Search results for: High strength Concrete Rapid chloride permeability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7605

Search results for: High strength Concrete Rapid chloride permeability

6825 Earth Grid Safety Consideration: Civil Upgrade Works for an Energised Substation

Authors: M. Nassereddine, A. Hellany, M. Nagrial, J. Rizk

Abstract:

The demand on High voltage (HV) infrastructures is growing due to the corresponding growth in industries and population. Many areas are being developed and therefore require additional electrical power to comply with the demand. Substation upgrade is one of the rapid solutions to ensure the continuous supply of power to customers. This upgrade requires civil modifications to structures and fences. The civil work requires excavation and steel works that may create unsafe touch conditions. This paper presents a brief theoretical overview of the touch voltage inside and around substations and uses CDEGS software to simulate a case study.

Keywords: Earth safety, High Voltage, AC interference, Earthing Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2195
6824 Effect of T6 and Re-Aging Heat Treatment on Mechanical Properties of 7055 Aluminum Alloy

Authors: M. Esmailian, M. Shakouri, A. Mottahedi, S. G. Shabestari

Abstract:

Heat treatable aluminum alloys such as 7075 and 7055, because of high strength and low density, are used widely in aircraft industry. For best mechanical properties, T6 heat treatment has recommended for this regards, but this temper treatment is sensitive to corrosion induced and Stress Corrosion Cracking (SCC) damage. For improving this property, the over-aging treatment (T7) applies to this alloy, but it decreases the mechanical properties up to 30 percent. Hence, to increase the mechanical properties, without any remarkable decrease in SCC resistant, Retrogression and Re-Aging (RRA) heat treatment is used. This treatment performs in a relatively short time. In this paper, the RRA heat treatment was applied to 7055 aluminum alloy and then effect of RRA time on the mechanical properties of 7055 has been investigated. The results show that the 40-minute time is suitable time for retrogression of 7055 aluminum alloy and ultimate strength increases up to 625MPa.

Keywords: 7055 Aluminum alloy, Mechanical properties, SCC resistance, Heat Treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3039
6823 Anaerobic Treatment of Produced Water

Authors: F. C. Khong, M. H. Isa, S. R. M. Kutty, S. A. Farhan

Abstract:

An experimental study of anaerobic treatment was performed by hybrid upflow anaerobic sludge blanket (HUASB) reactor to treat produced water (PW) of an onshore crude oil terminal (COD: 1597 mg/L, NH3-N: 14.7 mg/L, phenol: 13.8 mg/L, BOD5: 862 mg/L, sodium: 6240 mg/L and chloride 9530 mg/L). The produced water with high salinity and other toxic substances will inhibit the methanogens performance if there is no adaptation on biomass before anaerobic digestion. COD removal from produced water was investigated at five different dilutions of produced water and tap water (TW) without any nutrient addition and pre-treatment. The dilution ratios were 1PW:4TW, 2PW:3TW, 3PW:2TW, 4PW:1TW and 5PW:0TW. The reactor was evaluated at mesophilic operating condition (35 ± 2 °C) at 5 days of HRT for 250 days continuous feed. The average COD removals for 1PW:4TW, 2PW:3TW, 3PW:2TW, 4PW:1TW and 5PW:0TW were found to be approximately 76.1%, 73.8%, 70.3%, 46.3% and 61.82% respectively, with final average effluent COD of 123.7 mg/L, 240 mg/L, 294 mg/L, 589 mg/L and 738 mg/L, respectively.

Keywords: Anaerobic, fixed film, hybrid UASB, produced water, inhibitor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481
6822 Fabrication of Tissue Engineering Scaffolds Using Rapid Prototyping Techniques

Authors: Osama A. Abdelaal, Saied M. Darwish

Abstract:

Rapid prototyping (RP) techniques are a group of advanced manufacturing processes that can produce custom made objects directly from computer data such as Computer Aided Design (CAD), Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) data. Using RP fabrication techniques, constructs with controllable and complex internal architecture with appropriate mechanical properties can be achieved. One of the attractive and promising utilization of RP techniques is related to tissue engineering (TE) scaffold fabrication. Tissue engineering scaffold is a 3D construction that acts as a template for tissue regeneration. Although several conventional techniques such as solvent casting and gas forming are utilized in scaffold fabrication; these processes show poor interconnectivity and uncontrollable porosity of the produced scaffolds. So, RP techniques become the best alternative fabrication methods of TE scaffolds. This paper reviews the current state of the art in the area of tissue engineering scaffolds fabrication using advanced RP processes, as well as the current limitations and future trends in scaffold fabrication RP techniques.

