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Abstract—In this work, we use machine learning and data analysis 

techniques to predict the one-year mortality of cirrhotic patients. Data 
from 2,322 patients with liver cirrhosis are collected at a single medical 
center. Different machine learning models are applied to predict one-
year mortality. A comprehensive feature space including demographic 
information, comorbidity, clinical procedure and laboratory tests is 
being analyzed. A temporal pattern mining technic called Frequent 
Subgraph Mining (FSM) is being used. Model for End-stage liver 
disease (MELD) prediction of mortality is used as a comparator. All of 
our models statistically significantly outperform the MELD-score 
model and show an average 10% improvement of the area under the 
curve (AUC). The FSM technic itself does not improve the model 
significantly, but FSM, together with a machine learning technique 
called an ensemble, further improves the model performance. With the 
abundance of data available in healthcare through electronic health 
records (EHR), existing predictive models can be refined to identify 
and treat patients at risk for higher mortality. However, due to the 
sparsity of the temporal information needed by FSM, the FSM model 
does not yield significant improvements. Our work applies modern 
machine learning algorithms and data analysis methods on predicting 
one-year mortality of cirrhotic patients and builds a model that predicts 
one-year mortality significantly more accurate than the MELD score. 
We have also tested the potential of FSM and provided a new 
perspective of the importance of clinical features. 

 
Keywords—Machine learning, liver cirrhosis, subgraph mining, 

supervised learning. 

I. INTRODUCTION 
IRRHOSIS is a condition in which the liver slowly 
deteriorates and is unable to function normally due to a 

chronic injury, as defined by The National Institute of Diabetes 
and Digestive and Kidney Diseases [1]. Currently, liver 
transplantation is the only life-saving treatment available for 
patients with liver cirrhosis, but the number of livers requiring 
transplantation largely exceeds the number of available organ 
donors. To prioritize recipients of liver transplantation in the 
U.S., livers are allocated based on the paradigm “the sickest 
first.” The degree of sickness is determined by the MELD score, 
index which uses the bilirubin, creatinine and international 
normalized ratio (INR) that predicts 3-month mortality [2]. 

The MELD model is very robust and has been proven 
clinically useful [3]-[5], but new researches have pointed out 
that certain patient populations are disadvantaged by the MELD 
score, as their level of sickness was not appropriately 
ascertained, hence MELD-sodium was introduced [5]. Also, the 
MELD score in patients with low albumin underestimates their 
mortality [6]. For this reason, we postulate that using additional 
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data available in EHR could result in a higher prediction 
accuracy of mortality for patients with liver cirrhosis. 

To this end, we performed a single center study, including 
patients over six years, within the center’s EHR to validate our 
hypothesis.  

II.  PRIOR WORK 

A. Conventional Cirrhosis Mortality Prediction 
Several models are used to predict the mortality of cirrhotic 

patients. Historically, the Child-Pugh score was wildly used for 
prioritizing the patients awaiting liver transplantation [8]. The 
Child-Pugh score uses ascites, Hepatic Encephalopathy (HE), 
serum bilirubin, serum albumin and INR as predictors of 
mortality. Later, [2] created a model to predict the survival of 
patients undergoing transjugular intrahepatic portosystemic 
shunts (TIPS), which takes the serum bilirubin, serum 
creatinine and INR as predictors [5]. The model is known as 
MELD, and is considered as a reliable measure of mortality risk 
in patients with end-stage liver disease. Then in 2005, [9] 
proposed that the addition of serum sodium to MELD results in 
a more accurate way of mortality prediction than MELD alone 
[9]. Furthermore, the MELD score has been found less accurate 
with the prediction of mortality rate in patients with low MELD 
score (defined as  <  20), as patients with persistent 
ascites and a low serum sodium level have a higher than 
expected mortality rate despite having low MELD scores [6]. 
Recent studies show that serum sodium or ascites are better 
predictors of mortality for low MELD patients [10]. To date and 
to the best of our knowledge, no studies have shown whether 
other clinical predictors or phenotypic patterns can better 
predict mortality in low MELD cirrhotic patients. 

