Parameters Influencing the Output Precision of a Lens-Lens Beam Generator Solar Concentrator
Authors: M. Tawfik, X. Tonnellier, C. Sansom
Abstract:
The Lens-Lens Beam Generator (LLBG) is a Fresnel-based optical concentrating technique which provides flexibility in selecting the solar receiver location compared to conventional techniques through generating a powerful concentrated collimated solar beam. In order to achieve that, two successive lenses are used and followed by a flat mirror. Hence the generated beam emerging from the LLBG has a high power flux which impinges on the target receiver, it is important to determine the precision of the system output. In this present work, mathematical investigation of different parameters affecting the precision of the output beam is carried out. These parameters include: Deflection in sun-facing lens and its holding arm, delay in updating the solar tracking system, and the flat mirror surface flatness. Moreover, relationships that describe the power lost due to the effect of each parameter are derived in this study.
Keywords: Fresnel lens, LLBG, solar concentrator, solar tracking.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1130469
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1145References:
[1] A. Kumar, “Improvements in efficiency of solar parabolic trough,” IOSR J. Mech. Civ. Eng., vol. 7, no. 6, pp. 63–75, 2013.
[2] J. Houghton, Global Warming: The Complete Briefing, 3rd Ed. Cambridge University Press, 2004.
[3] L. R. Wilson, “Luminescent Solar Concentrators : A Study of Optical Properties, and Device Optimisation,” Heriot-Watt University, 2010.
[4] R. Österholm and J. Pålsson, “Dynamic modelling of a parabolic trough solar power plant,” in Proceedings of the 10th International Modelica Conference, 2014, p. 1057.
[5] REN21, “Renewables 2016 Global Status Report,” Paris, 2016.
[6] R. Pitchumani, “SunShot Initiative,” Washington D.C., USA, 2014.
[7] C. C. Newton, “A Concentrated Solar Thermal Energy System,” Florida State University, 2007.
[8] M. Mancini, T., Kolb, G., and Prairie, “Solar Thermal Power,” in Advances in Solar Energy: An Annual Review of Research and Development, Volume 11, K. W. Böer, Ed. Boulder, CO: American Solar Energy Society, 1997, pp. 1–42.
[9] S. A. Kalogirou, Solar Energy Engineering. Elsevier, 2009.
[10] M. Günther, M. Joemann, and S. Csambor, “Parabolic Trough Technology,” in Advanced CSP Teaching Materials, Kassel, Germany: Enermena; German Aerospace Center (DLR), 2011.
[11] D. R. Mills, “Linear Fresnel reflector (LFR) technology,” in Concentrating Solar Power Technology: Principles, Developments and Applications, K. Lovegrove and W. Stein, Eds. Cambridge, UK: Woodhead Publishing Limited, 2012, pp. 153–196.
[12] C. Chang, “Tracking solar collection technologies for solar heating and cooling systems,” in Advances in Solar Heating and Cooling, R. Wang and T. Ge, Eds. Woodhead Publishing Limited, 2016, pp. 81–93.
[13] S. Gianella, “Porous Materials for High-Temperature Solar Absorbers,” in International Symposium on High Temperature Solar Materials, 2012.
[14] S. A. Kalogirou, “Solar Thermal Power Systems,” in Solar Energy Engineering - Processes and Systems, 2nd Ed., Elsevier, 2014, pp. 541–581.
[15] G. Cau and D. Cocco, “Comparison of Medium-size Concentrating Solar Power Plants based on Parabolic Trough and Linear Fresnel Collectors,” Energy Procedia, vol. 45, pp. 101–110, 2014.
[16] M. Eck and E. Zarza, “Saturated steam process with direct steam generating parabolic troughs,” Sol. Energy, vol. 80, no. 11, pp. 1424–1433, Nov. 2006.
[17] N. El Gharbi, H. Derbal, S. Bouaichaoui, and N. Said, “A comparative study between parabolic trough collector and linear Fresnel reflector technologies,” Energy Procedia, vol. 6, pp. 565–572, 2011.
[18] A. Rovira, R. Barbero, M. J. Montes, R. Abbas, and F. Varela, “Analysis and comparison of Integrated Solar Combined Cycles using parabolic troughs and linear Fresnel reflectors as concentrating systems,” Appl. Energy, vol. 162, pp. 990–1000, 2016.
[19] G. Morin, J. Dersch, W. Platzer, M. Eck, and A. Häberle, “Comparison of Linear Fresnel and Parabolic Trough Collector power plants,” Sol. Energy, vol. 86, no. 1, pp. 1–12, Jan. 2012.