Keywords: Biomanufacturing, Rapid prototyping, Solid FreeForm Fabrication, Scaffold Fabrication, Tissue Engineering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5258
6821 A Statistical Model for the Geotechnical Parameters of Cement-Stabilised Hightown’s Soft Soil: A Case Stufy of Liverpool, UK

Authors: Hassnen M. Jafer, Khalid S. Hashim, W. Atherton, Ali W. Alattabi

Abstract:

This study investigates the effect of two important parameters (length of curing period and percentage of the added binder) on the strength of soil treated with OPC. An intermediate plasticity silty clayey soil with medium organic content was used in this study. This soft soil was treated with different percentages of a commercially available cement type 32.5-N. laboratory experiments were carried out on the soil treated with 0, 1.5, 3, 6, 9, and 12% OPC by the dry weight to determine the effect of OPC on the compaction parameters, consistency limits, and the compressive strength. Unconfined compressive strength (UCS) test was carried out on cement-treated specimens after exposing them to different curing periods (1, 3, 7, 14, 28, and 90 days). The results of UCS test were used to develop a non-linear multi-regression model to find the relationship between the predicted and the measured maximum compressive strength of the treated soil (qu). The results indicated that there was a significant improvement in the index of plasticity (IP) by treating with OPC; IP was decreased from 20.2 to 14.1 by using 12% of OPC; this percentage was enough to increase the UCS of the treated soil up to 1362 kPa after 90 days of curing. With respect to the statistical model of the predicted qu, the results showed that the regression coefficients (R2) was equal to 0.8534 which indicates a good reproducibility for the constructed model.

Keywords: Cement admixtures, soft soil stabilisation, geotechnical parameters, unconfined compressive strength, multi-regression model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
6820 Acid Attack on Cement Mortars Modified with Rubber Aggregates and EVA Polymer Binder

Authors: Konstantinos Sotiriadis, Michael Tupý, Nikol Žižková, Vít Petránek

Abstract:

The acid attack on cement mortars modified with rubber aggregates and EVA polymer binder was studied. Mortar specimens were prepared using a type CEM I 42.5 Portland cement and siliceous sand, as well as by substituting 25% of sand with shredded used automobile tires, and by adding EVA polymer in two percentages (5% and 10% of cement mass). Some specimens were only air cured, at laboratory conditions, and their compressive strength and water absorption were determined. The rest specimens were stored in acid solutions (HCl, H2SO4, HNO3) after 28 days of initial curing, and stored at laboratory temperature. Compressive strength tests, mass measurements and visual inspection took place for 28 days. Compressive strength and water absorption of the air-cured specimens were significantly decreased when rubber aggregates are used. The addition of EVA polymer further reduced water absorption, while had no important impact on strength. Compressive strength values were affected in a greater extent by hydrochloric acid solution, followed by sulfate and nitric acid solutions. The addition of EVA polymer decreased compressive strength loss for the specimens with rubber aggregates stored in hydrochloric and nitric acid solutions. The specimens without polymer binder showed similar mass loss, which was higher in sulfate acid solution followed by hydrochloric and nitric acid solutions. The use of EVA polymer delayed mass loss, while its content did not affect it significantly.

Keywords: Acid attack, mortar, EVA polymer, rubber aggregates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
6819 State-Of-The Art Practices in Bridge Inspection

Authors: Salam R. Yaghi, Saleh Abu Dabous

Abstract:

Government reports and published research have flagged and brought to public attention the deteriorating condition of a large percentage of bridges in Canada and the United States. With the increasing number of deteriorated bridges in the US, Canada, and around the globe, condition assessment techniques of concrete bridges are evolving. Investigation for bridges’ defects such as cracks, spalls, and delamination and their level of severity are the main objectives of condition assessment. Inspection and rehabilitation programs are being implemented to monitor and maintain deteriorated bridge infrastructure. This paper highlights the state-of-the art of current practices being performed for concrete bridge inspection. The information is gathered from the literature and through a distributed questionnaire. The current practices in concrete bridge inspection rely on the use of hummer sounding and chain dragging tests. Non-Destructive Testing (NDT) techniques are not being utilized fully in the process. Nonetheless, they are being partially utilized by the recommendation of the bridge inspector after conducting visual inspection. Lanes are usually closed during the performance of visual inspection and bridge inspection in general.

