uniform ultimate boundedness of AUV tracking errors and the stability of the proposed control system are guaranteed based on Lyapunov theory. Numerical simulation studies for motion control of an AUV are performed to demonstrate the effectiveness of the proposed controller.Keywords: Autonomous Underwater Vehicle (AUV), Neural Network Controller, Composite Adaptation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 252913367 Assessment of the Administration and Services of Public Access Computers in Academic Libraries in Kaduna State, Nigeria
Authors: Usman Ahmed Adam, Umar Ibrahim, Ezra S. Gbaje
Abstract:
This study is posed to explore the practice of Public Access Computers (PACs) in academic libraries in Kaduna State, Nigeria. The study aimed to determine the computers and other tools available, their services and challenges of the practices. Three questions were framed to identify number of public computers and tools available, their services and problems faced during the practice. The study used qualitative research design along with semi-constructed interview and observation as tools for data collection. Descriptive analysis was employed to analyze the data. The sample size of the study comprises 52 librarian and IT staff from the seven academic institutions in Kaduna State. The findings revealed that, PACs were provided for access to the Internet, digital resources, library catalogue and training services. The study further explored that, despite the limit number of the computers, users were not allowed to enjoy many services. The study recommends that libraries in Kaduna state should provide more public computers to be able to cover the population of their users; libraries should allow users to use the computers without limitations and restrictions.
Keywords: Academic libraries, computers in the library, digital libraries, public computers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 61413366 Motion Control of TUAV having Eight Rotors for Enhanced Situational Awareness
Authors: Igor Astrov, Andrus Pedai
Abstract:
This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for tactical unmanned aerial vehicle (TUAV). With the SA strategy, we proposed a two stage flight control procedure using two autonomous control subsystems to address the dynamics variation and performance requirement difference in initial and final stages of flight trajectory for a nontrivial nonlinear eight-rotor helicopter model. This control strategy for chosen model of mini-TUAV has been verified by simulation of hovering maneuvers using software package Simulink and demonstrated good performance for fast stabilization of engines in hovering, consequently, fast SA with economy in energy of batteries can be asserted during search-andrescue operations.Keywords: Flight control, eight-rotor helicopter, situational awareness, tactical unmanned aerial vehicle
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173813365 MP-SMC-I Method for Slip Suppression of Electric Vehicles under Braking
Authors: Tohru Kawabe
Abstract:
In this paper, a new SMC (Sliding Mode Control) method with MP (Model Predictive Control) integral action for the slip suppression of EV (Electric Vehicle) under braking is proposed. The proposed method introduce the integral term with standard SMC gain , where the integral gain is optimized for each control period by the MPC algorithms. The aim of this method is to improve the safety and the stability of EVs under braking by controlling the wheel slip ratio. There also include numerical simulation results to demonstrate the effectiveness of the method.Keywords: Sliding Mode Control, Model Predictive Control, Integral Action, Electric Vehicle, Slip suppression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 225713364 Comparison between Skyhook and Minimax Control Strategies for Semi-active Suspension System
Authors: Hongkun Zhang, Hermann Winner, Wenjun Li
Abstract:
This paper describes the development, modeling, and testing of skyhook and MiniMax control strategies of semi-active suspension. The control performances are investigated using Matlab/Simulink [1], with a two-degree-of-freedom quarter car semiactive suspension system model. The comparison and evaluation of control result are made using software-in-the-loop simulation (SILS) method. This paper also outlines the development of a hardware-inthe- loop simulation (HILS) system. The simulation results show that skyhook strategy can significantly reduce the resonant peak of body and provide improvement in vehicle ride comfort. Otherwise, MiniMax strategy can be employed to effectively improve drive safety of vehicle by influencing wheel load. The two strategies can be switched to control semi-active suspension system to fulfill different requirement of vehicle in different stages.Keywords: Hardware-in-the-loop simulation, Semi-active suspension, Skyhook control, MiniMax control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 268913363 Information System for Data Selection and New Information Acquisition for Reconfigurable Multifunctional Machine Tools
Authors: Sasho Guergov
Abstract:
The purpose of the paper is to develop an informationcontrol environment for overall management and self-reconfiguration of the reconfigurable multifunctional machine tool for machining both rotation and prismatic parts and high concentration of different technological operations - turning, milling, drilling, grinding, etc. For the realization of this purpose on the basis of defined sub-processes for the implementation of the technological process, architecture of the information-search system for machine control is suggested. By using the object-oriented method, a structure and organization of the search system based on agents and manager with central control are developed. Thus conditions for identification of available information in DBs, self-reconfiguration of technological system and entire control of the reconfigurable multifunctional machine tool are created.
