Search results for: living and learning conditions
4720 Development Framework Based on Mobile Augmented Reality for Pre-Literacy Kit
Authors: Nazatul Aini Abd Majid, Faridah Yunus, Haslina Arshad, Mohammad Farhan Mohammad Johari
Abstract:
Mobile technology, augmented reality, and game-based learning are some of the key learning technologies that can be fully optimized to promote pre-literacy skills. The problem is how to design an effective pre-literacy kit that utilizes some of the learning technologies. This paper presents a framework based on mobile augmented reality for the development of pre-literacy kit. This pre-literacy kit incorporates three main components which are contents, design, and tools. A prototype of a mobile app based on the three main components was developed for promoting pre-literacy. The results show that the children and teachers gave positive feedbacks after using the mobile app for the pre-literacy.Keywords: Framework, mobile technology, augmented reality, pre-literacy skills.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19224719 Local Mechanical Analysis of Arch Foot of Space Y-Beam Arch Bridge
Authors: Cao Ziyuan, Luo Xuan
Abstract:
To study the local force characteristics of a spatial Y-arch bridge, a medium-bearing spatial Y-arch bridge is used as the object of study, and the finite element software FEA is used to establish a spatial finite element model and analyze the force conditions of the arch legs under different most unfavorable loading conditions. It is found that the forces on the arch foot under different conditions are mainly in the longitudinal direction and transverse direction, which should be considered for strengthening. The research results can provide reference for the design and construction of the same type of bridge.
Keywords: Bridge engineering, special-shaped arch bridge, mechanical properties, local analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4464718 A Development of Creative Instruction Model through Digital Media
Authors: Kathaleeya Chanda, Panupong Chanplin, Suppara Charoenpoom
Abstract:
This purposes of the development of creative instruction model through digital media are to: 1) enable learners to learn from instruction media application; 2) help learners implementing instruction media correctly and appropriately; and 3) facilitate learners to apply technology for searching information and practicing skills to implement technology creatively. The sample group consists of 130 cases of secondary students studying in Bo Kluea School, Bo Kluea Nuea Sub-district, Bo Kluea District, Nan Province. The probability sampling was selected through the simple random sampling and the statistics used in this research are percentage, mean, standard deviation and one group pretest – posttest design. The findings are summarized as follows: The congruence index of instruction media for occupation and technology subjects is appropriate. By comparing between learning achievements before implementing the instruction media and learning achievements after implementing the instruction media, it is found that the posttest achievements are higher than the pretest achievements with statistical significance at the level of .05. For the learning achievements from instruction media implementation, pretest mean is 16.24 while posttest mean is 26.28. Besides, pretest and posttest results are compared and differences of mean are tested, the test results show that the posttest achievements are higher than the pretest achievements with statistical significance at the level of .05. This can be interpreted that the learners achieve better learning progress.
Keywords: Teaching learning model, digital media, creative instruction model, facilitate learners.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6994717 Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study
Authors: Nilubon Kurubanjerdjit, Nattakarn Iam-On, Ka-Lok Ng
Abstract:
MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation.Keywords: MicroRNA, miRNAs, lung cancer, machine learning, Naïve Bayes, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23884716 Deep Reinforcement Learning Approach for Trading Automation in the Stock Market
Authors: Taylan Kabbani, Ekrem Duman
Abstract:
Deep Reinforcement Learning (DRL) algorithms can scale to previously intractable problems. The automation of profit generation in the stock market is possible using DRL, by combining the financial assets price ”prediction” step and the ”allocation” step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. This work represents a DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem as a Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. We then solved the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm and achieved a 2.68 Sharpe ratio on the test dataset. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of DRL in financial markets over other types of machine learning and proves its credibility and advantages of strategic decision-making.