Keywords: Bridge Inspection, Condition Assessment, questionnaire, Non-Destructive Testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978
6818 Producing New Composite Materials by Using Tragacanth and Waste Ash

Authors: Yasar Bicer, Serif Yilmaz

Abstract:

In present study, two kinds of thermal power plant ashes; one the fly ash and the other waste ash are mixed with adhesive tragacanth and cement to produce new composite materials. 48 new samples are produced by varying the percentages of the fly ash, waste ash, cement and tragacanth. The new samples are subjected to some tests to find out their properties such as thermal conductivity, compressive strength, tensile strength and sucking capability of water. It is found that; the thermal conductivity decreases with increasing amount of tragacanth in the mixture. The compressive, tensile strength increases when the rate of tragacanth is up to 1%, whilst as the amount of tragacanth increases up to 1.5%, the compressive, tensile strength decreases slightly. The rate of water absorption of samples was more than 30%. From this result, it is concluded that these materials can not be used as external plaster or internal plaster material that faces to water. They can be used in internal plaster unless touching water and they can be used as cover plaster under roof and riprap material in sandwich panels. It is also found that, these materials can be cut with saw, drilled with screw and painted with any kind of paint.

Keywords: Fly ash, tragacanth, cement, composite material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
6817 Design of a Grid for Preparation of high Density Granules from Dispersed Materials

Authors: Bogdan Il. Bogdanov, Dimitar R.Rusev, Yancho H. Hristov, Irena G. Markovska, Dimitar P.Georgiev

Abstract:

New design of a grid for preparation of high density granules with enhanced mechanical strength by granulation of dispersed materials is suggested. A method for hydrodynamic dimensioning of the grid depending on granulation conditions, hydrodynamic regime of the operation, dispersity and physicochemical characteristics of the materials to be granulated was suggested. The aim of the grid design is to solve the problems arising by the granulation of disperse materials.

Keywords: fluidized bed reactor, granulation, porous silicatematerials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1386
6816 Performance Tests of Wood Glues on Different Wood Species Used in Wood Workshops: Morogoro Tanzania

Authors: Japhet N. Mwambusi

Abstract:

High tropical forests deforestation for solid wood furniture industry is among of climate change contributing agents. This pressure indirectly is caused by furniture joints failure due to poor gluing technology based on improper use of different glues to different wood species which lead to low quality and weak wood-glue joints. This study was carried in order to run performance tests of wood glues on different wood species used in wood workshops: Morogoro Tanzania whereby three popular wood species of C. lusitanica, T. glandis and E. maidenii were tested against five glues of Woodfix, Bullbond, Ponal, Fevicol and Coral found in the market. The findings were necessary on developing a guideline for proper glue selection for a particular wood species joining. Random sampling was employed to interview carpenters while conducting a survey on the background of carpenters like their education level and to determine factors that influence their glues choice. Monsanto Tensiometer was used to determine bonding strength of identified wood glues to different wood species in use under British Standard of testing wood shear strength (BS EN 205) procedures. Data obtained from interviewing carpenters were analyzed through Statistical Package of Social Science software (SPSS) to allow the comparison of different data while laboratory data were compiled, related and compared by the use of MS Excel worksheet software as well as Analysis of Variance (ANOVA). Results revealed that among all five wood glues tested in the laboratory to three different wood species, Coral performed much better with the average shear strength 4.18 N/mm2, 3.23 N/mm2 and 5.42 N/mm2 for Cypress, Teak and Eucalyptus respectively. This displays that for a strong joint to be formed to all tree wood species for soft wood and hard wood, Coral has a first priority in use. The developed table of guideline from this research can be useful to carpenters on proper glue selection to a particular wood species so as to meet glue-bond strength. This will secure furniture market as well as reduce pressure to the forests for furniture production because of the strong existing furniture due to their strong joints. Indeed, this can be a good strategy on reducing climate change speed in tropics which result from high deforestation of trees for furniture production.

Keywords: Climate change, deforestation, gluing technology, joint failure, wood-glue, wood species.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2403
6815 Operation Planning of Concrete Box Girder Bridge by 4D CAD Visualization Techniques

Authors: Mohammad Rohani, Gholamali Shafabakhsh, Abdolhosein Haddad, Ehsan Asnaashari

Abstract:

Visual simulation has emerged as a key planning tool in built environment because it enables architects, engineers and project managers to visualize construction process evolution before the project actual commences. This provides an efficient technology for reducing time and cost through planning and controlling resources, machines and materials. With the development of infrastructure projects and the massive civil constructions such as bridges, urban tunnels and highways as well as sensitivity of their construction operations, it is very necessary to apply proper planning methods. Implementation of visual techniques into management of construction projects can provide a fundamental foundation for projects with massive activities and duplicate items. So, the purpose of this paper is to develop visual simulation management techniques for infrastructure projects such as highways bridges by the use of Four-Dimensional Computer-Aided design Models. This project simulates operational assembly-line for Box-Girder Concrete Bridges which it would be able to optimize the sequence and interaction of project activities and on the other hand, it would minimize any unintended conflicts prior to project start. In this paper, after introducing the various planning methods by building information model and concrete bridges in highways, an executive case study is demonstrated and then a visual technique (4D CAD) will be applied for the case. In the final step, the user feedback for interacting by this system evaluated according to six criteria.