Keywords: Information system, multifunctional machine tool, reconfigurable machine tool, search system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 132913362 Enhance the Modeling of BLDC Motor Based on Fuzzy Logic
Authors: Murugan Marimuthu, Jeyabharath Rajaih
Abstract:
This paper describes a simple way to control the speed of PMBLDC motor using Fuzzy logic control method. In the conventional PI controller the performance of the motor system is simulated and the speed is regulated by using PI controller. These methods used to improve the performance of PMSM drives, but in some cases at different operating conditions when the dynamics of the system also vary over time and it can change the reference speed, parameter variations and the load disturbance. The simulation is powered with the MATLAB program to get a reliable and flexible simulation. In order to highlight the effectiveness of the speed control method the FLC method is used. The proposed method targeted in achieving the improved dynamic performance and avoids the variations of the motor drive. This drive has high accuracy, robust operation from near zero to high speed. The effectiveness and flexibility of the individual techniques of the speed control method will be thoroughly discussed for merits and demerits and finally verified through simulation and experimental results for comparative analysis.Keywords: Hall position sensors, permanent magnet brushless DC motor, PI controller, Fuzzy Controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178613361 Second Order Sliding Mode Observer Using MRAS Theory for Sensorless Control of Multiphase Induction Machine
Authors: Mohammad Jafarifar
Abstract:
This paper presents a speed estimation scheme based on second-order sliding-mode Super Twisting Algorithm (STA) and Model Reference Adaptive System (MRAS) estimation theory for Sensorless control of multiphase induction machine. A stator current observer is designed based on the STA, which is utilized to take the place of the reference voltage model of the standard MRAS algorithm. The observer is insensitive to the variation of rotor resistance and magnetizing inductance when the states arrive at the sliding mode. Derivatives of rotor flux are obtained and designed as the state of MRAS, thus eliminating the integration. Compared with the first-order sliding-mode speed estimator, the proposed scheme makes full use of the auxiliary sliding-mode surface, thus alleviating the chattering behavior without increasing the complexity. Simulation results show the robustness and effectiveness of the proposed scheme.Keywords: Multiphase induction machine, field oriented control, sliding mode, super twisting algorithm, MRAS algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 229513360 Dispenser Longitudinal Movement ControlDesign Based on Auto - Disturbances –Rejection - Controller
Authors: Qiaozhen Song
Abstract:
Based on the feature of model disturbances and uncertainty being compensated dynamically in auto – disturbances-rejection-controller (ADRC), a new method using ADRC is proposed for the decoupling control of dispenser longitudinal movement in big flight envelope. Developed from nonlinear model directly, ADRC is especially suitable for dynamic model that has big disturbances. Furthermore, without changing the structure and parameters of the controller in big flight envelope, this scheme can simplify the design of flight control system. The simulation results in big flight envelope show that the system achieves high dynamic performance, steady state performance and the controller has strong robustness.
Keywords: ADRC, ESO, nonlinear system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161113359 Optimal Parameters of Double Moving Average Control Chart
Authors: Y. Areepong
Abstract:
The objective of this paper is to present explicit analytical formulas for evaluating important characteristics of Double Moving Average control chart (DMA) for Poisson distribution. The most popular characteristics of a control chart are Average Run Length ( 0 ARL ) - the mean of observations that are taken before a system is signaled to be out-of control when it is actually still incontrol, and Average Delay time ( 1 ARL ) - mean delay of true alarm times. An important property required of 0 ARL is that it should be sufficiently large when the process is in-control to reduce a number of false alarms. On the other side, if the process is actually out-ofcontrol then 1 ARL should be as small as possible. In particular, the explicit analytical formulas for evaluating 0 ARL and 1 ARL be able to get a set of optimal parameters which depend on a width of the moving average ( w ) and width of control limit ( H ) for designing DMA chart with minimum of 1 ARLKeywords: Optimal parameters, Average Run Length, Average Delay time, Double Moving Average chart.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 232613358 Creeping Control Strategy for Direct Shift Gearbox Based on the Investigation of Temperature Variation of the Wet Clutch
Authors: Biao Ma, Jikai Liu, Man Chen, Jianpeng Wu, Liyong Wang, Changsong Zheng
Abstract:
Proposing an appropriate control strategy is an effective and practical way to address the overheat problems of the wet multi-plate clutch in Direct Shift Gearbox under the long-time creeping condition. To do so, the temperature variation of the wet multi-plate clutch is investigated firstly by establishing a thermal resistance model for the gearbox cooling system. To calculate the generated heat flux and predict the clutch temperature precisely, the friction torque model is optimized by introducing an improved friction coefficient, which is related to the pressure, the relative speed and the temperature. After that, the heat transfer model and the reasonable friction torque model are employed by the vehicle powertrain model to construct a comprehensive co-simulation model for the Direct Shift Gearbox (DSG) vehicle. A creeping control strategy is then proposed and, to evaluate the vehicle performance, the safety temperature (250 ℃) is particularly adopted as an important metric. During the creeping process, the temperature of two clutches is always under the safety value (250 ℃), which demonstrates the effectiveness of the proposed control strategy in avoiding the thermal failures of clutches.
