Search results for: weather parameter.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1307

Search results for: weather parameter.

527 Off-State Leakage Power Reduction by Automatic Monitoring and Control System

Authors: S. Abdollahi Pour, M. Saneei

Abstract:

This paper propose a new circuit design which monitor total leakage current during standby mode and generates the optimal reverse body bias voltage, by using the adaptive body bias (ABB) technique to compensate die-to-die parameter variations. Design details of power monitor are examined using simulation framework in 65nm and 32nm BTPM model CMOS process. Experimental results show the overhead of proposed circuit in terms of its power consumption is about 10 μW for 32nm technology and about 12 μW for 65nm technology at the same power supply voltage as the core power supply. Moreover the results show that our proposed circuit design is not far sensitive to the temperature variations and also process variations. Besides, uses the simple blocks which offer good sensitivity, high speed, the continuously feedback loop.

Keywords: leakage current, leakage power monitor, body biasing, low power

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1714
526 Ruthenium Based Nanoscale Contact Coatings for Magnetically Controlled MEMS Switches

Authors: Sergey M. Karabanov, Dmitry V. Suvorov

Abstract:

Magnetically controlled microelectromechanical system (MCMEMS) switches is one of the directions in the field of micropower switching technology. MCMEMS switches are a promising alternative to Hall sensors and reed switches. The most important parameter for MCMEMS is the contact resistance, which should have a minimum value and is to be stable for the entire duration of service life. The value and stability of the contact resistance is mainly determined by the contact coating material. This paper presents the research results of a contact coating based on nanoscale ruthenium films obtained by electrolytic deposition. As a result of the performed investigations, the deposition modes of ruthenium films are chosen, the regularities of the contact resistance change depending on the number of contact switching, and the coating roughness are established. It is shown that changing the coating roughness makes it possible to minimize the contact resistance.

Keywords: Contact resistance, electrode coating, electrolythic deposition, magnetically controlled MEMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 789
525 An Improvement of Flow Forming Process for Pressure Vessels by Four Rollers Machine

Authors: P. Sawitri, S. Cdr. Sittha, T. Kritsana

Abstract:

Flow forming is widely used in many industries, especially in defence technology industries. Pressure vessels requirements are high precision, light weight, seamless and optimum strength. For large pressure vessels, flow forming by 3 rollers machine were used. In case of long range rocket motor case flow forming and welding of pressure vessels have been used for manufacturing. Due to complication of welding process, researchers had developed 4 meters length pressure vessels without weldment by 4 rollers flow forming machine. Design and preparation of preform work pieces are performed. The optimization of flow forming parameter such as feed rate, spindle speed and depth of cut will be discussed. The experimental result shown relation of flow forming parameters to quality of flow formed tube and prototype pressure vessels have been made.

Keywords: Flow forming, Pressure vessel, four rollers, feed rate, spindle speed, cold work.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2756
524 Development of a Roadmap for Assessment the Sustainability of Buildings in Saudi Arabia Using Building Information Modeling

Authors: Ibrahim A. Al-Sulaihi, Khalid S. Al-Gahtani, Abdullah M. Al-Sugair, Aref A. Abadel

Abstract:

Achieving environmental sustainability is one of the important issues considered in many countries’ vision. Green/Sustainable building is widely used terminology for describing a friendly environmental construction. Applying sustainable practices has a significant importance in various fields, including construction field that consumes an enormous amount of resource and causes a considerable amount of waste. The need for sustainability is increased in the regions that suffering from the limitation of natural resource and extreme weather conditions such as Saudi Arabia. Since buildings designs are getting sophisticated, the need for tools, which support decision-making for sustainability issues, is increasing, especially in the design and preconstruction stages. In this context, Building Information Modeling (BIM) can aid in performing complex building performance analyses to ensure an optimized sustainable building design. Accordingly, this paper introduces a roadmap towards developing a systematic approach for presenting the sustainability of buildings using BIM. The approach includes set of main processes including; identifying the sustainability parameters that can be used for sustainability assessment in Saudi Arabia, developing sustainability assessment method that fits the special circumstances in the Kingdom, identifying the sustainability requirements and BIM functions that can be used for satisfying these requirements, and integrating these requirements with identified functions. As a result, the sustainability-BIM approach can be developed which helps designers in assessing the sustainability and exploring different design alternatives at the early stage of the construction project.