Keywords: 4D application area, Box-Girder concrete bridges, CAD model, visual planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
6814 Process Parameters Optimization for Pulsed TIG Welding of 70/30 Cu-Ni Alloy Welds Using Taguchi Technique

Authors: M. P. Chakravarthy, N. Ramanaiah, B. S. K.Sundara Siva Rao

Abstract:

Taguchi approach was applied to determine the most influential control factors which will yield better tensile strength of the joints of pulse TIG welded 70/30 Cu-Ni alloy. In order to evaluate the effect of process parameters such as pulse frequency, peak current, base current and welding speed on tensile strength of Pulsed current TIG welded 70/30 Cu-Ni alloy of 5 mm thickness, Taguchi parametric design and optimization approach was used. Through the Taguchi parametric design approach, the optimum levels of process parameters were determined at 95% confidence level. The results indicate that the Pulse frequency, peak current, welding speed and base current are the significant parameters in deciding the tensile strength of the joint. The predicted optimal values of tensile strength of Pulsed current Gas tungsten arc welding (PC GTAW) of 70/30 Cu-Ni alloy welds are 368.8MPa.

Keywords: 70/30 Cu-Ni alloy, pulsed current GTAW, mechanical properties, Taguchi technique, analysis of variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3129
6813 Curing Time Effect on Behavior of Cement Treated Marine Clay

Authors: H. W. Xiao, F. H. Lee

Abstract:

Cement stabilization has been widely used for improving the strength and stiffness of soft clayey soils. Cement treated soil specimens used to investigate the stress-strain behaviour in the laboratory study are usually cured for 7 days. This paper examines the effects of curing time on the strength and stress strain behaviour of cement treated marine clay under triaxial loading condition. Laboratory-prepared cement treated Singapore marine clay with different mix proportion S-C-W (soil solid-cement solid-water) and curing time (7 days to 180 days) was investigated through conducting unconfined compressive strength test and triaxial test. The results show that the curing time has a significant effect on the unconfined compressive strength u q , isotropic compression behaviour and stress strain behaviour. Although the primary yield loci of the cement treated soil specimens with the same mix proportion expand with curing time, they are very narrowly banded and have nearly the same shape after being normalized by isotropic compression primary stress ' py p . The isotropic compression primary yield stress ' py p was shown to be linearly related to unconfined compressive strength u q for specimens with different curing time and mix proportion. The effect of curing time on the hardening behaviour will diminish with consolidation stress higher than isotropic compression primary yield stress but its damping rate is dependent on the cement content.

Keywords: Cement treated soil, curing time effect, hardening behaviour, isotropic compression primary yield stress, unconfined compressive strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3887
6812 The Effect of Geometrical Ratio and Nanoparticle Reinforcement on the Properties of Al-Based Nanocomposite Hollow Sphere Structures

Authors: M. Amirjan

Abstract:

In the present study, the properties of Al-Al2O3 nanocomposite hollow sphere structures were investigated. For this reason, the Al-based nanocomposite hollow spheres with different amounts of nano-alumina reinforcement (0-10wt %) and different ratio of thickness to diameter (t/D: 0.06-0.3) were prepared via a powder metallurgy method. Then, the effect of mentioned parameters was studied on physical and quasi static mechanical properties of their related prepared structures (open/closed cell) such as density, hardness, strength, and energy absorption. It was found that, as the t/D ratio increases the relative density, compressive strength and energy absorption increase. The highest values of strength and energy absorption were obtained from the specimen with 5 wt. % of nanoparticle reinforcement, t/D of 0.3 (t=1 mm, D=400μm) as 22.88 MPa and 13.24 MJ/m3, respectively. The moderate specific strength of prepared composites in the present study showed the good consistency with the properties of others low carbon steel composite with similar structure.