[20] IRENA, “Renewable Power Generation Costs in 2012 : An Overview,” 2013.
[21] C. L. Martin and D. Y. Goswami, Solar Energy Pocket Reference. Routledge, 2005.
[22] B. Sørensen, P. Breeze, T. Storvick, S.-T. Yang, A. V. da Rosa, H. K. Gupta, R. Sukanta, M. Doble, P. Maegaard, G. Pistoia, and S. Kalogirou, Renewable Energy Focus Handbook, 1st Ed. Academic Press, 2009.
[23] J. P. Kesari, M. Gupta, A. Jain, and A. K. Ojha, “Review of the Concentrated Solar Thermal Technologies : Challenges and Opportunities in India,” Int. J. Res. Sci. Innov., vol. II, no. I, pp. 105–111, 2015.
[24] Dhanabal R, B. V, Ranjitha R, Ponni A, D. S, and Mageshkannan P, “Comparison of Efficiencies of Solar Tracker systems with static panel Single- Axis Tracking System and Dual-Axis Tracking System with Fixed Mount,” Int. J. Eng. Technol., vol. 5, no. 2, pp. 1925–1933, 2013.
[25] G. Franchini, A. Perdichizzi, S. Ravelli, and G. Barigozzi, “A comparative study between parabolic trough and solar tower technologies in Solar Rankine Cycle and Integrated Solar Combined Cycle plants,” Sol. Energy, vol. 98, pp. 302–314, Dec. 2013.
[26] J. E. Pacheco, H. E. Reilly, G. J. Kolb, and C. E. Tyner, “Summary of the Solar Two: Test and Evaluation Program,” 2000.
[27] F. J. Collado, “Quick evaluation of the annual heliostat field efficiency,” Sol. Energy, vol. 82, no. 4, pp. 379–384, Apr. 2008.
[28] J.-L. Bouvier, G. Michaux, P. Salagnac, T. Kientz, and D. Rochier, “Experimental study of a micro combined heat and power system with a solar parabolic trough collector coupled to a steam Rankine cycle expander,” Sol. Energy, vol. 134, pp. 180–192, Sep. 2016.
[29] Y. Rafeeu and M. Z. A. Ab Kadir, “Thermal performance of parabolic concentrators under Malaysian environment: A case study,” Renew. Sustain. Energy Rev., vol. 16, no. 6, pp. 3826–3835, Aug. 2012.
[30] N. Kaushika and K. Reddy, “Performance of a low cost solar paraboloidal dish steam generating system,” Energy Convers. Manag., vol. 41, no. 7, pp. 713–726, 2000.
[31] D. T. Nelson, D. L. Evans, and R. K. Bansal, “Linear Fresnel lens concentrators,” Sol. Energy, vol. 17, no. 5, pp. 285–289, Nov. 1975.
[32] G. Wang, Z. Chen, P. Hu, and X. Cheng, “Design and optical analysis of the band-focus Fresnel lens solar concentrator,” Appl. Therm. Eng., vol. 102, pp. 695–700, Jun. 2016.
[33] S. R. Kurtz, “Opportunities and challenges for development of a mature concentrating photovoltaic power industry,” 2012.
[34] M. Lin, K. Sumathy, Y. J. Dai, and X. K. Zhao, “Performance investigation on a linear Fresnel lens solar collector using cavity receiver,” Sol. Energy, vol. 107, pp. 50–62, Sep. 2014.
[35] H. Zhai, Y. J. Dai, J. Y. Wu, R. Z. Wang, and L. Y. Zhang, “Experimental investigation and analysis on a concentrating solar collector using linear Fresnel lens,” Energy Convers. Manag., vol. 51, no. 1, pp. 48–55, Jan. 2010.
[36] I. Soriga and C. Neaga, “Thermal analysis of a linear Fresnel lens solar collector with black body cavity receiver,” UPB Sci. Bull. Ser. D Mech. Eng., vol. 74, no. 4, pp. 105–116, 2012.
[37] K. E. J. Al-Jumaily and M. K. A. Al-Kaysi, “The study of the performance and efficiency of flat linear Fresnel lens collector with sun tracking system in Iraq,” Renew. Energy, vol. 14, no. 1–4, pp. 41–48, May 1998.
[38] F. Franc, V. Jirka, M. Malý, and B. Nábělek, “Concentrating collectors with flat linear fresnel lenses,” Sol. Wind Technol., vol. 3, no. 2, pp. 77–84, Jan. 1986.