Keywords: Creeping control strategy, direct shift gearbox, temperature variation, wet clutch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 72213357 Discontinuous Feedback Linearization of an Electrically Driven Fast Robot Manipulator
Authors: A. Izadbakhsh, M. M. Fateh, M. A. Sadrnia
Abstract:
A multivariable discontinuous feedback linearization approach is proposed to position control of an electrically driven fast robot manipulator. A desired performance is achieved by selecting a useful controller and suitable sampling rate and considering saturation for actuators. There is a high flexibility to apply the proposed control approach on different electrically driven manipulators. The control approach can guarantee the stability and satisfactory tracking performance. A PUMA 560 robot driven by geared permanent magnet dc motors is simulated. The simulation results show a desired performance for control system under technical specifications.
Keywords: Fast robot, feedback linearization, multivariabledigital control, PUMA560.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195813356 Quantifying the Stability of Software Systems via Simulation in Dependency Networks
Authors: Weifeng Pan
Abstract:
The stability of a software system is one of the most important quality attributes affecting the maintenance effort. Many techniques have been proposed to support the analysis of software stability at the architecture, file, and class level of software systems, but little effort has been made for that at the feature (i.e., method and attribute) level. And the assumptions the existing techniques based on always do not meet the practice to a certain degree. Considering that, in this paper, we present a novel metric, Stability of Software (SoS), to measure the stability of object-oriented software systems by software change propagation analysis using a simulation way in software dependency networks at feature level. The approach is evaluated by case studies on eight open source Java programs using different software structures (one employs design patterns versus one does not) for the same object-oriented program. The results of the case studies validate the effectiveness of the proposed metric. The approach has been fully automated by a tool written in Java.Keywords: Software stability, change propagation, design pattern, software maintenance, object-oriented (OO) software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 167813355 PI Control for Positive Output Elementary Super Lift Luo Converter
Authors: K. Ramash Kumar, S. Jeevananthan
Abstract:
The object of this paper is to design and analyze a proportional – integral (PI) control for positive output elementary super lift Luo converter (POESLLC), which is the start-of-the-art DC-DC converter. The positive output elementary super lift Luo converter performs the voltage conversion from positive source voltage to positive load voltage. This paper proposes a development of PI control capable of providing the good static and dynamic performance compared to proportional – integralderivative (PID) controller. Using state space average method derives the dynamic equations describing the positive output elementary super lift luo converter and PI control is designed. The simulation model of the positive output elementary super lift Luo converter with its control circuit is implemented in Matlab/Simulink. The PI control for positive output elementary super lift Luo converter is tested for transient region, line changes, load changes, steady state region and also for components variations.Keywords: DC-DC converter, Positive output elementarysuper lift Luo converter (POESLLC), Proportional – Integral (PI)control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 502713354 State Estimation Method Based on Unscented Kalman Filter for Vehicle Nonlinear Dynamics
Authors: Wataru Nakamura, Tomoaki Hashimoto, Liang-Kuang Chen
Abstract:
This paper provides a state estimation method for automatic control systems of nonlinear vehicle dynamics. A nonlinear tire model is employed to represent the realistic behavior of a vehicle. In general, all the state variables of control systems are not precisedly known, because those variables are observed through output sensors and limited parts of them might be only measurable. Hence, automatic control systems must incorporate some type of state estimation. It is needed to establish a state estimation method for nonlinear vehicle dynamics with restricted measurable state variables. For this purpose, unscented Kalman filter method is applied in this study for estimating the state variables of nonlinear vehicle dynamics. The objective of this paper is to propose a state estimation method using unscented Kalman filter for nonlinear vehicle dynamics. The effectiveness of the proposed method is verified by numerical simulations.Keywords: State estimation, control systems, observer systems, unscented Kalman filter, nonlinear vehicle dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 61313353 Nonlinear Observer Design and Sliding Mode Control of Four Rotors Helicopter
Authors: H. Bouadi, M. Tadjine
Abstract:
In this paper; we are interested in dynamic modelling of quadrotor while taking into account the high-order nonholonomic constraints as well as the various physical phenomena, which can influence the dynamics of a flying structure. These permit us to introduce a new state-space representation and new control scheme. We present after the development and the synthesis of a stabilizing control laws design based on sliding mode in order to perform best tracking results. It ensures locally asymptotic stability and desired tracking trajectories. Nonlinear observer is then synthesized in order to estimate the unmeasured states and the effects of the external disturbances such as wind and noise. Finally simulation results are also provided in order to illustrate the performances of the proposed controllers.