Some of the other factors previously described related to the 
mortality of cirrhotic patients are: Esophageal Varices [11], HE 
[12]. Infection [12], Hepatorenal Syndrome [13]. Each of these 
comorbidities (co-occurrence of other diseases) also have their 
own factors: glutamine can be used to predict the development 
of HE [14], platelet count is accurate in predicting Esophageal 
Varices when combined with albumin and histologic levels 
[15], C-reactive protein (CRP) can be used to identify Infection 
[16]. These factors are indirectly related to the mortality of 
cirrhotic patients. 

Knowing that there is a large collection of unexplored factors 
in the HER that are now readily available and can potentially 
improve the ability to predict mortality when combining with 
machine learning techniques, we decide to use a comprehensive 
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feature space in our research. The features we include fall into 
four main categories: demographic features, comorbidities 
defined by International Classification of Diseases (ICD-9) 
codes, clinical procedures defined by Current Procedural 
Terminology (CPT) codes and laboratory records. All features 
used by the MELD model fall in the ‘laboratory records’ 
category. 

B. Machine Learning in Patients with Liver Cirrhosis 
As a powerful analytical method, machine learning has been 

extensively used in liver disease research. One of the main foci 
is disease diagnosis. Various machine learning approaches have 
been proven useful in previous studies. In 2013, [17] used a 
random forest model to predict the development of 
Hepatocellular Carcinoma (HCC) that outperformed the 
conventional regression models, and [18] in 2016 applied a 
stepwise penalized logistic regression model to miRNA 
expressions for the diagnosis of HCC in patients with liver 
cirrhosis. Sartakhti et al. [19] proposed a machine learning 
approach that hybridizes support vector machine (SVM) and 
simulated annealing (SA) to assist in the diagnosis of hepatitis. 
Machine learning was also used to aid the organ allocation for 
liver transplantation. Work [20] proposed an allocation system 
based on ordinal regression, to predict graft survival after 
transplantation [20]. Reference [21] evaluated the performance 
of artificial neural network (ANN) models for the same 
prediction goal. While all these studies use machine learning 
for liver related diseases, none of them focuses on long-term 
survival rate of patients with liver cirrhosis. We aim to predict 
one-year mortality of patients with liver cirrhosis by using 
comprehensive EHR information, features based on patterns 
and ensemble of models.  

C. FSM in Pattern Recognition 
To extract information from historical records, snapshots or 

statistical measurements are often used. But these approaches 
fail to recognize the temporal trends of test results. In our study, 
we first represent the historical laboratory tests for each patient 
as graphs, then use a subgraph mining method to analyze the 
change of patient’s physiological status change over time (e.g., 
in six consecutive months, the bilirubin increased to above 
normal, then falls back to normal range). After normalizing 
measurements, we use an FSM method to find patterns of 
physiological change. FSM is an effective pattern recognition 
method in identifying common structures in graphs, and is used 
in tracking patient’s status with frequently recorded data [7]. By 
using FSM, we are able to identify patterns like ‘serum bilirubin 
level stable for six consecutive months’ as features used in our 
machine learning models. 

III. METHODS 

A. Cohort Definition 
For cohort identification and data collection, we access the 

Northwestern University Electronic Data Warehouse which has 
patient information from Northwestern hospitals since 2000. 
We conclude that data prior to 2009 is inaccurate, thus we only 
consider the data from 2009 to 2014. 

Initially, we extract 27,804 patients who are either diagnosed 
or close to developing cirrhosis. Cirrhotic patients are defined 
as those that ever had a cirrhosis related ICD-9 code of 
571.2/571.5/571.6. Patients that are close to developing 
cirrhosis are defined as those not having these ICD-9 codes, but 
with Fibrosis-4 (Fib-4) score higher than 3.25. The Fib-4 score 
reflects the scar tissue level of the liver, and a threshold value 
of greater than 3.25 has the specificity of 98% in confirming 
fibrosis [21]. We hypothesize that these patients are cirrhotic, 
but their ICD-9 codes are not collected. We then apply keyword 
search in notes and reports among these patients to assert if they 
are cirrhotic, which is explained later. 

The cohort we used is selected from the initial cohort (n = 
27,804) using the following criteria: (1) ever had at least one 
hepatologist visit between year 2009 and 2014, (2) ever had one 
of the complications defined in Table I between 2009 and 2014, 
(3) did not have a liver transplantation earlier than 2010, to 
make sure at least one year of laboratory prior transplantation, 
(4) did not have liver cancer (identified by having ICD-9 codes 
of comorbidity ‘Solid tumor without metastasis,’ see Appendix 
1), (5) if the patient is deceased, the cause of death is liver 
disease related. 