Keywords: Green buildings, sustainability, BIM, rating systems, environment, Saudi Arabia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 849
523 The Study of Increasing Environmental Temperature on the Dynamical Behaviour of a Prey-Predator System: A Model

Authors: O. P. Misra, Preety Kalra

Abstract:

It is well recognized that the green house gases such as Chlorofluoro Carbon (CFC), CH4, CO2 etc. are responsible directly or indirectly for the increase in the average global temperature of the Earth. The presence of CFC is responsible for the depletion of ozone concentration in the atmosphere due to which the heat accompanied with the sun rays are less absorbed causing increase in the atmospheric temperature of the Earth. The gases like CH4 and CO2 are also responsible for the increase in the atmospheric temperature. The increase in the temperature level directly or indirectly affects the dynamics of interacting species systems. Therefore, in this paper a mathematical model is proposed and analysed using stability theory to asses the effects of increasing temperature due to greenhouse gases on the survival or extinction of populations in a prey-predator system. A threshold value in terms of a stress parameter is obtained which determines the extinction or existence of populations in the underlying system.

Keywords: Equilibria, Green house gases, Model, Populations, Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
522 Evaluating the Response of Rainfed-Chickpea to Population Density in Iran, Using Simulation

Authors: Manoochehr Gholipoor

Abstract:

The response of growth and yield of rainfed-chickpea to population density should be evaluated based on long-term experiments to include the climate variability. This is achievable just by simulation. In this simulation study, this evaluation was done by running the CYRUS model for long-term daily weather data of five locations in Iran. The tested population densities were 7 to 59 (with interval of 2) stands per square meter. Various functions, including quadratic, segmented, beta, broken linear, and dent-like functions, were tested. Considering root mean square of deviations and linear regression statistics [intercept (a), slope (b), and correlation coefficient (r)] for predicted versus observed variables, the quadratic and broken linear functions appeared to be appropriate for describing the changes in biomass and grain yield, and in harvest index, respectively. Results indicated that in all locations, grain yield tends to show increasing trend with crowding the population, but subsequently decreases. This was also true for biomass in five locations. The harvest index appeared to have plateau state across low population densities, but decreasing trend with more increasing density. The turning point (optimum population density) for grain yield was 30.68 stands per square meter in Isfahan, 30.54 in Shiraz, 31.47 in Kermanshah, 34.85 in Tabriz, and 32.00 in Mashhad. The optimum population density for biomass ranged from 24.6 (in Tabriz) to 35.3 stands per square meter (Mashhad). For harvest index it varied between 35.87 and 40.12 stands per square meter.

Keywords: Rainfed-chickpea, biomass, harvest index, grain yield, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316
521 Modeling Nanomechanical Behavior of ZnO Nanowires as a Function of Nano-Diameter

Authors: L. Achou, A. Doghmane

Abstract:

Elastic performances, as an essential property of nanowires (NWs), play a significant role in the design and fabrication of modern nanodevices. In this paper, our interest is focused on ZnO NWs to investigate wire diameter (Dwire ≤ 400 nm) effects on elastic properties. The plotted data reveal that a strong size dependence of the elastic constants exists when the wire diameter is smaller than ~ 100 nm. For larger diameters (Dwire > 100 nm), these ones approach their corresponding bulk values. To enrich this study, we make use of the scanning acoustic microscopy simulation technique. The calculation methodology consists of several steps: determination of longitudinal and transverse wave velocities, calculation of refection coefficients, calculation of acoustic signatures and Rayleigh velocity determination. Quantitatively, it was found that changes in ZnO diameters over the ranges 1 nm ≤ Dwire ≤ 100 nm lead to similar exponential variations, for all elastic parameters, of the from: A = a + b exp(-Dwire/c) where a, b, and c are characteristic constants of a given parameter. The developed relation can be used to predict elastic properties of such NW by just knowing its diameter and vice versa.