Keywords: Autonomous agent, deep reinforcement learning, MDP, sentiment analysis, stock market, technical indicators, twin delayed deep deterministic policy gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5314715 Collaborative Web Platform for Rich Media Educational Material Creation
Authors: I. Alberdi, H. Iribas, A. Martin, N. Aginako
Abstract:
This paper describes a platform that faces the main research areas for e-learning educational contents. Reusability tackles the possibility to use contents in different courses reducing costs and exploiting available data from repositories. In our approach the production of educational material is based on templates to reuse learning objects. In terms of interoperability the main challenge lays on reaching the audience through different platforms. E-learning solution must track social consumption evolution where nowadays lots of multimedia contents are accessed through the social networks. Our work faces it by implementing a platform for generation of multimedia presentations focused on the new paradigm related to social media. The system produces videos-courses on top of web standard SMIL (Synchronized Multimedia Integration Language) ready to be published and shared. Regarding interfaces it is mandatory to satisfy user needs and ease communication. To overcome it the platform deploys virtual teachers that provide natural interfaces while multimodal features remove barriers to pupils with disabilities.Keywords: Collaborative, multimedia e-learning, reusability, SMIL, virtual teacher
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15064714 Contribution for Rural Development through Training in Organic Farming
Authors: Raquel P. F. Guiné, Daniela V. T. A. Costa, Paula M. R. Correia, Moisés Castro, Luis T. Guerra, Cristina A. Costa
Abstract:
The aim of this work was to characterize a potential target group of people interested in participating into a training program in organic farming in the context of mobile-learning. The information sought addressed in particular, but not exclusively, possible contents, formats and forms of evaluation that will contribute to define the course objectives and curriculum, as well as to ensure that the course meets the needs of the learners and their preferences. The sample was selected among different European countries. The questionnaires were delivered electronically for answering on-line and in the end 135 consented valid questionnaires were obtained. The results allowed characterizing the target group and identifying their training needs and preferences towards m-learning formats, giving valuable tools to design the training offer.Keywords: Mobile-learning, organic farming, rural development, survey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20814713 Ranking - Convex Risk Minimization
Authors: Wojciech Rejchel
Abstract:
The problem of ranking (rank regression) has become popular in the machine learning community. This theory relates to problems, in which one has to predict (guess) the order between objects on the basis of vectors describing their observed features. In many ranking algorithms a convex loss function is used instead of the 0-1 loss. It makes these procedures computationally efficient. Hence, convex risk minimizers and their statistical properties are investigated in this paper. Fast rates of convergence are obtained under conditions, that look similarly to the ones from the classification theory. Methods used in this paper come from the theory of U-processes as well as empirical processes.
Keywords: Convex loss function, empirical risk minimization, empirical process, U-process, boosting, euclidean family.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14174712 Cirrhosis Mortality Prediction as Classification Using Frequent Subgraph Mining
Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride
Abstract:
In this work, we use machine learning and data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. Our work applies modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.
Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4524711 Metabolic Predictive Model for PMV Control Based on Deep Learning
Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon
Abstract:
In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.
Keywords: Deep learning, indoor quality, metabolism, predictive model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11994710 Remedying Students’ Misconceptions in Learning of Chemical Bonding and Spontaneity through Intervention Discussion Learning Model (IDLM)
Authors: Ihuarulam Ambrose Ikenna
Abstract:
In the past few decades, the field of chemistry education has grown tremendously and researches indicated that after traditional chemistry instruction students often lacked deep conceptual understanding and failed to integrate their ideas into coherent conceptual framework. For several concepts in chemistry, students at all levels have demonstrated difficulty in changing their initial perceptions. Their perceptions are most often wrong and don't agree with correct scientific concepts. This study explored the effectiveness of intervention discussion sections for a college general chemistry course designed to apply research on students preconceptions, knowledge integration and student explanation. Three interventions discussions lasting three hours on bond energy and spontaneity were done tested and intervention (treatment) students’ performances were compared with that of control group which did not use the experimental pedagogy. Results indicated that this instruction which was capable of identifying students' misconceptions, initial conceptions and integrating those ideas into class discussion led to enhanced conceptual understanding and better achievement for the experimental group.
Keywords: Intervention Discussion Learning Model, Learning, Remedying, Students’ misconceptions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25424709 Container Chaos: The Impact of a Casual Game on Learning and Behavior
Authors: Lori L. Scarlatos, Ryan Courtney
Abstract:
This paper explores the impact that playing a casual game can have on a player's learning and subsequent behavior. A casual mobile game, Container Chaos, was created to teach undergraduate students about the carbon footprint of various disposable beverage containers. Learning was tested with a short quiz, and behavior was tested by observing which beverage containers players choose when offered a drink and a snack. The game was tested multiple times, under a variety of different circumstances. Findings of these tests indicate that, with extended play over time, players can learn new information and sometimes even change their behavior as a result. This has implications for how other casual games can be used to teach concepts and possibly modify behavior.