 
TABLE I 

DEFINITION OF COMPLICATIONS 
Ascites, ICD-9 code = {789.5, 789.51, 789.59, 568.82} 

HE, ICD-9 code = {572.2, 348.31, 348.30, 348.39, 349.82} 
Varices, ICD-9 code = {456.1, 456.2, 456.21, 456, 456.8} 

Gastrointestinal bleeding, ICD-9 code = {456.0, 456.20, 578, 578.9, 578.1} 
Creatinine > 1.3 
Platelets < 150 

INR > 1.2 
Albumin < 3.5 

 
A total of 2,322 qualified patients are collected. Whether they 

deceased within one year after their last laboratory record or not 
is defined as the outcome. Demographic characteristics of the 
cohort by different outcome groups are listed in Table II. 
Statistical test shows that the alive group and deceased group 
for many features do not have the same demographic 
characteristics.  

This study has been approved by the Institutional Review 
Board at Northwestern University (study number: 
STU00098092). 

B. Patient Identification from Textual Medical Records 
For patients in the initial cohort with only Fib-4 score > 3.25 

but without an ICD-9 code, we hypothesize that some of them 
were diagnosed with cirrhosis, but their ICD-9 codes were not 
collected [21]. We believe by analyzing textual clinical 
information that we could find previously unnoticed cirrhotic 
patients, thus enlarging our cohort size. The textual information 
we analyze includes CT, MRI and biopsy reports.  

We use keywords search. Liver transplant clinicians from 
Northwestern medicine provided a dictionary with words that 
are highly related to cirrhosis, and commonly seen misspelled 
variants of these words (e.g., ‘cirrhosis’ as ‘cirhosis’ or 
‘cirrosis,’ and ‘hypertension’ as ‘hypertention)’ to search for. 
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Finding keywords alone is not enough, as these words can be 
mentioned with different key phrases, such as ‘not having 
cirrhosis’ or ‘no evidence of cirrhosis.’ We collect major key 
phrases and manually decide if the evidence is positive (e.g., 
‘show clear evidence of’), negative (e.g., ‘not having’) or 
ambiguous. We only search for keywords that are paired with 
positive key phrases (see Appendix 2). We further narrow the 
search field of key phrase-keyword pairs to certain sections of 
a report: ‘History,’ ‘Indication’ and ‘Impression.’ With 
keyword search, 1,095 patients (8.5% of the Fib-4 only group) 
are identified as cirrhotic. Sensitivity of keyword search is 

79.6% according to a test subset that has been manually 
inspected with precision 100% due to the choice of the data. 

C. Feature Engineering 
Recall that we are predicting if cirrhotic patients die within 

one year of their last data recorded prior to death. A patient’s 
record of the last physiology condition is considered as the last 
data recorded, since future data and the true outcome within one 
year of that record are unknown at that time point. 

 

 
TABLE II 

DEMOGRAPHIC CHARACTERISTICS OF THE COHORT BY DIFFERENT OUTCOME GROUPS 
 survived 1 year deceased within 1 year overall cohort p-value 
 n = 2,003 (86%) n = 319 (14%) n = 2,322 (100%)  

Age 59 (53-66) 62 (55-70) 59 (53-66) < 0.01 
T0 age 57 (51-64) 61 (54-69) 58 (52-65) < 0.01 
Female 857 (43%) 120 (38%) 977 (42%) 0.08 
Race 

American Indian or Alaskan Native 5 (1%) 1 (1%) 6 (1%) 0.83 
Asian 60 (3%) 8 (3%) 68 (3%) 0.63 

Black or African American 196 (10%) 22 (7%) 218 (9%) 0.10 
Hispanic 23 (1%) 0 23 (1%) 0.05 

Native Hawaiian or Other Pacific Islander 2 (1%) 0 2 (1%) 0.57 
Unknown 587 (29%) 85 (27%) 672 (29%) 0.33 

White 1130 (56%) 203 (64%) 1333 (57%) 0.02 
Ethnic Group 

Hispanic or Latino 258 (13%) 26 (8%) 284 (12%) 0.02 
Not Hispanic or Latino 1445 (72%) 202 (63%) 1647 (71%) < 0.01 