Keywords: Elastic properties, nanowires, semiconductors, ZnO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948
520 Physical Properties of Uranium Dinitride UN2 by Using Density Functional Theory (DFT and DFT+U)

Authors: T. Zergoug, S.H. Abaidia, A. Nedjar, M. Y. Mokeddem

Abstract:

Physical properties of uranium dinitride (UN2) were investigated in detail using first principle calculations based on density functional theory (DFT). To study the strong correlation effects due to 5f uranium valence electrons, the on-site coulomb interaction correction U via the Hubbard-like term (DFT+U) was employed. The UN2 structural, mechanical and thermodynamic properties were calculated within DFT and Various U of DFT+U approach. The Perdew–Burke–Ernzerhof (PBE.5.2) version of the generalized gradient approximation (GGA) is used to describe the exchange-correlation with the projector-augmented wave (PAW) pseudo potentials. A comparative study shows that results are improved by using the Hubbard formalism for a certain U value correction like the structural parameter. For some physical properties the variation versus Hubbard-U is strong like Young modulus but for others it is weakly noticeable such as bulk modulus. We noticed also that from U=7.5 eV, elastic results don’t agree with the cubic cell because of the C44 values which turn out to be negative.

Keywords: Ab initio, bulk modulus, DFT, DFT + U.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2520
519 A Sub-Pixel Image Registration Technique with Applications to Defect Detection

Authors: Zhen-Hui Hu, Jyh-Shong Ju, Ming-Hwei Perng

Abstract:

This paper presents a useful sub-pixel image registration method using line segments and a sub-pixel edge detector. In this approach, straight line segments are first extracted from gray images at the pixel level before applying the sub-pixel edge detector. Next, all sub-pixel line edges are mapped onto the orientation-distance parameter space to solve for line correspondence between images. Finally, the registration parameters with sub-pixel accuracy are analytically solved via two linear least-square problems. The present approach can be applied to various fields where fast registration with sub-pixel accuracy is required. To illustrate, the present approach is applied to the inspection of printed circuits on a flat panel. Numerical example shows that the present approach is effective and accurate when target images contain a sufficient number of line segments, which is true in many industrial problems.

Keywords: Defect detection, Image registration, Straight line segment, Sub-pixel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
518 The Effects of Shot and Grit Blasting Process Parameters on Steel Pipes Coating Adhesion

Authors: Saeed Khorasanizadeh

Abstract:

Adhesion strength of exterior or interior coating of steel pipes is too important. Increasing of coating adhesion on surfaces can increase the life time of coating, safety factor of transmitting line pipe and decreasing the rate of corrosion and costs. Preparation of steel pipe surfaces before doing the coating process is done by shot and grit blasting. This is a mechanical way to do it. Some effective parameters on that process, are particle size of abrasives, distance to surface, rate of abrasive flow, abrasive physical properties, shapes, selection of abrasive, kind of machine and its power, standard of surface cleanness degree, roughness, time of blasting and weather humidity. This search intended to find some better conditions which improve the surface preparation, adhesion strength and corrosion resistance of coating. So, this paper has studied the effect of varying abrasive flow rate, changing the abrasive particle size, time of surface blasting on steel surface roughness and over blasting on it by using the centrifugal blasting machine. After preparation of numbers of steel samples (according to API 5L X52) and applying epoxy powder coating on them, to compare strength adhesion of coating by Pull-Off test. The results have shown that, increasing the abrasive particles size and flow rate, can increase the steel surface roughness and coating adhesion strength but increasing the blasting time can do surface over blasting and increasing surface temperature and hardness too, change, decreasing steel surface roughness and coating adhesion strength.

Keywords: surface preparation, abrasive particles, adhesionstrength

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9045
517 A Boundary Backstepping Control Design for 2-D, 3-D and N-D Heat Equation

Authors: Aziz Sezgin

Abstract:

We consider the problem of stabilization of an unstable heat equation in a 2-D, 3-D and generally n-D domain by deriving a generalized backstepping boundary control design methodology. To stabilize the systems, we design boundary backstepping controllers inspired by the 1-D unstable heat equation stabilization procedure. We assume that one side of the boundary is hinged and the other side is controlled for each direction of the domain. Thus, controllers act on two boundaries for 2-D domain, three boundaries for 3-D domain and ”n” boundaries for n-D domain. The main idea of the design is to derive ”n” controllers for each of the dimensions by using ”n” kernel functions. Thus, we obtain ”n” controllers for the ”n” dimensional case. We use a transformation to change the system into an exponentially stable ”n” dimensional heat equation. The transformation used in this paper is a generalized Volterra/Fredholm type with ”n” kernel functions for n-D domain instead of the one kernel function of 1-D design.

