Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2
Search results for: Informationretrieval
2 Situation-based Knowledge Presentation for Mobile Workers
Authors: Alessandra Agostini, Roberto Boselli, Flavio De Paoli, Riccardo Dondi
Abstract:
The work presented in this paper focus on Knowledge Management services enabling CSCW (Computer Supported Cooperative Work) applications to provide an appropriate adaptation to the user and the situation in which the user is working. In this paper, we explain how a knowledge management system can be designed to support users in different situations exploiting contextual data, users' preferences, and profiles of involved artifacts (e.g., documents, multimedia files, mockups...). The presented work roots in the experience we had in the MILK project and early steps made in the MAIS project.Keywords: Information Management Systems, InformationRetrieval, Knowledge Management, Mobile CommunicationSystems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15601 Information Retrieval in Domain Specific Search Engine with Machine Learning Approaches
Authors: Shilpy Sharma
Abstract:
As the web continues to grow exponentially, the idea of crawling the entire web on a regular basis becomes less and less feasible, so the need to include information on specific domain, domain-specific search engines was proposed. As more information becomes available on the World Wide Web, it becomes more difficult to provide effective search tools for information access. Today, people access web information through two main kinds of search interfaces: Browsers (clicking and following hyperlinks) and Query Engines (queries in the form of a set of keywords showing the topic of interest) [2]. Better support is needed for expressing one's information need and returning high quality search results by web search tools. There appears to be a need for systems that do reasoning under uncertainty and are flexible enough to recover from the contradictions, inconsistencies, and irregularities that such reasoning involves. In a multi-view problem, the features of the domain can be partitioned into disjoint subsets (views) that are sufficient to learn the target concept. Semi-supervised, multi-view algorithms, which reduce the amount of labeled data required for learning, rely on the assumptions that the views are compatible and uncorrelated. This paper describes the use of semi-structured machine learning approach with Active learning for the “Domain Specific Search Engines". A domain-specific search engine is “An information access system that allows access to all the information on the web that is relevant to a particular domain. The proposed work shows that with the help of this approach relevant data can be extracted with the minimum queries fired by the user. It requires small number of labeled data and pool of unlabelled data on which the learning algorithm is applied to extract the required data.Keywords: Search engines; machine learning, Informationretrieval, Active logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2083