Unknown 300 (15%) 91 (29%) 391 (17%) < 0.01 
Alcohol Use 

Yes 231 (12%) 46 (14%) 277 (12%) 0.14 
No 1046 (52%) 83 (26%) 1129 (49%) < 0.01 

Unknown 726 (36%) 190 (60%) 916 (39%) < 0.01 
Drug Use 

Yes 60 (3%) 9 (3%) 69 (3%) 0.86 
No 1078 (54%) 97 (30%) 1175 (51%) < 0.01 

Unknown 865 (43%) 213 (67%) 1078 (46%) < 0.01 
Smoking Status 
Passive Smoker 11 (1%) 3 (1%) 14 (1%) 0.40 
Former Smoker 685 (34%) 98 (31%) 783 (34%) 0.22 
Heavy Smoker 217 (11%) 28 (9%) 245 (11%) 0.27 
Light Smoker 67 (3%) 3 (1%) 70 (3%) 0.02 
Never Smoker 768 (38%) 69 (22%) 837 (36%) < 0.01 

Smoker 0 1 (1%) 1 (1%) 0.01 
Unknown 255 (13%) 117 (37%) 372 (16%) < 0.01 

Discrete variables are presented as counts (percentages); continuous variables are presented as mean (25th – 75th percentile). We define the T0 date as the date 
that any of the complications in Table I first occurred, and T0 age is calculated by subtracting the T0 date with birth date. 

 

 
Fig. 1 Identification of well recorded years from historical records 
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The features used fall into four categories, which are 
demographic information, comorbidities, clinical procedures 
and laboratory records. 

Demographic features are extracted directly from clinical 
records of patients. The clinical records include regular 
demographic information together with selected behavioral 
attributes of patients (e.g., if the patient consumes alcohol). 

Comorbidities reflect co-occurrence of other severe diseases 
that a patient has. Each comorbidity is indicated by a group of 
ICD-9 codes that a patient has, as shown in Appendix 1. We use 
binary features to indicate if the patient has a certain 
comorbidity or not with a total of 45 different comorbidities 
included. 

Clinical procedures may influence a patient’s chances of 
survive, thus they are used as features in our study. All clinical 
procedures are defined by specific codes, also known as CPT 
codes. We use binary features to indicate if a patient has had a 
certain procedure. A total of 24 different procedures are 
included (see Appendix 3). 

As for laboratory items, we take the first value, last value, 
mean and standard deviation of each item as features. We call 
these four types of features as statistical features.  

All of the considered features are listed in Table III. Note that 
MELD is one of the features despite being a derived value from 
other features. It is well known that combined features can 
improve model performance. We also use a subgraph mining 
method to analyze temporal trends of laboratory items which 
yields additional features.  

The subgraph mining algorithm is a pattern mining method 
to find frequently occurring structures in graphs, thus the first 
step is to convert historical laboratory records into a graph 
representation, as shown in Fig. 1. We average the records of 
each laboratory item every two months (defined as a node) to 
get a graph with fixed intervals corresponding to nodes and the 
averaged values to be the weights of the nodes. However, since 
laboratory values for a patient are often sparsely recorded and 
not evenly distributed in time, we decide to only take frequently 
recorded years of the data. After generating the initial graph, we 
use a search window with width of six nodes (corresponding 
exactly to one year) to search for well recorded years. We define 
a well recorded year as having at least three nodes in that year 
with 10 out of 15 laboratory items (we have 15 laboratory items 
in total). 

Some patients may have multiple well recorded years. To 
further utilize the data, we create patient record slices according 
to well recorded years. For each well recorded year, we 
duplicate the patient to create an artificial patient or a patient 
record slice. For such an artificial patient, the features are only 
considered up to the point in time at the end of the well recorded 
year. Since our focus is finding one-year mortality, we search 
forward one year from the end of the well recorded year to 
decide the outcome of the artificial patient. By this definition, 
1,728 patient record slices out of 1,170 patients with at least one 
well recorded year are created, and are later used for subgraph 
mining methods. 

