Luminescent Si Nanocrystals Synthesized by Si Ion Implantation and Reactive Pulsed Laser Deposition: The Effects of RTA, Excimer-UV and E-Beam Irradiation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Luminescent Si Nanocrystals Synthesized by Si Ion Implantation and Reactive Pulsed Laser Deposition: The Effects of RTA, Excimer-UV and E-Beam Irradiation

Authors: T. S. Iwayama, T. Hama

Abstract:

Si ion implantation was widely used to synthesize specimens of SiO2 containing supersaturated Si and subsequent high temperature annealing induces the formation of embedded luminescent Si nanocrystals. In this work, the potentialities of excimer UV-light (172 nm, 7.2 eV) irradiation and rapid thermal annealing (RTA) to enhance the photoluminescence and to achieve low temperature formation of Si nanocrystals have been investigated. The Si ions were introduced at acceleration energy of 180 keV to fluence of 7.5 x 1016 ions/cm2. The implanted samples were subsequently irradiated with an excimer-UV lamp. After the process, the samples were rapidly thermal annealed before furnace annealing (FA). Photoluminescence spectra were measured at various stages at the process. We found that the luminescence intensity is strongly enhanced with excimer-UV irradiation and RTA. Moreover, effective visible photoluminescence is found to be observed even after FA at 900 oC, only for specimens treated with excimer-UV lamp and RTA. We also prepared specimens of Si nanocrystals embedded in a SiO2 by reactive pulsed laser deposition (PLD) in an oxygen atmosphere. We will make clear the similarities and differences with the way of preparation.

Keywords: Ion implantation, photoluminescence, pulsed laser deposition, rapid thermal anneal, Si nanocrystals.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1338364

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679

References:


[1] L. T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett., 57, 1046 (1990).
[2] V. Lehmann, U. Gösele, “Porous silicon formation: A quantum wire effect,” Appl. Phys. Lett., 58, 856 (1991).
[3] L. Brus, Light emission in silicon from physics to devices, D. Lockwood (Ed.), Academic Press, New York, (1998) p.303.
[4] S. Ossicini, Light emitting silicon for microphotonics, S. Ossicini, L. Pavesi, F.Priolo (Ed.), Springer, Berlin (2003) p.123.
[5] G. T. Reed and A. P. Knights (Ed.), Silicon Photonics, Wiley-Interscience (2008).
[6] L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzó, F. Priolo, “Optical gain in silicon nanocrystals,” Nature, 408, 440 (2000).
[7] T. S. Iwayama, K. Fujita, S. Nakao, K. Saitoh, T. Fujita, N. Itoh, “Visible photoluminescence in Si+‐implanted silica glass,” J. Appl. Phys., 75, 7779 (1994).
[8] T. S. Iwayama, S. Nakao, K. Saitoh, Visible photoluminescence in Si+‐ implanted thermal oxide films on crystalline Si Appl. Phys. Lett., 65, 1814 (1994).
[9] J. F. Ziegler, Ion Implantation Technology, J. F. Ziegler (Ed.), North-Holland, Amsterdam (1992) p.1.
[10] P. D. Townsend, P. J. Chandler and L. Zhang, Optical Effects of Ion Implantation, Cambridge University Press, Cambridge (1994).
[11] K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, A. Polman, “Defect‐related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2,” Appl. Phys. Lett., 69, 2033 (1996).
[12] P. Mutti, G. Ghislotti, S. Bertoni, L. Bonoldi, G. F. Cerofolini, L. Meda, E. Grilli, M. Gruzzi, “Room‐temperature visible luminescence from silicon nanocrystals in silicon implanted SiO2 layers,” Appl. Phys. Lett., 66, 851 (1995).
[13] J. F. Ziegler, J. P. Biersack, U. L. Littmark, the Stopping and Range of Ions in Solids, Pergamon, New York (1985).
[14] L. Skuja Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids, 239, 16 (1998).
[15] T. S. Iwayama, T. Hama, D. E. Hole, I. W. Boyd, “Characteristic photoluminescence properties of Si nanocrystals in SiO2 fabricated by ion implantation and annealing,” Solid State Elec., 45, 1487 (2001).
[16] Defects in SiO2 and Related Dielectrics: Science and Technology, G. Pacchioni, L. Skuja, D. L. Griscom (Ed.), Kluwer Academic Publishers (2001).
[17] T. S. Iwayama, Y. Terao, A. Kamiya, M. Takeda, S. Nakao, K. Saitoh, “Correlation of Microstructure and photoluminescence for nanometer-sized Si crystals formed in an amorphous SiO2 matrix by ion implantation, Nanostruct. Mater. 5, 307 (1995).