Keywords: Hollow sphere structure foam, nanocomposite, t/D (thickness, diameter), powder metallurgy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2380
6811 Effect of Vibration Amplitude and Welding Force on Weld Strength of Ultrasonic Metal Welding

Authors: Ziad. Sh. Al Sarraf

Abstract:

Ultrasonic metal welding has been the subject of ongoing research and development, most recently concentrating on metal joining in miniature devices, for example to allow solder-free wire bonding. As well as at the small scale, there are also opportunities to research the joining of thicker sheet metals and to widen the range of similar and dissimilar materials that can be successfully joined using this technology. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal spot welding device. The ultrasonic metal spot welding horn is modelled using finite element analysis (FEA) and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered effectively to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. The results show how the weld strength is particularly sensitive to the combination of clamping force and ultrasonic vibration amplitude of the welding tip, but there are optimal combinations of these and also limits that must be clearly identified.

Keywords: Ultrasonic welding, vibration amplitude, welding force, weld strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2170
6810 Rapid Processing Techniques Applied to Sintered Nickel Battery Technologies for Utility Scale Applications

Authors: J. D. Marinaccio, I. Mabbett, C. Glover, D. Worsley

Abstract:

Through use of novel modern/rapid processing techniques such as screen printing and Near-Infrared (NIR) radiative curing, process time for the sintering of sintered nickel plaques, applicable to alkaline nickel battery chemistries, has been drastically reduced from in excess of 200 minutes with conventional convection methods to below 2 minutes using NIR curing methods. Steps have also been taken to remove the need for forming gas as a reducing agent by implementing carbon as an in-situ reducing agent, within the ink formulation.

Keywords: Batteries, energy, iron, nickel, storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2327
6809 The Effects of a Circuit Training Program on Muscle Strength, Agility, Anaerobic Performance and Cardiovascular Endurance

Authors: Wirat Sonchan, Pratoom Moungmee, Anek Sootmongkol

Abstract:

This study aimed to examine the effects of a circuit training program on muscle strength, agility, anaerobic performance and cardiovascular endurance. The study involved 24 freshmen (age 18.87+0.68 yr.) male students of the Faculty of Sport Science, Burapha University. They sample study were randomly divided into two groups: Circuit Training group (CT; n=12) and a Control group (C; n=12). Baseline data on height, weight, muscle strength (hand grip dynamometer and leg strength dynamometer), agility (agility T-Test), and anaerobic performance (Running-based Anaerobic Sprint Test) and cardiovascular endurance (20 m Endurance Shuttle Run Test) were collected. The circuit training program included one circuit of eight stations of 30/60 seconds of work/rest interval with two cycles in Week 1-4, and 60/90 seconds of work/rest interval with three cycles in Week 5-8, performed three times per week. Data were analyzed using paired t-tests and independent sample t-test. Statistically significance level was set at 0.05. The results show that after 8 weeks of a training program, muscle strength, agility, anaerobic capacity and cardiovascular endurance increased significantly in the CT Group (p < 0.05), while significant increase was not observed in the C Group (p < 0.05). The results of this study suggest that the circuit training program improved muscle strength, agility, anaerobic capacity and cardiovascular endurance of the study subjects. This program may be used as a guideline for selecting a set of exercise to improve physical fitness.

Keywords: Cardiovascular endurance, circuit training, physical fitness, anaerobic performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2475
6808 Effect of Nano-SiO2 Solution on the Strength Characteristics of Kaolinite

Authors: Reza Ziaie Moayed, Hamidreza Rahmani

Abstract:

Today, with developments in science and technology, there is an excessive potential for the use of nanomaterials in various fields of geotechnical project such as soil stabilization. This study investigates the effect of Nano-SiO2 solution on the unconfined compression strength and Young's elastic modulus of Kaolinite. For this purpose, nano-SiO2 was mixed with kaolinite in five different contents: 1, 2, 3, 4 and 5% by weight of the dry soil and a series of the unconfined compression test with curing time of one-day was selected as laboratory test. Analyses of the tests results show that stabilization of kaolinite with Nano-SiO2 solution can improve effectively the unconfined compression strength of modified soil up to 1.43 times compared to  the pure soil.

Keywords: Kaolinite, nano-SiO2, stabilization, unconfined compression test, Young's modulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469
6807 A Robust Wavelet-Based Watermarking Algorithm Using Edge Detection

Authors: John N. Ellinas

Abstract:

In this paper, a robust watermarking algorithm using the wavelet transform and edge detection is presented. The efficiency of an image watermarking technique depends on the preservation of visually significant information. This is attained by embedding the watermark transparently with the maximum possible strength. The watermark embedding process is carried over the subband coefficients that lie on edges, where distortions are less noticeable, with a subband level dependent strength. Also, the watermark is embedded to selected coefficients around edges, using a different scale factor for watermark strength, that are captured by a morphological dilation operation. The experimental evaluation of the proposed method shows very good results in terms of robustness and transparency to various attacks such as median filtering, Gaussian noise, JPEG compression and geometrical transformations.