 

TABLE III 
FEATURE DOMAINS AND INDIVIDUAL VARIABLES 

Feature 
Domains Individual Variables 

Demographics Age, T0 age, Gender, Race, Ethnic Group, Alcohol Use, 
Drug Use, Smoking Status 

Comorbidity 

Alcohol Abuse, Alcohol-related Liver Disease, Ascites, 
Cardiac Arrhythmias, Cholestasis, Chronic Pulmonary 

Disease, Deficiency Anemia, Depression, Diabetes 
Complicated, Diabetes Uncomplicated, Esophageal Varices, 

Fluid and Electrolyte Disorders, HCV, HE, Hepatic 
Hydrothorax, Hep B, Hepatopulmonary Disease, HRS, 

Hypertension Complicated, Hypertension Uncomplicated, 
Hypothyroidism, Jaundice, Lymphoma, MACE, 

Malnutrition, Metastatic Cancer, NASH, Obesity, Other 
Neurological Disorders, Paralysis, Peptic Ulcer Disease 

Excluding Bleeding, PVD, Portal Hypertension, Psychoses, 
Pulmonary Circulation Disorders, Renal Failure, RA/CVD, 

SBP, Valvular Disease 

Clinical 
Procedures 

32554, 32555, 32557, 37182, 37204, 37243, 43205, 43227, 
43235, 43236, 43243, 43244, 43255, 47120, 47122, 47125, 

47130, 49082, 49083, 75894, 77778, 79445 

Laboratory 
Items 

Albumin, ALP, AFP Tumor marker, ALT, AST, Bilirubin 
total, Creatinine, GFR, Hemoglobin, INR, MELD score, 

Platelet Count, PT, Serum Sodium, White Cell Count 
Age is calculated by subtracting the date of their Last Laboratory record date 

with birth date; AFP- Alpha Fetoprotein; ALP - Alkaline Phosphatase; ALT - 
Alanine Aminotransferase; AST - Aspartate Aminotransferase; GFR - 
Glomerular Filtration Rate; HCV - Hepatitis C; Hep B - Hepatitis B; HRS - 
Hepatorenal Syndrome; NASH - Nonalcoholic Steatohepatitis; SBP - 
Spontaneous Bacterial Peritonitis; PT - Prothrombin Time; PVD - Peripheral 
Vascular Disorders; RA/CVD - Rheumatoid Arthritis Or Collagen Vascular 
Diseases. 

D. Models 
Statistical Feature-based Model: Our statistical feature-

based model takes demographic records, comorbidity records, 
clinical procedures and laboratory tests as features. It only uses 
statistical features to describe the laboratory tests, hence the 
origin of the name of the model. The missing values of a 
laboratory test are imputed by Multivariate Imputation by 
Chained Equations, or MICE [22]. 

The statistical feature-based model (Stat model for short) can 
be trained and tested on all patients, or on patient record slices, 
mainly for model comparison and ensemble. When referring to 
this model, we always specify the underlying data set.  

Subgraph Enhanced Model: For patient record slices which 
are created by well recorded years, in addition to the features 
used by the Stat model, we also use an FSM method to find 
patterns in the change of the laboratory records, and use the 
patterns as features. FSM is a method for graph pattern 
recognition. Intuitively, patients with similar physiological 
conditions share similar trajectories of laboratory records. Thus, 
the occurrence of certain patterns could be used to identify 
patients with certain physiological conditions. We use the 
Subgraph Enhanced model (SE model for short) only on patient 
record slices (since for others there is not enough laboratory 
data to perform FSM). 

We next provide further details specifically on the subgraph 
mining process. 

As previously mentioned, the historical laboratory records 
are first converted to graphs. However, the definition of a well 
recorded year does not require a year to be fully recorded, so 
we first use MICE imputation to impute the missing values in 
the nodes, to make sure each graph has six nodes, and each node 
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has all 15 laboratory values.  
Next, we discretize the node values to get the graph 

representation. To do this, we use a customized z-score, where 
all values within the normal range are considered as 0. For 
values larger than the upper bound of the normal range, we use 
H1 and H2 to represent the 33% and 66% percentile. A value 
larger than H2 is considered as 3, between H1 and H2 is 
considered as 2, and between the upper bound of the normal 
range and H1 is 1. For values smaller than the lower bound of 
the normal range, we apply the same approach except we use -
3, -2, -1 with -3 representing the lowest 33% of the values. 