Keywords: Dynamic modelling, nonholonomic constraints, sliding mode, nonlinear observer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 296013352 Robust Fuzzy Control of Nonlinear Fuzzy Impulsive Singular Perturbed Systems with Time-varying Delay
Authors: Caigen Zhou, Haibo Jiang
Abstract:
The problem of robust fuzzy control for a class of nonlinear fuzzy impulsive singular perturbed systems with time-varying delay is investigated by employing Lyapunov functions. The nonlinear delay system is built based on the well-known T–S fuzzy model. The so-called parallel distributed compensation idea is employed to design the state feedback controller. Sufficient conditions for global exponential stability of the closed-loop system are derived in terms of linear matrix inequalities (LMIs), which can be easily solved by LMI technique. Some simulations illustrate the effectiveness of the proposed method.Keywords: T–S fuzzy model, singular perturbed systems, time-varying delay, robust control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169613351 Optimal Criteria for Non-Minimal Phase Plants
Authors: Z. Nemec, R. Matousek
Abstract:
The paper describes the evaluation of quality of control for cases of controlled non-minimal phase plants. Control circuits containing non-minimal phase plants have different properties, they manifest reversed reaction at the beginning of unit step response. For these types of plants are developed special criterion of quality of control, which considers the difference and can be helpful for synthesis of optimal controller tuning. All results are clearly presented using Matlab/Simulink models.Keywords: control design, non-minimal phase system, optimalcriteria, power plant, heating plant, water turbine, Matlab, Simulink.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 206513350 Fault Detection via Stability Analysis for the Hybrid Control Unit of HEVs
Authors: Kyogun Chang, Yoon Bok Lee
Abstract:
Fault detection determines faultexistence and detecting time. This paper discusses two layered fault detection methods to enhance the reliability and safety. Two layered fault detection methods consist of fault detection methods of component level controllers and system level controllers. Component level controllers detect faults by using limit checking, model-based detection, and data-driven detection and system level controllers execute detection by stability analysis which can detect unknown changes. System level controllers compare detection results via stability with fault signals from lower level controllers. This paper addresses fault detection methods via stability and suggests fault detection criteria in nonlinear systems. The fault detection method applies tothe hybrid control unit of a military hybrid electric vehicleso that the hybrid control unit can detect faults of the traction motor.Keywords: Two Layered Fault Detection, Stability Analysis, Fault-Tolerant Control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 171113349 Kinematics and Control System Design of Manipulators for a Humanoid Robot
Authors: S. Parasuraman
Abstract:
In this work, a new approach is proposed to control the manipulators for Humanoid robot. The kinematics of the manipulators in terms of joint positions, velocity, acceleration and torque of each joint is computed using the Denavit Hardenberg (D-H) notations. These variables are used to design the manipulator control system, which has been proposed in this work. In view of supporting the development of a controller, a simulation of the manipulator is designed for Humanoid robot. This simulation is developed through the use of the Virtual Reality Toolbox and Simulink in Matlab. The Virtual Reality Toolbox in Matlab provides the interfacing and controls to an environment which is developed based on the Virtual Reality Modeling Language (VRML). Chains of bones were used to represent the robot.Keywords: Mobile robot, Robot Kinematics, Robot Navigation, MATLAB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159813348 Gain Tuning Fuzzy Controller for an Optical Disk Drive
Authors: Shiuh-Jer Huang, Ming-Tien Su
Abstract:
Since the driving speed and control accuracy of commercial optical disk are increasing significantly, it needs an efficient controller to monitor the track seeking and following operations of the servo system for achieving the desired data extracting response. The nonlinear behaviors of the actuator and servo system of the optical disk drive will influence the laser spot positioning. Here, the model-free fuzzy control scheme is employed to design the track seeking servo controller for a d.c. motor driving optical disk drive system. In addition, the sliding model control strategy is introduced into the fuzzy control structure to construct a 1-D adaptive fuzzy rule intelligent controller for simplifying the implementation problem and improving the control performance. The experimental results show that the steady state error of the track seeking by using this fuzzy controller can maintain within the track width (1.6 μm ). It can be used in the track seeking and track following servo control operations.Keywords: Fuzzy control, gain tuning and optical disk drive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158713347 State Estimation Based on Unscented Kalman Filter for Burgers’ Equation
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
Controlling the flow of fluids is a challenging problem that arises in many fields. Burgers’ equation is a fundamental equation for several flow phenomena such as traffic, shock waves, and turbulence. The optimal feedback control method, so-called model predictive control, has been proposed for Burgers’ equation. However, the model predictive control method is inapplicable to systems whose all state variables are not exactly known. In practical point of view, it is unusual that all the state variables of systems are exactly known, because the state variables of systems are measured through output sensors and limited parts of them can be only available. In fact, it is usual that flow velocities of fluid systems cannot be measured for all spatial domains. Hence, any practical feedback controller for fluid systems must incorporate some type of state estimator. To apply the model predictive control to the fluid systems described by Burgers’ equation, it is needed to establish a state estimation method for Burgers’ equation with limited measurable state variables. To this purpose, we apply unscented Kalman filter for estimating the state variables of fluid systems described by Burgers’ equation. The objective of this study is to establish a state estimation method based on unscented Kalman filter for Burgers’ equation. The effectiveness of the proposed method is verified by numerical simulations.Keywords: State estimation, fluid systems, observer systems, unscented Kalman filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 74213346 Sidelobe Reduction in Cognitive Radio Systems Using Hybrid Technique
Authors: Atif Elahi, Ijaz Mansoor Qureshi, Mehreen Atif, Noor Gul
Abstract:
Orthogonal frequency division multiplexing (OFDM) is one of the best candidates for dynamic spectrum access due to its flexibility of spectrum shaping. However, the high sidelobes of the OFDM signal that result in high out-of-band radiation, introduce significant interference to the users operating in its vicinity. This problem becomes more critical in cognitive radio (CR) system that enables the secondary users (SUs) users to access the spectrum holes not used by the primary users (PUs) at that time. In this paper, we present a generalized OFDM framework that has a capability of describing any sidelobe suppression techniques, despite of whether one or a number of techniques are used. Based on that framework, we propose cancellation carrier (CC) technique in conjunction with the generalized sidelobe canceller (GSC) to reduce the out-of-band radiation in the region where the licensed users are operating. Simulation results show that the proposed technique can reduce the out-of-band radiation better when compared with the existing techniques found in the literature.
Keywords: Cognitive radio, cancellation carriers, generalized sidelobe canceller, out-of-band radiation, orthogonal frequency division multiplexing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 119813345 Rule-Based Message Passing for Collaborative Application in Distributed Environments
Authors: Wataru Yamazaki, Hironori Hiraishi, Fumio Mizoguchi
Abstract:
In this paper, we describe a rule-based message passing method to support developing collaborative applications, in which multiple users share resources in distributed environments. Message communications of applications in collaborative environments tend to be very complex because of the necessity to manage context situations such as sharing events, access controlling of users, and network places. In this paper, we propose a message communications method based on unification of artificial intelligence and logic programming for defining rules of such context information in a procedural object-oriented programming language. We also present an implementation of the method as java classes.