Keywords: Backstepping, boundary control, 2-D, 3-D, n-D heat equation, distributed parameter systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
516 Parameters Influencing the Output Precision of a Lens-Lens Beam Generator Solar Concentrator

Authors: M. Tawfik, X. Tonnellier, C. Sansom

Abstract:

The Lens-Lens Beam Generator (LLBG) is a Fresnel-based optical concentrating technique which provides flexibility in selecting the solar receiver location compared to conventional techniques through generating a powerful concentrated collimated solar beam. In order to achieve that, two successive lenses are used and followed by a flat mirror. Hence the generated beam emerging from the LLBG has a high power flux which impinges on the target receiver, it is important to determine the precision of the system output. In this present work, mathematical investigation of different parameters affecting the precision of the output beam is carried out. These parameters include: Deflection in sun-facing lens and its holding arm, delay in updating the solar tracking system, and the flat mirror surface flatness. Moreover, relationships that describe the power lost due to the effect of each parameter are derived in this study.

Keywords: Fresnel lens, LLBG, solar concentrator, solar tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1122
515 Fracture Pressure Predict Based on Well Logs of Depleted Reservoir in Southern Iraqi Oilfield

Authors: Raed H. Allawi

Abstract:

Fracture pressure is the main parameter applied in wells design and used to avoid drilling problems like lost circulation. Thus, this study aims to predict the fracture pressure of oil reservoirs in the southern Iraq Oilfield. The data required to implement this study included bulk density, compression wave velocity, gamma-ray, and leak-off test. In addition, this model is based on the pore pressure which is measured based on the Modular Formation Dynamics Tester (MDT). Many measured values of pore pressure were used to validate the accurate model. Using sonic velocity approaches, the mean absolute percentage error (MAPE) was about 4%. The fracture pressure results were consistent with the measurement data, actual drilling report, and events. The model's results will be a guide for successful drilling in future wells in the same oilfield.

Keywords: Pore pressure, fracture pressure, overburden pressure, effective stress, drilling events.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 128
514 Physico-chemical State of the Air at the Stagnation Point during the Atmospheric Reentry of a Spacecraft

Authors: Rabah Haoui

Abstract:

Hypersonic flows around spatial vehicles during their reentry phase in planetary atmospheres are characterized by intense aerothermal phenomena. The aim of this work is to analyze high temperature flows around an axisymmetric blunt body taking into account chemical and vibrational non-equilibrium for air mixture species. For this purpose, a finite volume methodology is employed to determine the supersonic flow parameters around the axisymmetric blunt body, especially at the stagnation point and along the wall of spacecraft for several altitudes. This allows the capture shock wave before a blunt body placed in supersonic free stream. The numerical technique uses the Flux Vector Splitting method of Van Leer. Here, adequate time stepping parameter, along with CFL coefficient and mesh size level are selected to ensure numerical convergence, sought with an order of 10-8

Keywords: Chemical kinetic, dissociation, finite volumes, frozen, hypersonic flow, non-equilibrium, Reactive flow, supersonicflow , vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828
513 Influence of Yeast Strains on Microbiological Stability of Wheat Bread

Authors: E. Soboleva, E. Sergachyova, S. G. Davydenko, T. V. Meledina

Abstract:

Problem of food preservation is extremely important for mankind. Viscous damage ("illness") of bread results from development of Bacillus spp. bacteria. High temperature resistant spores of this microorganism are steady against 120°C) and remain in bread during pastries, potentially causing spoilage of the final product. Scientists are interested in further characterization of bread spoiling Bacillus spp. species. Our aim was to find weather yeast Saccharomyces cerevisiae strains that are able to produce natural antimicrobial killer factor can preserve bread illness. By diffusion method, we showed yeast antagonistic activity against spore-forming bacteria. Experimental technological parameters were the same as for bakers' yeasts production on the industrial scale. Risograph test during dough fermentation demonstrated gas production. The major finding of the study was a clear indication of the presence of killer yeast strain antagonistic activity against rope in bread causing bacteria. After demonstrating antagonistic effect of S. cerevisiae on bacteria using solid nutrient medium, we tested baked bread under provocative conditions. We also measured formation of carbon dioxide in the dough, dough-making duration and quality of the final products, when using different strains of S. cerevisiae. It is determined that the use of yeast S. cerevisiae RCAM 01730 killer strain inhibits appearance of rope in bread. Thus, natural yeast antimicrobial killer toxin, produced by some S. cerevisiae strains is an anti-rope in bread protector.

Keywords: Bakers' yeasts, rope in bread, Saccharomyces cerevisiae.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
512 Monitoring of Water Pollution and Its Consequences: An Overview

Authors: N. Singh, N. Sharma, J. K. Katnoria

Abstract:

Water a vital component for all living forms is derived from variety of sources, including surface water (rivers, lakes, reservoirs and ponds) and ground water (aquifers). Over the years of time, water bodies are subjected to human interference regularly resulting in deterioration of water quality. Therefore, pollution of water bodies has become matter of global concern. As the water quality closely relate to human health, water analysis before usage is of immense importance. Improper management of water bodies can cause serious problems in availability and quality of water. The quality of water may be described according to their physico-chemical and microbiological characteristics. For effective maintenance of water quality through appropriate control measures, continuous monitoring of metals, physico-chemical and biological parameter is essential for the establishment of baseline data for the water quality in any study area. The present study has focused on to explore the status of water pollution in various areas and to estimate the magnitude of its toxicity using different bioassay.

Keywords: Genotoxicity, Heavy metals, Mutagenicity, Physico-chemical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3531
511 An Empirical Mode Decomposition Based Method for Action Potential Detection in Neural Raw Data

Authors: Sajjad Farashi, Mohammadjavad Abolhassani, Mostafa Taghavi Kani

Abstract:

Information in the nervous system is coded as firing patterns of electrical signals called action potential or spike so an essential step in analysis of neural mechanism is detection of action potentials embedded in the neural data. There are several methods proposed in the literature for such a purpose. In this paper a novel method based on empirical mode decomposition (EMD) has been developed. EMD is a decomposition method that extracts oscillations with different frequency range in a waveform. The method is adaptive and no a-priori knowledge about data or parameter adjusting is needed in it. The results for simulated data indicate that proposed method is comparable with wavelet based methods for spike detection. For neural signals with signal-to-noise ratio near 3 proposed methods is capable to detect more than 95% of action potentials accurately.

Keywords: EMD, neural data processing, spike detection, wavelet decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2354
510 Bifurcation Analysis of a Plankton Model with Discrete Delay

Authors: Anuj Kumar Sharma, Amit Sharma, Kulbhushan Agnihotri

Abstract:

In this paper, a delayed plankton-nutrient interaction model consisting of phytoplankton, zooplankton and dissolved nutrient is considered. It is assumed that some species of phytoplankton releases toxin (known as toxin producing phytoplankton (TPP)) which is harmful for zooplankton growth and this toxin releasing process follows a discrete time variation. Using delay as bifurcation parameter, the stability of interior equilibrium point is investigated and it is shown that time delay can destabilize the otherwise stable non-zero equilibrium state by inducing Hopf-bifurcation when it crosses a certain threshold value. Explicit results are derived for stability and direction of the bifurcating periodic solution by using normal form theory and center manifold arguments. Finally, outcomes of the system are validated through numerical simulations.