Keywords: Behavior, carbon footprint, casual games, environmental impact, material sciences.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9564708 Voltage Problem Location Classification Using Performance of Least Squares Support Vector Machine LS-SVM and Learning Vector Quantization LVQ
Authors: Khaled Abduesslam. M, Mohammed Ali, Basher H Alsdai, Muhammad Nizam, Inayati
Abstract:
This paper presents the voltage problem location classification using performance of Least Squares Support Vector Machine (LS-SVM) and Learning Vector Quantization (LVQ) in electrical power system for proper voltage problem location implemented by IEEE 39 bus New- England. The data was collected from the time domain simulation by using Power System Analysis Toolbox (PSAT). Outputs from simulation data such as voltage, phase angle, real power and reactive power were taken as input to estimate voltage stability at particular buses based on Power Transfer Stability Index (PTSI).The simulation data was carried out on the IEEE 39 bus test system by considering load bus increased on the system. To verify of the proposed LS-SVM its performance was compared to Learning Vector Quantization (LVQ). The results showed that LS-SVM is faster and better as compared to LVQ. The results also demonstrated that the LS-SVM was estimated by 0% misclassification whereas LVQ had 7.69% misclassification.
Keywords: IEEE 39 bus, Least Squares Support Vector Machine, Learning Vector Quantization, Voltage Collapse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24084707 An Analysis of Institutional Audits: Basis for Teaching, Learning and Assessment Framework and Principles
Authors: Nabil El Kadhi, Minerva M. Bunagan
Abstract:
The dynamism in education, particularly in the area of teaching, learning and assessment has caused Higher Education Institutions (HEIs) worldwide to seek for ways to continuously improve their educational processes. HEIs use outcomes of institutional audits, assessments and accreditations, for improvement. In this study, the published institutional audit reports of HEIs in the Sultanate of Oman were analyzed to produce features of good practice; identify challenges along Teaching, Learning Assessment (TLA); and propose a framework that puts major emphasis in having a quality-assured TLA, including a set of principles that can be used as basis in succeeding an institutional visit. The TLA framework, which shows the TLA components, characteristics of the components, related expectation, including implementation tool/ strategy and pitfalls can be used by HEIs to have an adequate understanding of the scope of audit and be able to satisfy institutional audit requirements. The scope of this study can be widened by exploring the other requirements of the Institutional Audits in the Sultanate of Oman, particularly the area on Governance and Management and Student Support Services.Keywords: Accreditation, audit, quality assurance, teaching, learning and assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14814706 Learning Materials of Atmospheric Pressure Plasma Process: Turning Hydrophilic Surface to Hydrophobic
Authors: C.W. Kan
Abstract:
This paper investigates the use of atmospheric pressure plasma for improving the surface hydrophobicity of polyurethane synthetic leather with tetramethylsilane (TMS). The atmospheric pressure plasma treatment with TMS is a single-step process to enhance the hydrophobicity of polyurethane synthetic leather. The hydrophobicity of the treated surface was examined by contact angle measurement. The physical and chemical surface changes were evaluated by scanning electron microscopy (SEM) and infrared spectroscopy (FTIR). The purpose of this paper is to provide learning materials for understanding how to use atmospheric pressure plasma in the textile finishing process to transform a hydrophilic surface to hydrophobic.
Keywords: Learning materials, atmospheric pressure plasma treatment, hydrophobic, hydrophilic, surface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17874705 Personal Information Classification Based on Deep Learning in Automatic Form Filling System
Authors: Shunzuo Wu, Xudong Luo, Yuanxiu Liao
Abstract:
Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results.Keywords: Personal information, deep learning, auto fill, NLP, document analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8694704 Comparing the Willingness to Communicate in a Foreign Language of Bilinguals and Monolinguals
Authors: S. Tarighat, F. Shateri
Abstract:
This study explored the relationship between L2 Willingness to Communicate (WTC) of bilinguals and monolinguals in a foreign language using a snowball sampling method to collect questionnaire data from 200 bilinguals and monolinguals studying a foreign language (FL). The results indicated a higher willingness to communicate in a foreign language (WTC-FL) performed by bilinguals compared to that of the monolinguals with a weak significance. Yet a stronger significance was found in the relationship between the age of onset of bilingualism and WTC-FL. The researcher proposed that L2 WTC is indirectly influenced by knowledge of other languages, which can boost L2 confidence and reduce L2 anxiety and consequently lead to higher L2 WTC when learning a different L2. The study also found the age of onset of bilingualism to be a predictor of L2 WTC when learning a FL. The results emphasize the importance of bilingualism and early bilingualism in particular.