Keywords: Watermarking, wavelet transform, edge detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329
6806 Experimental Determination of Shear Strength Properties of Lightweight Expanded Clay Aggregates Using Direct Shear and Triaxial Tests

Authors: Mahsa Shafaei Bajestani, Mahmoud Yazdani, Aliakbar Golshani

Abstract:

Artificial lightweight aggregates have a wide range of applications in industry and engineering. Nowadays, the usage of this material in geotechnical activities, especially as backfill in retaining walls has been growing due to the specific characteristics which make it a competent alternative to the conventional geotechnical materials. In practice, a material with lower weight but higher shear strength parameters would be ideal as backfill behind retaining walls because of the important roles that these parameters play in decreasing the overall active lateral earth pressure. In this study, two types of Light Expanded Clay Aggregates (LECA) produced in the Leca factory are investigated. LECA is made in a rotary kiln by heating natural clay at different temperatures up to 1200 °C making quasi-spherical aggregates with different sizes ranged from 0 to 25 mm. The loose bulk density of these aggregates is between 300 and 700 kN/m3. The purpose of this research is to determine the stress-strain behavior, shear strength parameters, and the energy absorption of LECA materials. Direct shear tests were conducted at five normal stresses of 25, 50, 75, 100, and 200 kPa. In addition, conventional triaxial compression tests were operated at confining pressures of 50, 100, and 200 kPa to examine stress-strain behavior. The experimental results show a high internal angle of friction and even a considerable amount of nominal cohesion despite the granular structure of LECA. These desirable properties along with the intrinsic low density of these aggregates make LECA as a very proper material in geotechnical applications. Furthermore, the results demonstrate that lightweight aggregates may have high energy absorption that is excellent alternative material in seismic isolations.

Keywords: Expanded clay, direct shear test, triaxial test, shear properties, energy absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1236
6805 Statistical Analysis of Stresses in Rigid Pavement

Authors: Aleš Florian, Lenka Ševelová, Rudolf Hela

Abstract:

Complex statistical analysis of stresses in concrete slab of the real type of rigid pavement is performed. The computational model of the pavement is designed as a spatial (3D) model, is based on a nonlinear variant of the finite element method that respects the structural nonlinearity, enables to model different arrangement of joints, and the entire model can be loaded by the thermal load. Interaction of adjacent slabs in joints and contact of the slab and the subsequent layer are modeled with help of special contact elements. Four concrete slabs separated by transverse and longitudinal joints and the additional subgrade layers and soil to the depth of about 3m are modeled. The thickness of individual layers, physical and mechanical properties of materials, characteristics of joints, and the temperature of the upper and lower surface of slabs are supposed to be random variables. The modern simulation technique Updated Latin Hypercube Sampling with 20 simulations is used for statistical analysis. As results, the estimates of basic statistics of the principal stresses s1 and s3 in 53 points on the upper and lower surface of the slabs are obtained.

Keywords: concrete, FEM, pavement, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
6804 On One Mathematical Model for Filtration of Weakly Compressible Chemical Compound in the Porous Heterogeneous 3D Medium. Part I: Model Construction with the Aid of the Ollendorff Approach

Authors: Sharif E. Guseynov, Jekaterina V. Aleksejeva, Janis S. Rimshans

Abstract:

A filtering problem of almost incompressible liquid chemical compound in the porous inhomogeneous 3D domain is studied. In this work general approaches to the solution of twodimensional filtering problems in ananisotropic, inhomogeneous and multilayered medium are developed, and on the basis of the obtained results mathematical models are constructed (according to Ollendorff method) for studying the certain engineering and technical problem of filtering the almost incompressible liquid chemical compound in the porous inhomogeneous 3D domain. For some of the formulated mathematical problems with additional requirements for the structure of the porous inhomogeneous medium, namely, its isotropy, spatial periodicity of its permeability coefficient, solution algorithms are proposed. Continuation of the current work titled ”On one mathematical model for filtration of weakly compressible chemical compound in the porous heterogeneous 3D medium. Part II: Determination of the reference directions of anisotropy and permeabilities on these directions” will be prepared in the shortest terms by the authors.