Keywords: Plankton, Time delay, Hopf-bifurcation, Normal form theory, Center manifold theorem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1889
509 An Evaluation of Sputum Smear Conversion and Haematological Parameter Alteration in Early Detection Period of New Pulmonary Tuberculosis (PTB) Patients

Authors: Tasnuva Tamanna, Sanjida Halim Topa

Abstract:

Sputum smear conversion after one month of antituberculosis therapy in new smear positive pulmonary tuberculosis patients (PTB+) is a vital indicator towards treatment success. The objective of this study is to determine the rate of sputum smear conversion in new PTB+ patients after one month under treatment of National Institute of Diseases of the Chest and Hospital (NIDCH). Analysis of sputum smear conversion was done by re-clinical examination with sputum smear microscopic test after one month. Socio-demographic and hematological parameters were evaluated to perceive the correlation with the disease status. Among all enrolled patients only 33.33% were available for follow up diagnosis and of them only 42.86% patients turned to smear negative. Probably this consequence is due to non-coherence to the proper disease management. 66.67% and 78.78% patients reported low haemoglobin and packed cell volume level respectively whereas 80% and 93.33% patients accounted accelerated platelet count and erythrocyte sedimentation rate correspondingly.

Keywords: Followed up patients, PTB+ patients, sputum smear conversion, and sputum smear microscopic test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2144
508 Evaluation of the Beach Erosion Process in Varadero, Matanzas, Cuba: Effects of Different Hurricane Trajectories

Authors: Ana Gabriela Diaz, Luis Fermín Córdova, Jr., Roberto Lamazares

Abstract:

The island of Cuba, the largest of the Greater Antilles, is located in the tropical North Atlantic. It is annually affected by numerous weather events, which have caused severe damage to our coastal areas. In the same way that many other coastlines around the world, the beautiful beaches of the Hicacos Peninsula also suffer from erosion. This leads to a structural regression of the coastline. If measures are not taken, the hotels will be exposed to the advance of the sea, and it will be a serious problem for the economy. With the aim of studying the intensity of this type of activity, specialists of group of coastal and marine engineering from CIH, in the framework of the research conducted within the project MEGACOSTAS 2, provide their research to simulate extreme events and assess their impact in coastal areas, mainly regarding the definition of flood volumes and morphodynamic changes in sandy beaches. The main objective of this work is the evaluation of the process of Varadero beach erosion (the coastal sector has an important impact in the country's economy) on the Hicacos Peninsula for different paths of hurricanes. The mathematical model XBeach, which was integrated into the Coastal engineering system introduced by the project of MEGACOSTA 2 to determine the area and the more critical profiles for the path of hurricanes under study, was applied. The results of this project have shown that Center area is the greatest dynamic area in the simulation of the three paths of hurricanes under study, showing high erosion volumes and the greatest average length of regression of the coastline, from 15- 22 m.

Keywords: Beach, erosion, mathematical model, coastal areas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1172
507 Electricity Price Forecasting: A Comparative Analysis with Shallow-ANN and DNN

Authors: Fazıl Gökgöz, Fahrettin Filiz

Abstract:

Electricity prices have sophisticated features such as high volatility, nonlinearity and high frequency that make forecasting quite difficult. Electricity price has a volatile and non-random character so that, it is possible to identify the patterns based on the historical data. Intelligent decision-making requires accurate price forecasting for market traders, retailers, and generation companies. So far, many shallow-ANN (artificial neural networks) models have been published in the literature and showed adequate forecasting results. During the last years, neural networks with many hidden layers, which are referred to as DNN (deep neural networks) have been using in the machine learning community. The goal of this study is to investigate electricity price forecasting performance of the shallow-ANN and DNN models for the Turkish day-ahead electricity market. The forecasting accuracy of the models has been evaluated with publicly available data from the Turkish day-ahead electricity market. Both shallow-ANN and DNN approach would give successful result in forecasting problems. Historical load, price and weather temperature data are used as the input variables for the models. The data set includes power consumption measurements gathered between January 2016 and December 2017 with one-hour resolution. In this regard, forecasting studies have been carried out comparatively with shallow-ANN and DNN models for Turkish electricity markets in the related time period. The main contribution of this study is the investigation of different shallow-ANN and DNN models in the field of electricity price forecast. All models are compared regarding their MAE (Mean Absolute Error) and MSE (Mean Square) results. DNN models give better forecasting performance compare to shallow-ANN. Best five MAE results for DNN models are 0.346, 0.372, 0.392, 0,402 and 0.409.