Keywords: Bilingualism, foreign language learning, L2 acquisition, willingness to communicate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14814703 EASEL: Evaluation of Algorithmic Skills in an Environment Learning
Authors: A. Bey, T. Bensebaa, H. Benselem
Abstract:
This paper attempts to explore a new method to improve the teaching of algorithmic for beginners. It is well known that algorithmic is a difficult field to teach for teacher and complex to assimilate for learner. These difficulties are due to intrinsic characteristics of this field and to the manner that teachers (the majority) apprehend its bases. However, in a Technology Enhanced Learning environment (TEL), assessment, which is important and indispensable, is the most delicate phase to implement, for all problems that generate (noise...). Our objective registers in the confluence of these two axes. For this purpose, EASEL focused essentially to elaborate an assessment approach of algorithmic competences in a TEL environment. This approach consists in modeling an algorithmic solution according to basic and elementary operations which let learner draw his/her own step with all autonomy and independently to any programming language. This approach assures a trilateral assessment: summative, formative and diagnostic assessment.Keywords: Algorithmic, assessment of competences, Technology Enhanced Learning (TEL).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14464702 Thermodynamic Analysis of Ventilated Façades under Operating Conditions in Southern Spain
Authors: Carlos A. D. Torres, Antonio D. Delgado
Abstract:
In this work we study the thermodynamic behavior of some ventilated facades under summer operating conditions in Southern Spain. Under these climatic conditions, indoor comfort implies a high energetic demand due to high temperatures that usually are reached in this season in the considered geographical area.
The aim of this work is to determine if during summer operating conditions in Southern Spain, ventilated façades provide some energy saving compared to the non-ventilated façades and to deduce their behavior patterns in terms of energy efficiency.
The modelization of the air flow in the channel has been performed by using Navier-Stokes equations for thermodynamic flows. Numerical simulations have been carried out with a 2D Finite Element approach.
This way, we analyze the behavior of ventilated façades under different weather conditions as variable wind, variable temperature and different levels of solar irradiation.
CFD computations show the combined effect of the shading of the external wall and the ventilation by the natural convection into the air gap achieve a reduction of the heat load during the summer period. This reduction has been evaluated by comparing the thermodynamic performances of two ventilated and two unventilated façades with the same geometry and thermophysical characteristics.
Keywords: Passive cooling, ventilated façades, energy-efficient building, CFD, FEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49524701 Integrating Computer Games with Mathematics Instruction in Elementary School- An Analysis of Motivation, Achievement, and Pupil-Teacher Interactions
Authors: Kuo Hung Huang, Chong-Ji Ke
Abstract:
The purpose of this study is to explore the impacts of computer games on the mathematics instruction. First, the research designed and implemented the web-based games according to the content of existing textbook. And the researcher collected and analyzed the information related to the mathematics instruction integrating the computer games. In this study, the researcher focused on the learning motivation of mathematics, mathematics achievement, and pupil-teacher interactions in classroom. The results showed that students under instruction integrating computer games significantly improved in motivation and achievement. The teacher tended to use less direct teaching and provide more time for student-s active learning.Keywords: computer games, mathematics instruction, pupil-teacher interaction, technology-enhanced learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19304700 The Urban Project and the Urban Improvement to the Test of the Participation, Case: Project of Modernization of Constantine
Authors: Mouhoubi Nedjima, Sassi Boudemagh Souad
Abstract:
In the framework of the modernization of the city of Constantine and in order to restore its status as a regional metropolis introducing it into the network of cities international metropolises, has major urban project was launched: project of modernization and of metropolitanization of the city of Constantine. Our research project focuses on the management of the project for the modernization of the city of Constantine (PMMC) focusing on the management of some aspects of the urban project whose participation, with the objective assessment of the managerial approach business. In this contribution, we focus on two cases revealing taken into account in our research work on the question of participation of actors and their organizations. It is "the urban project of modernization of Constantine" and the operation relating to "the urban improvement in the city of the Brothers FERRAD in the district of Zouaghi". This project and this operation with the objective of improving the living conditions of citizens have faced several challenges and obstacles that have been in major part the factors of its failures. Through this study, we examined the management process and the mode of organization of the actors of the project as well as the level of participation of the citizen to finally proposed managerial solutions toconflict situations observed.