Keywords: Porous media, filtering, permeability, elliptic PDE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
6803 Effect of Bentonite on the Properties of Liquid Insulating Oil

Authors: Loai Nasrat, Mervat S. Hassan

Abstract:

Bentonitic material from South Aswan, Egypt was evaluated in terms of mineral-ogy and chemical composition as bleaching clay in refining of transformer oil before and after acid activation and thermal treatment followed by acid leaching using HCl and H2SO4 for different contact times. Structural modification and refining power of bento-nite were investigated during modification by means of X-ray diffraction and infrared spectroscopy. The results revealed that the activated bentonite could be used for refining of transformer oil. The oil parameters such as; dielectric strength, viscosity and flash point had been improved. The dielectric breakdown strength of used oil increased from 29 kV for used oil treated with unactivated bentonite to 74 kV after treatment with activated bentonite. Kinematic Viscosity changed from 19 to 11 mm2 /s after treatment with activated bentonite. However, flash point achieved 149 ºC.

Keywords: Dielectric strength, unactivated bentonite, X-ray diffraction, SEM image

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2681
6802 An Examination of Backing Effects on Ratings for Masonry Arch Bridges

Authors: Muhammad E. Rahman, Paul J. Fanning

Abstract:

Many single or multispan arch bridges are strengthened with the addition of some kind of structural support between adjacent arches of multispan or beside the arch barrel of a single span to increase the strength of the overall structure. It was traditionally formed by either placing loose rubble masonry blocks between the arches and beside the arches or using mortar or concrete to construct a more substantial structural bond between the spans. On the other hand backing materials are present in some existing bridges. Existing arch assessment procedures generally ignore the effects of backing materials. In this paper an investigation of the effects of backing on ratings for masonry arch bridges is carried out. It is observed that increasing the overall lateral stability of the arch system through the inclusion of structural backing results in an enhanced failure load by reducing the likelihood of any tension occurring at the top of the arch.

Keywords: Arch, Backing, Bridge, Masonry

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2220
6801 The Current Practices of Analysis of Reinforced Concrete Panels Subjected to Blast Loading

Authors: Palak J. Shukla, Atul K. Desai, Chentankumar D. Modhera

Abstract:

For any country in the world, it has become a priority to protect the critical infrastructure from looming risks of terrorism. In any infrastructure system, the structural elements like lower floors, exterior columns, walls etc. are key elements which are the most susceptible to damage due to blast load. The present study revisits the state of art review of the design and analysis of reinforced concrete panels subjected to blast loading. Various aspects in association with blast loading on structure, i.e. estimation of blast load, experimental works carried out previously, the numerical simulation tools, various material models, etc. are considered for exploring the current practices adopted worldwide. Discussion on various parametric studies to investigate the effect of reinforcement ratios, thickness of slab, different charge weight and standoff distance is also made. It was observed that for the simulation of blast load, CONWEP blast function or equivalent numerical equations were successfully employed by many researchers. The study of literature indicates that the researches were carried out using experimental works and numerical simulation using well known generalized finite element methods, i.e. LS-DYNA, ABAQUS, AUTODYN. Many researchers recommended to use concrete damage model to represent concrete and plastic kinematic material model to represent steel under action of blast loads for most of the numerical simulations. Most of the studies reveal that the increase reinforcement ratio, thickness of slab, standoff distance was resulted in better blast resistance performance of reinforced concrete panel. The study summarizes the various research results and appends the present state of knowledge for the structures exposed to blast loading.

Keywords: Blast phenomenon, experimental methods, material models, numerical methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1110
6800 Luminescent Si Nanocrystals Synthesized by Si Ion Implantation and Reactive Pulsed Laser Deposition: The Effects of RTA, Excimer-UV and E-Beam Irradiation

Authors: T. S. Iwayama, T. Hama

Abstract:

Si ion implantation was widely used to synthesize specimens of SiO2 containing supersaturated Si and subsequent high temperature annealing induces the formation of embedded luminescent Si nanocrystals. In this work, the potentialities of excimer UV-light (172 nm, 7.2 eV) irradiation and rapid thermal annealing (RTA) to enhance the photoluminescence and to achieve low temperature formation of Si nanocrystals have been investigated. The Si ions were introduced at acceleration energy of 180 keV to fluence of 7.5 x 1016 ions/cm2. The implanted samples were subsequently irradiated with an excimer-UV lamp. After the process, the samples were rapidly thermal annealed before furnace annealing (FA). Photoluminescence spectra were measured at various stages at the process. We found that the luminescence intensity is strongly enhanced with excimer-UV irradiation and RTA. Moreover, effective visible photoluminescence is found to be observed even after FA at 900 oC, only for specimens treated with excimer-UV lamp and RTA. We also prepared specimens of Si nanocrystals embedded in a SiO2 by reactive pulsed laser deposition (PLD) in an oxygen atmosphere. We will make clear the similarities and differences with the way of preparation.