Keywords: Deep learning, artificial neural networks, energy price forecasting, Turkey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1055
506 Experimental Analysis and Optimization of Process Parameters in Plasma Arc Cutting Machine of EN-45A Material Using Taguchi and ANOVA Method

Authors: Sahil Sharma, Mukesh Gupta, Raj Kumar, N. S Bindra

Abstract:

This paper presents an experimental investigation on the optimization and the effect of the cutting parameters on Material Removal Rate (MRR) in Plasma Arc Cutting (PAC) of EN-45A Material using Taguchi L 16 orthogonal array method. Four process variables viz. cutting speed, current, stand-off-distance and plasma gas pressure have been considered for this experimental work. Analysis of variance (ANOVA) has been performed to get the percentage contribution of each process parameter for the response variable i.e. MRR. Based on ANOVA, it has been observed that the cutting speed, current and the plasma gas pressure are the major influencing factors that affect the response variable. Confirmation test based on optimal setting shows the better agreement with the predicted values.

Keywords: Analysis of variance, Material removal rate, plasma arc cutting, Taguchi method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1205
505 Dynamic Fuzzy-Neural Network Controller for Induction Motor Drive

Authors: M. Zerikat, M. Bendjebbar, N. Benouzza

Abstract:

In this paper, a novel approach for robust trajectory tracking of induction motor drive is presented. By combining variable structure systems theory with fuzzy logic concept and neural network techniques, a new algorithm is developed. Fuzzy logic was used for the adaptation of the learning algorithm to improve the robustness of learning and operating of the neural network. The developed control algorithm is robust to parameter variations and external influences. It also assures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the designed controller of induction motor drives which considered as highly non linear dynamic complex systems and variable characteristics over the operating conditions.

Keywords: Induction motor, fuzzy-logic control, neural network control, indirect field oriented control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2423
504 A Novel EMG Feedback Control Method in Functional Electrical Stimulation Cycling System for Stroke Patients

Authors: Chien-Chih Chen, Ya-Hsin Hsueh, Zong-Cian He

Abstract:

With getting older in the whole population, the prevalence of stroke and its residual disability is getting higher and higher recently in Taiwan. The functional electrical stimulation cycling system (FESCS) is useful for hemiplegic patients. Because that the muscle of stroke patients is under hybrid activation. The raw electromyography (EMG) represents the residual muscle force of stroke subject whereas the peak-to-peak of stimulus EMG indicates the force enhancement benefiting from ES. It seems that EMG signals could be used for a parameter of feedback control mechanism. So, we design the feedback control protocol of FESCS, it includes physiological signal recorder, FPGA biomedical module, DAC and electrical stimulation circuit. Using the intensity of real-time EMG signal obtained from patients, as a feedback control method for the output voltage of FES-cycling system.

Keywords: Functional Electrical Stimulation cycling system EMG, control protocol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2095
503 A Comparison Study of a Symmetry Solution of Magneto-Elastico-Viscous Fluid along a Semi- Infinite Plate with Homotopy Perturbation Method and4th Order Runge–Kutta Method

Authors: Mohamed M. Mousa, Aidarkhan Kaltayev

Abstract:

The equations governing the flow of an electrically conducting, incompressible viscous fluid over an infinite flat plate in the presence of a magnetic field are investigated using the homotopy perturbation method (HPM) with Padé approximants (PA) and 4th order Runge–Kutta method (4RKM). Approximate analytical and numerical solutions for the velocity field and heat transfer are obtained and compared with each other, showing excellent agreement. The effects of the magnetic parameter and Prandtl number on velocity field, shear stress, temperature and heat transfer are discussed as well.

Keywords: Electrically conducting elastico-viscous fluid, symmetry solution, Homotopy perturbation method, Padé approximation, 4th order Runge–Kutta, Maple

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441
502 Passive Ventilation System Analysis using Solar Chimney in South of Algeria

Authors: B. Belfuguais, S. Larbi

Abstract:

The work presented in this study is related to an energy system analysis based on passive cooling system for dwellings. It consists to solar chimney energy performances determination versus geometrical and environmental considerations as the size and inlet width conditions of the chimney. Adrar site located in the southern region of Algeria is chosen for this study according to ambient temperature and solar irradiance technical data availability. Obtained results are related to the glazing temperature distributions, the chimney air flow and internal wall temperatures. The air room change per hour (ACH) parameter, the outlet air velocity and mass air flow rate are also determined. It is shown that the chimney width has a significant effect on energy performances compared to its entry size. A good agreement is observed between these results and those obtained by others from the literature.