Keywords: agent programming, logic programming, multi-media application, collaborative application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143213344 Pipelined Control-Path Effects on Area and Performance of a Wormhole-Switched Network-on-Chip
Authors: Faizal A. Samman, Thomas Hollstein, Manfred Glesner
Abstract:
This paper presents design trade-off and performance impacts of the amount of pipeline phase of control path signals in a wormhole-switched network-on-chip (NoC). The numbers of the pipeline phase of the control path vary between two- and one-cycle pipeline phase. The control paths consist of the routing request paths for output selection and the arbitration paths for input selection. Data communications between on-chip routers are implemented synchronously and for quality of service, the inter-router data transports are controlled by using a link-level congestion control to avoid lose of data because of an overflow. The trade-off between the area (logic cell area) and the performance (bandwidth gain) of two proposed NoC router microarchitectures are presented in this paper. The performance evaluation is made by using a traffic scenario with different number of workloads under 2D mesh NoC topology using a static routing algorithm. By using a 130-nm CMOS standard-cell technology, our NoC routers can be clocked at 1 GHz, resulting in a high speed network link and high router bandwidth capacity of about 320 Gbit/s. Based on our experiments, the amount of control path pipeline stages gives more significant impact on the NoC performance than the impact on the logic area of the NoC router.Keywords: Network-on-Chip, Synchronous Parallel Pipeline, Router Architecture, Wormhole Switching
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 148313343 Collaborative Tracking Control of UAV-UGV
Authors: Jae-Young Choi, Sung-Gaun Kim
Abstract:
This paper suggests a fast and stable Target Tracking system in collaborative control of UAV and UGV. Wi-Fi communication range is limited in collaborative control of UAV and UGV. Thus, to secure a stable communications, UAV and UGV have to be kept within a certain distance from each other. But existing method which uses UAV Vertical Camera to follow the motion of UGV is likely to lose a target with a sudden movement change. Eventually, UGV has disadvantages that it could only move at a low speed and not make any sudden change of direction in order to keep track of the target. Therefore, we suggest utilizing AR Drone UAV front camera to track fast-moving and Omnidirectional Mecanum Wheel UGV.Keywords: Collaborative control, UAV, UGV, Target Tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 294313342 Earth Station Neural Network Control Methodology and Simulation
Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah
Abstract:
Renewable energy resources are inexhaustible, clean as compared with conventional resources. Also, it is used to supply regions with no grid, no telephone lines, and often with difficult accessibility by common transport. Satellite earth stations which located in remote areas are the most important application of renewable energy. Neural control is a branch of the general field of intelligent control, which is based on the concept of artificial intelligence. This paper presents the mathematical modeling of satellite earth station power system which is required for simulating the system.Aswan is selected to be the site under consideration because it is a rich region with solar energy. The complete power system is simulated using MATLAB–SIMULINK.An artificial neural network (ANN) based model has been developed for the optimum operation of earth station power system. An ANN is trained using a back propagation with Levenberg–Marquardt algorithm. The best validation performance is obtained for minimum mean square error. The regression between the network output and the corresponding target is equal to 96% which means a high accuracy. Neural network controller architecture gives satisfactory results with small number of neurons, hence better in terms of memory and time are required for NNC implementation. The results indicate that the proposed control unit using ANN can be successfully used for controlling the satellite earth station power system.
Keywords: Satellite, neural network, MATLAB, power system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 186813341 Robust Control of a High-Speed Manipulator in State Space
Authors: M. M. Fateh, A. Izadbakhsh
Abstract:
A robust control approach is proposed for a high speed manipulator using a hybrid computed torque control approach in the state space. The high-speed manipulator is driven by permanent magnet dc motors to track a trajectory in the joint space in the presence of disturbances. Tracking problem is analyzed in the state space where the completed models are considered for actuators. The proposed control approach can guarantee the stability and a satisfactory tracking performance. A two-link elbow manipulator driven by electrical actuators is simulated and results are shown to satisfy conditions under technical specifications.
Keywords: Computed torque, manipulator, robust control, state space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 233913340 Modelling for Temperature Non-Isothermal Continuous Stirred Tank Reactor Using Fuzzy Logic
Authors: Nasser Mohamed Ramli, Mohamad Syafiq Mohamad
Abstract:
Many types of controllers were applied on the continuous stirred tank reactor (CSTR) unit to control the temperature. In this research paper, Proportional-Integral-Derivative (PID) controller are compared with Fuzzy Logic controller for temperature control of CSTR. The control system for temperature non-isothermal of a CSTR will produce a stable response curve to its set point temperature. A mathematical model of a CSTR using the most general operating condition was developed through a set of differential equations into S-function using MATLAB. The reactor model and S-function are developed using m.file. After developing the S-function of CSTR model, User-Defined functions are used to link to SIMULINK file. Results that are obtained from simulation and temperature control were better when using Fuzzy logic control compared to PID control.
Keywords: CSTR, temperature, PID, fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2484