Keywords: The urban project, urban improvement, participation, Constantine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20624699 DeClEx-Processing Pipeline for Tumor Classification
Authors: Gaurav Shinde, Sai Charan Gongiguntla, Prajwal Shirur, Ahmed Hambaba
Abstract:
Health issues are significantly increasing, putting a substantial strain on healthcare services. This has accelerated the integration of machine learning in healthcare, particularly following the COVID-19 pandemic. The utilization of machine learning in healthcare has grown significantly. We introduce DeClEx, a pipeline which ensures that data mirrors real-world settings by incorporating gaussian noise and blur and employing autoencoders to learn intermediate feature representations. Subsequently, our convolutional neural network, paired with spatial attention, provides comparable accuracy to state-of-the-art pre-trained models while achieving a threefold improvement in training speed. Furthermore, we provide interpretable results using explainable AI techniques. We integrate denoising and deblurring, classification and explainability in a single pipeline called DeClEx.
Keywords: Machine learning, healthcare, classification, explainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 834698 The Optimum Operating Conditions for the Synthesis of Zeolite from Waste Incineration Fly Ash by Alkali Fusion and Hydrothermal Methods
Authors: Yi-Jie Lin, Jyh-Cherng Chen
Abstract:
The fly ash of waste incineration processes is usually hazardous and the disposal or reuse of waste incineration fly ash is difficult. In this study, the waste incineration fly ash was converted to useful zeolites by the alkali fusion and hydrothermal synthesis method. The influence of different operating conditions (the ratio of Si/Al, the ratio of hydrolysis liquid to solid, and hydrothermal time) was investigated to seek the optimum operating conditions for the synthesis of zeolite from waste incineration fly ash. The results showed that concentrations of heavy metals in the leachate of Toxicity Characteristic Leaching Procedure (TCLP) were all lower than the regulatory limits except lead. The optimum operating conditions for the synthesis of zeolite from waste incineration fly ash by the alkali fusion and hydrothermal synthesis method were Si/Al=40, NaOH/ash=1.5, alkali fusion at 400 oC for 40 min, hydrolysis with Liquid to Solid ratio (L/S)= 200 at 105 oC for 24 h, and hydrothermal synthesis at 105 oC for 24 h. The specific surface area of fly ash could be significantly increased from 8.59 m2/g to 651.51 m2/g (synthesized zeolite). The influence of different operating conditions on the synthesis of zeolite from waste incineration fly ash followed the sequence of Si/Al ratio > hydrothermal time > hydrolysis L/S ratio. The synthesized zeolites can be reused as good adsorbents to control the air or wastewater pollutants. The purpose of fly ash detoxification, reduction and waste recycling/reuse is achieved successfully.