Keywords: Solar chimney, Energy performances, Passive ventilation, Numerical simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2897
501 Incident Shock Wave Interaction with an Axisymmetric Cone Body Placed in Shock Tube

Authors: Rabah Haoui

Abstract:

This work presents a numerical simulation of the interaction of an incident shock wave propagates from the left to the right with a cone placed in a tube at shock. The Mathematical model is based on a non stationary, viscous and axisymmetric flow. The Discretization of the Navier-stokes equations is carried out by the finite volume method in the integral form along with the Flux Vector Splitting method of Van Leer. Here, adequate combination of time stepping parameter, CFL coefficient and mesh size level is selected to ensure numerical convergence. The numerical simulation considers a shock tube filled with air. The incident shock wave propagates to the right with a determined Mach number and crosses the cone by leaving behind it a stationary detached shock wave in front of the nose cone. This type of interaction is observed according to the time of flow.

Keywords: Supersonic flow, viscous flow, finite volume, cone body

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
500 Effect of Mesh Size on the Viscous Flow Parameters of an Axisymmetric Nozzle

Authors: Rabah Haoui

Abstract:

The aim of this work is to analyze a viscous flow in the axisymmetric nozzle taken into account the mesh size both in the free stream and into the boundary layer. The resolution of the Navier- Stokes equations is realized by using the finite volume method to determine the supersonic flow parameters at the exit of convergingdiverging nozzle. The numerical technique uses the Flux Vector Splitting method of Van Leer. Here, adequate time stepping parameter, along with CFL coefficient and mesh size level is selected to ensure numerical convergence. The effect of the boundary layer thickness is significant at the exit of the nozzle. The best solution is obtained with using a very fine grid, especially near the wall, where we have a strong variation of velocity, temperature and shear stress. This study enabled us to confirm that the determination of boundary layer thickness can be obtained only if the size of the mesh is lower than a certain value limits given by our calculations.

Keywords: Supersonic flow, viscous flow, finite volume, nozzle

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
499 A New H.264-Based Rate Control Algorithm for Stereoscopic Video Coding

Authors: Yi Liao, Wencheng Yang, Gangyi Jiang

Abstract:

According to investigating impact of complexity of stereoscopic frame pairs on stereoscopic video coding and transmission, a new rate control algorithm is presented. The proposed rate control algorithm is performed on three levels: stereoscopic group of pictures (SGOP) level, stereoscopic frame (SFrame) level and frame level. A temporal-spatial frame complexity model is firstly established, in the bits allocation stage, the frame complexity, position significance and reference property between the left and right frames are taken into account. Meanwhile, the target buffer is set according to the frame complexity. Experimental results show that the proposed method can efficiently control the bitrates, and it outperforms the fixed quantization parameter method from the rate distortion perspective, and average PSNR gain between rate-distortion curves (BDPSNR) is 0.21dB.

Keywords: Stereoscopic video coding, rate control, stereoscopic group of pictures, complexity of stereoscopic frame pairs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
498 Evaluating the Durability and Safety of Lithium-Ion Batteries in High-Temperature Desert Climates

Authors: Kenza Maher, Yahya Zakaria, Noora S. Al-Jaidah

Abstract:

Temperature is a critical parameter for lithium-ion battery performance, life, and safety. In this study, four commercially available 18650 lithium-ion cells from four different manufacturers are subjected to accelerated cycle aging for up to 500 cycles at two different temperatures (25 °C and 45 °C). The cells are also calendar-aged at the same temperatures in both charged and discharged states for six months to investigate the effect of aging and temperature on capacity fade and state of health. The results showed that all battery cells demonstrated good cyclability and had a good state of health at both temperatures. However, the capacity loss and state of health of these cells are found to be dependent on the cell chemistry and aging conditions, including temperature. Specifically, the capacity loss is found to be higher at the higher aging temperature, indicating the significant impact of temperature on the aging of lithium-ion batteries.

Keywords: Lithium-ion battery, aging mechanisms, cycle aging, calendar aging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 147