Keywords: Ion implantation, photoluminescence, pulsed laser deposition, rapid thermal anneal, Si nanocrystals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708
6799 Structural Reliability of Existing Structures: A Case Study

Authors: Z. Sakka, I. Assakkaf, T. Al-Yaqoub, J. Parol

Abstract:

reliability-based methodology for the assessment and evaluation of reinforced concrete (R/C) structural elements of concrete structures is presented herein. The results of the reliability analysis and assessment for R/C structural elements were verified by the results obtained through deterministic methods. The outcomes of the reliability-based analysis were compared against currently adopted safety limits that are incorporated in the reliability indices β’s, according to international standards and codes. The methodology is based on probabilistic analysis using reliability concepts and statistics of the main random variables that are relevant to the subject matter, and for which they are to be used in the performance-function equation(s) associated with the structural elements under study. These methodology techniques can result in reliability index β, which is commonly known as the reliability index or reliability measure value that can be utilized to assess and evaluate the safety, human risk, and functionality of the structural component. Also, these methods can result in revised partial safety factor values for certain target reliability indices that can be used for the purpose of redesigning the R/C elements of the building and in which they could assist in considering some other remedial actions to improve the safety and functionality of the member.

Keywords: Concrete Structures, FORM, Monte Carlo Simulation, Structural Reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3075
6798 Study of Fly Ash Geopolymer Based Composites with Polyester Waste Addition

Authors: Konstantinos Sotiriadis, Olesia Mikhailova

Abstract:

In the present work, fly ash geopolymer based composites including polyester (PES) waste were studied. Specimens of three compositions were prepared: (a) fly ash geopolymer with 5% PES waste; (b) fly ash geopolymer mortar with 5% PES waste; (c) fly ash geopolymer mortar with 6.25% PES waste. Compressive and bending strength measurements, water absorption test and determination of thermal conductivity coefficient were performed. The results showed that the addition of sand in a mixture of geopolymer with 5% PES content led to higher compressive strength, while it increased water absorption and reduced thermal conductivity coefficient. The increase of PES addition in geopolymer mortars resulted in a more dense structure, indicated by the increase of strength and thermal conductivity and the decrease of water absorption.

Keywords: Fly ash, geopolymers, polyester waste, composites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2474
6797 Comparison of Double Unit Tunnel Form Building before and after Repair and Retrofit under in-Plane Cyclic Loading

Authors: S. A. Anuar, N. H. Hamid, M. H. Hashim, S. M. D. Salleh

Abstract:

This paper present the experimental work of double unit tunnel form building (TFB) subjected to in-plane lateral cyclic loading. A one third scale of 3-storey double unit of TFB is tested until its strength degradation. Then, the TFB is repaired and retrofitted using additional shear wall, steel angle and CFRP sheet. The crack patterns, lateral strength, stiffness, ductility and equivalent viscous damping (EVD) were analyzed and compared before and after repair and retrofit. The result indicates that the lateral strength increases by 22% in pushing and 27% in pulling direction. Moreover, the stiffness and ductility obtained before and after retrofit increase tremendously by 87.87% and 39.66%, respectively. Meanwhile, the energy absorption measured by equivalent viscous damping obtained after retrofit increase by 12.34% in pulling direction. It can be concluded that the proposed retrofit method is capable to increase the lateral strength capacity, stiffness and energy absorption of double unit TFB.

Keywords: Crack pattern, stiffness, ductility, equivalent viscous damping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2362
6796 A New Method for Rapid DNA Extraction from Artemia (Branchiopoda, Crustacea)

Authors: R. Manaffar, R. Maleki, S. Zare, N. Agh, S. Soltanian, B. Sehatnia, P. Sorgeloos, P. Bossier, G. Van Stappen

Abstract:

Artemia is one of the most conspicuous invertebrates associated with aquaculture. It can be considered as a model organism, offering numerous advantages for comprehensive and multidisciplinary studies using morphologic or molecular methods. Since DNA extraction is an important step of any molecular experiment, a new and a rapid method of DNA extraction from adult Artemia was described in this study. Besides, the efficiency of this technique was compared with two widely used alternative techniques, namely Chelex® 100 resin and SDS-chloroform methods. Data analysis revealed that the new method is the easiest and the most cost effective method among the other methods which allows a quick and efficient extraction of DNA from the adult animal.

Keywords: APD, Artemia, DNA extraction, Molecularexperiments

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3172