Keywords: Alkali fusion, hydrothermal, fly ash, zeolite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8854697 Uplink Throughput Prediction in Cellular Mobile Networks
Authors: Engin Eyceyurt, Josko Zec
Abstract:
The current and future cellular mobile communication networks generate enormous amounts of data. Networks have become extremely complex with extensive space of parameters, features and counters. These networks are unmanageable with legacy methods and an enhanced design and optimization approach is necessary that is increasingly reliant on machine learning. This paper proposes that machine learning as a viable approach for uplink throughput prediction. LTE radio metric, such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Noise Ratio (SNR) are used to train models to estimate expected uplink throughput. The prediction accuracy with high determination coefficient of 91.2% is obtained from measurements collected with a simple smartphone application.Keywords: Drive test, LTE, machine learning, uplink throughput prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9044696 Building the Professional Readiness of Graduates from Day One: An Empirical Approach to Curriculum Continuous Improvement
Authors: Fiona Wahr, Sitalakshmi Venkatraman
Abstract:
Industry employers require new graduates to bring with them a range of knowledge, skills and abilities which mean these new employees can immediately make valuable work contributions. These will be a combination of discipline and professional knowledge, skills and abilities which give graduates the technical capabilities to solve practical problems whilst interacting with a range of stakeholders. Underpinning the development of these disciplines and professional knowledge, skills and abilities, are “enabling” knowledge, skills and abilities which assist students to engage in learning. These are academic and learning skills which are essential to common starting points for both the learning process of students entering the course as well as forming the foundation for the fully developed graduate knowledge, skills and abilities. This paper reports on a project created to introduce and strengthen these enabling skills into the first semester of a Bachelor of Information Technology degree in an Australian polytechnic. The project uses an action research approach in the context of ongoing continuous improvement for the course to enhance the overall learning experience, learning sequencing, graduate outcomes, and most importantly, in the first semester, student engagement and retention. The focus of this is implementing the new curriculum in first semester subjects of the course with the aim of developing the “enabling” learning skills, such as literacy, research and numeracy based knowledge, skills and abilities (KSAs). The approach used for the introduction and embedding of these KSAs, (as both enablers of learning and to underpin graduate attribute development), is presented. Building on previous publications which reported different aspects of this longitudinal study, this paper recaps on the rationale for the curriculum redevelopment and then presents the quantitative findings of entering students’ reading literacy and numeracy knowledge and skills degree as well as their perceived research ability. The paper presents the methodology and findings for this stage of the research. Overall, the cohort exhibits mixed KSA levels in these areas, with a relatively low aggregated score. In addition, the paper describes the considerations for adjusting the design and delivery of the new subjects with a targeted learning experience, in response to the feedback gained through continuous monitoring. Such a strategy is aimed at accommodating the changing learning needs of the students and serves to support them towards achieving the enabling learning goals starting from day one of their higher education studies.
Keywords: Enabling skills, student retention, embedded learning support, continuous improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7844695 Accessible Facilities in Home Environment for Elderly Family Members in Sri Lanka
Authors: M. A. N. Rasanjalee Perera
Abstract:
The world is facing several problems due to increasing elderly population. In Sri Lanka, along with the complexity of the modern society and structural and functional changes of the family, “caring for elders” seems as an emerging social problem. This situation may intensify as the county is moving into a middle income society. Seeking higher education and related career opportunities, and urban living in modern housing are new trends, through which several problems are generated. Among many issues related with elders, “lack of accessible and appropriate facilities in their houses as well as public buildings” can be identified as a major problem. This study argues that welfare facilities provided for the elderly people, particularly in the home environment, in the country are not adequate. Modern housing features such as bathrooms, pantries, lobbies, and leisure areas etc. are questionable as to whether they match with elders’ physical and mental needs. Consequently, elders have to face domestic accidents and many other difficulties within their living environments. Records of hospitals in the country also proved this fact. Therefore, this study tries to identify how far modern houses are suited with elders’ needs. The study further questioned whether “aging” is a considerable matter when people are buying, planning and renovating houses. A randomly selected sample of 50 houses were observed and 50 persons were interviewed around the Maharagama urban area in Colombo district to obtain primary data, while relevant secondary data and information were used to have a depth analysis. The study clearly found that none of the houses included to the sample are considering elders’ needs in planning, renovating, or arranging the home. Instead, most of the families were giving priority to the rich and elegant appearance and modern facilities of the houses. Particularly, to the bathrooms, pantry, large setting areas, balcony, parking slots for two vehicles, ad parapet walls with roller-gates are the main concerns. A significant factor found here is that even though, many children of the aged are in middle age and reaching their older years at present, they do not plan their future living within a safe and comfortable home, despite that they are hoping to spent the latter part of their lives in the their current homes. This fact highlights that not only the other responsible parts of the society, but also those who are reaching their older ages are ignoring the problems of the aged. At the same time, it was found that more than 80% of old parents do not like to stay at their children’s homes as the living environments in such modern homes are not familiar or convenient for them. Due to this context, the aged in Sri Lanka may have to be alone in their own homes due to current trend of society of migrating to urban living in modern houses. At the same time, current urban families who live in modern houses may have to face adding accessible facilities in their home environment, as current modern housing facilities may not be appropriate them for a better life in their latter part of life.