[39] R. Leutz, A. Suzuki, A. Akisawa, and T. Kashiwagi, “Design of a nonimaging Fresnel lens for solar concentrators,” Sol. Energy, vol. 65, no. 6, pp. 379–387, Apr. 1999.
[40] R. Leutz, A. Suzuki, A. Akisawa, and T. Kashiwagi, “Shaped nonimaging Fresnel lenses,” J. Opt. A Pure Appl. Opt., vol. 2, no. 2, pp. 112–116, Mar. 2000.
[41] R. Leutz, A. Suzuki, A. Akisawa, and T. Kashiwagi, “Nonimaging Fresnel Lenses of Low and Medium Concentration for Cost-Effective Photovoltaic Systems,” in World Renewable Energy Congress VI, Elsevier, 2000, pp. 832–835.
[42] V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, S. V. Sorokina, and N. A. Sadchikov, “Solar Thermophotovoltaic Converters Based on Tungsten Emitters,” J. Sol. Energy Eng., vol. 129, no. 3, pp. 298–303, 2007.
[43] V. M. Andreev, A. S. Vlasov, V. P. Khvostikov, O. A. Khvostikova, P. Y. Gazaryan, N. A. Sadchikov, and V. D. Rumyantsev, “Solar Thermophotovoltaic Converter with Fresnel Lens and GaSb Cells,” in 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, 2006, vol. 1, pp. 644–647.
[44] W. Xie, Y. Dai, and R. Wang, “Numerical and experimental analysis of a point focus solar collector using high concentration imaging PMMA Fresnel lens,” Energy Convers. Manag., vol. 52, no. 6, pp. 2417–2426, Jun. 2011.
[45] W. Xie, Y. Dai, and R. Wang, “Theoretical and experimental analysis on efficiency factors and heat removal factors of Fresnel lens solar collector using different cavity receivers,” Sol. Energy, vol. 86, no. 9, pp. 2458–2471, Sep. 2012.
[46] M. S. Salem, M. Tawfik, and A. Hamed, “Analysis and Performance of Solar Concentrating-Tracking System,” in 7th General International Engineering Conference, 2010.
[47] M. M. Tawfik and M. S. Salem, “Key parameters affecting concentration ratio of a solar concentrator based on lens-lens beam generator configuration,” in 43rd ASES National Solar Conference 2014, SOLAR 2014, 2014, vol. 1.
[48] M. Watanabe and S. K. Nayar, “Telecentric Optics for Focus Analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 12, pp. 1360–1365, 1997.
[49] N. Enteria and A. Akbarzadeh, Solar Energy Sciences and Engineering Applications. Leiden, The Netherlands: CRC Press, 2013.
[50] S. Bäumer, Handbook of Plastic Optics, 2nd Ed. Wiley VCH, 2010.
[51] D. C. Miller and S. R. Kurtz, “Durability of Fresnel lenses: A review specific to the concentrating photovoltaic application,” Sol. Energy Mater. Sol. Cells, vol. 95, no. 8, pp. 2037–2068, Aug. 2011.
[52] P. Rai-Choudhury, Handbook of Microlithography, Micromachining, and Microfabrication, Volume 2: Micromachining and Microfabrication. Washington D.C., USA: SPIE, 1997.
[53] H. Goto, S. Wakabayashi, M. Ikeda, M. Sakata, and K. Imanaka, “Micro focusing optical device using piezoelectric thin film actuator,” in Proceedings of SPIE - Micro-Optics/Micromechanics and Laser Scanning and Shaping, 1995, vol. 2383, no. 8, pp. 136–143.
[54] S. Valette, “Micro-optics, a key technology in the race to microsystems,” J. Micromechanics Microengineering, vol. 5, no. 2, pp. 74–76, 1995.
[55] V. N. Mahajan, “Ray Spot Diagrams,” in Aberration Theory Made Simple, Bellingham, WA, USA: SPIE, 1991, pp. 56–65.
[56] W. J. Smith, “Aberrations,” in Modern optical engineering : the design of optical systems, 3rd Ed., New York, USA: McGraw Hill, 2000, pp. 61–90.
[57] F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, “Aberration Theory,” in Introduction to Optics, 3rd Ed., Pearson Prentice Hall, 2013.
[58] M. Katz, Introduction to Geometrical Optics, 1st Ed. New Jersey, USA: World Scientific Publishing Company, 2002.
[59] T.-M. Wu, “Computer-aided Deflection and Slope Analyses of Beams,” J. Appl. Sci., vol. 6, no. 2, pp. 333–339, 2006.