Keywords: Aging population, elderly care, home environment, housing facilities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8084694 Machine Learning Methods for Network Intrusion Detection
Authors: Mouhammad Alkasassbeh, Mohammad Almseidin
Abstract:
Network security engineers work to keep services available all the time by handling intruder attacks. Intrusion Detection System (IDS) is one of the obtainable mechanisms that is used to sense and classify any abnormal actions. Therefore, the IDS must be always up to date with the latest intruder attacks signatures to preserve confidentiality, integrity, and availability of the services. The speed of the IDS is a very important issue as well learning the new attacks. This research work illustrates how the Knowledge Discovery and Data Mining (or Knowledge Discovery in Databases) KDD dataset is very handy for testing and evaluating different Machine Learning Techniques. It mainly focuses on the KDD preprocess part in order to prepare a decent and fair experimental data set. The J48, MLP, and Bayes Network classifiers have been chosen for this study. It has been proven that the J48 classifier has achieved the highest accuracy rate for detecting and classifying all KDD dataset attacks, which are of type DOS, R2L, U2R, and PROBE.
Keywords: IDS, DDoS, MLP, KDD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7294693 Information Retrieval in Domain Specific Search Engine with Machine Learning Approaches
Authors: Shilpy Sharma
Abstract:
As the web continues to grow exponentially, the idea of crawling the entire web on a regular basis becomes less and less feasible, so the need to include information on specific domain, domain-specific search engines was proposed. As more information becomes available on the World Wide Web, it becomes more difficult to provide effective search tools for information access. Today, people access web information through two main kinds of search interfaces: Browsers (clicking and following hyperlinks) and Query Engines (queries in the form of a set of keywords showing the topic of interest) [2]. Better support is needed for expressing one's information need and returning high quality search results by web search tools. There appears to be a need for systems that do reasoning under uncertainty and are flexible enough to recover from the contradictions, inconsistencies, and irregularities that such reasoning involves. In a multi-view problem, the features of the domain can be partitioned into disjoint subsets (views) that are sufficient to learn the target concept. Semi-supervised, multi-view algorithms, which reduce the amount of labeled data required for learning, rely on the assumptions that the views are compatible and uncorrelated. This paper describes the use of semi-structured machine learning approach with Active learning for the “Domain Specific Search Engines". A domain-specific search engine is “An information access system that allows access to all the information on the web that is relevant to a particular domain. The proposed work shows that with the help of this approach relevant data can be extracted with the minimum queries fired by the user. It requires small number of labeled data and pool of unlabelled data on which the learning algorithm is applied to extract the required data.Keywords: Search engines; machine learning, Informationretrieval, Active logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20844692 Internationalization and Multilingualism in Brazil: Possibilities of Content and Language Integrated Learning and Intercomprehension Approaches
Authors: Kyria Rebeca Finardi
Abstract:
The study discusses the role of foreign languages in general and of English in particular in the process of internationalization of higher education (IHE), defined as the intentional integration of an international, intercultural or global dimension in the purpose, function or offer of higher education. The study is bibliographical and offers a brief outline of the current political, economic and educational scenarios in Brazil, before discussing some possibilities and challenges for the development of multilingualism and IHE there. The theoretical background includes a review of Brazilian language and internationalization policies. The review and discussion concludes that the use of the Content and Language Integrated Learning (CLIL) approach and the Intercomprehension approach to foreign language teaching/learning are relevant alternatives to foster multilingualism in that context.
Keywords: Brazil, higher education, internationalization, multilingualism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8094691 Critical Buckling Load of Carbon Nanotube with Non-Local Timoshenko Beam Using the Differential Transform Method
Authors: Tayeb Bensattalah, Mohamed Zidour, Mohamed Ait Amar Meziane, Tahar Hassaine Daouadji, Abdelouahed Tounsi
Abstract:
In this paper, the Differential Transform Method (DTM) is employed to predict and to analysis the non-local critical buckling loads of carbon nanotubes with various end conditions and the non-local Timoshenko beam described by single differential equation. The equation differential of buckling of the nanobeams is derived via a non-local theory and the solution for non-local critical buckling loads is finding by the DTM. The DTM is introduced briefly. It can easily be applied to linear or nonlinear problems and it reduces the size of computational work. Influence of boundary conditions, the chirality of carbon nanotube and aspect ratio on non-local critical buckling loads are studied and discussed. Effects of nonlocal parameter, ratios L/d, the chirality of single-walled carbon nanotube, as well as the boundary conditions on buckling of CNT are investigated.
Keywords: Boundary conditions, buckling, non-local, the differential transform method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 966