[60] E. H. Thall, “Geometrical Optics,” in Duane’s Ophthalmology, 2006 Ed., Lippincott Williams and Wilkins, 2005.
[61] K. R. Spring and M. W. Davidson, “Microscope Optical Components Introduction,” 2012. (Online). Available: http://www.olympusmicro.com/primer/anatomy/components.html. (Accessed: 01-Nov-2016).
[62] A. F. Ergenc, A Novel Method for ICSI: Rotationally Oscillating Drill: Design, Control and Monitoring. VDM Verlag, 2009.
[63] Y. Yao, Y. Hu, S. Gao, G. Yang, and J. Du, “A multipurpose dual-axis solar tracker with two tracking strategies,” Renew. Energy, vol. 72, pp. 88–98, Dec. 2014.
[64] S. J. Oh, Y. J. Lee, K. Chen, Y. M. Kim, S. H. Lim, and W. Chun, “Development of an embedded solar tracker for the enhancement of solar energy utilization,” Int. J. Energy Res., vol. 36, no. 2, pp. 249–258, 2012.
[65] F. Duarte, P. D. Gaspar, and L. C. Gonçalves, “Two axis solar tracker based on solar maps , controlled by a low-power microcontroller,” Energy Power Eng., vol. 5, no. 7, pp. 671–676, 2011.
[66] C.-Y. Lee, P.-C. Chou, C.-M. Chiang, and C.-F. Lin, “Sun tracking systems: a review,” Sensors (Basel), vol. 9, no. 5, pp. 3875–90, 2009.
[67] J. M. Moreno, P. H. Magalhães, and R. Cervantes, “Inspira’s CPV Sun Tracking,” in Concentrator Photovoltaics, Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 221–251.
[68] H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A review of principle and sun-tracking methods for maximizing solar systems output,” Renew. Sustain. Energy Rev., vol. 13, no. 8, pp. 1800–1818, Oct. 2009.
[69] F. Sallaberry, R. Pujol-Nadal, M. Larcher, and M. H. Rittmann-Frank, “Direct tracking error characterization on a single-axis solar tracker,” Energy Convers. Manag., vol. 105, pp. 1281–1290, 2015.
[70] M. C. Bhatnagar, J. C. Joshi, and A. K. Mukerjee, “Determination of tracking error in an automatic sun tracking system,” Sol. Wind Technol., vol. 4, no. 3, pp. 399–403, 1987.
[71] H. Fathabadi, “Novel high efficient offline sensorless dual-axis solar tracker for using in photovoltaic systems and solar concentrators,” Renew. Energy, vol. 95, pp. 485–494, Sep. 2016.
[72] R. Conant, Micromachined Mirrors, 1st Ed. New York, USA: Springer Science+Business Media, 2003.
[73] J. A. Ogilvy, Theory of Wave Scattering From Random Rough Surfaces. Taylor & Francis Ltd, 1991.
[74] U. Persson, “In-process measurement of surface roughness using light scattering,” Wear, vol. 215, no. 1–2, pp. 54–58, Mar. 1998.
[75] Layertec, “How to specify substrates,” 2011. (Online). Available: https://www.layertec.de/en/capabilities/substrates. (Accessed: 06-Nov-2016).
[76] Semrock, IDEX Health & Science, and Intelligent Solutions for Life, “Practical Flatness: Tech Note,” New York, USA, 2016.
[77] J. E. Harvey, S. Schröder, N. Choi, and A. Duparré, “Total integrated scatter from surfaces with arbitrary roughness, correlation widths, and incident angles,” Opt. Eng., vol. 51, no. 1, p. 13402, Feb. 2012.
[78] K. H. Guenther, P. G. Wierer, and J. M. Bennett, “Surface roughness measurements of low-scatter mirrors and roughness standards,” Appl. Opt., vol. 23, no. 21, p. 3820, 1984.
[79] H. E. Bennett and J. O. Porteus, “Relation Between Surface Roughness and Specular Reflectance at Normal Incidence,” J. Opt. Soc. Am., vol. 51, no. 2, p. 123, Feb. 1961.
[80] H. Davies, “The reflection of electromagnetic waves from a rough surface,” Proc. IEE - Part IV Inst. Monogr., vol. 101, no. 7, pp. 209–214, Aug. 1954.
[81] Engineer’s Edge, “Surface Roughness Conversion Chart Tables,” 2017. (Online). Available: http://www.engineersedge.com/manufacturing/surface-roughness-conversion.htm. (Accessed: 02-Mar-2017).