Subgraph miner MoSS is then used to identify frequent 
subgraphs among all graphs [23]. A total of 2,907 subgraphs 
that occur with an empirically chosen frequency are found. 
Note that when the miner captures a frequent subgraph, all its 
subgraphs are also identified. Thus, graphs with smaller 
structures outnumber those with larger structures. We use the 
strategy that if a subgraph occurs in a patient, all subgraphs of 
it are not considered for this patient. After mining, for each 
patient we have a set of frequent subgraphs. In other words, we 
obtain a matrix with rows corresponding to patients and 
columns to subgraphs. The value in the matrix is the count. This 
matrix has a large number of subgraphs, i.e., columns.  

We take one further step by applying Non-Negative Matrix 
Factorization (NMF) to this matrix to construct latent groups of 
subgraphs. NMF is a clustering method that is efficient in 
grouping subgraphs by different patient groups [7], [24]. An 
occurrence of each group is used as a feature in the SE model. 
We empirically choose to group the subgraphs into 20 groups, 
and the value of the corresponding feature is obtained from the 
NMF.  

Ensemble Model: For patient record slices, the predictions 
can be made by either the Stat or SE model. We ensemble the 
two models to further improve the prediction accuracy. 
Ensemble methodology is to build a predictive model by 
integrating multiple models and is well known for improving 
prediction performance. We ensemble our models as follows. 
For each patient record slice, we use the Stat and SE models to 
separately calculate the probability of death. We then consider 
a weighted average of the results. The weights between the two 
models are decided by 10-fold cross-validation to get the 
highest prediction accuracy (on validation sets). We expect the 
ensemble model to have a better performance than either model 
since the weights can always be selected towards the best model 
of the two. 

IV. RESULTS 

A. Model Training and Testing 
For evaluation, we use 10-fold cross validation on the 

training set, and evaluate the model performance on a separate 
testing set. 

For the Stat model, we first standardize the features (subtract 
the mean and divided by standard deviation over the training 
data). We then apply feature selection method mRMR to 
optimize the model performance while also preserving the 
features for model interpretability [25]. Several supervised 

machine learning algorithms are trained to predict the outcome, 
including Logistic Regression (LR), SVM, Random Forest 
(RF), Gradient Boosting Classifier (GBC), and ANN. The 
training set has n = 2089 patients, and the testing set has n = 
233 patients. 

The same procedure is followed during the training and 
testing of the SE model, except before training, we deal with 
the imbalance of the two classes. The patient record slice has a 
one-year mortality of 6.4%. We use the oversampling method 
SMOTE to synthesize patients who died within a year after their 
well recorded year [26]. We empirically choose the final 
balance ratio to be 10%. The training set has n = 1277 well 
recorded years, and the testing set has n = 320 well recorded 
years. 

For the ensemble model, we use the cross-validated 
predictions to select the best ratio between different models, 
and evaluate the results on the testing set. 

B. Performance Evaluation 
The performance evaluation is based on how accurate the 

model predicts the outcome of a patient given specified 
features. The Area Under the receiver operating characteristics 
Curve, or AUC, is used as the criterion, as it is a commonly 
used measurement of the accuracy of discrimination 
performance. For each fold, we separately calculate the AUC 
on test, and then use a t-test to compare the results of the 
different models. 

For the pure MELD model, we use MELD as the only feature 
within the logistics regression model, and then calculate AUC. 
Note that this is equivalent to using a threshold based on the 
MEDL score except that the use of the single feature LR model 
enables the use of out-of-the-box AUC.  

C. Model Comparison 
Stat Model on original cohort: The overall AUC 

performance of different algorithms we use in the Stat model 
and the baseline MELD model is shown in Fig. 2. The model is 
applied on the entire cohort. 

The t-test shows that all models outperform the MELD 
model which has the AUC of 0.822. Based on the t-test among 
the algorithms, LR is statistically significantly better than 
others, followed by ANN and SVM. The performances of RF 
and GBC algorithms are statistically significantly indifferent, 
and are the worst of the five. 

 

 
Fig. 2 ROC curve for Stat model on all patients 
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Fig. 3 ROC curve for SE model on patient record slices 

 
SE Model on Patient Record Slices: The AUC performance 

of the different algorithms we use for the SE model is shown in 
Fig. 3. Note that only a subset of the patients is considered here 
(those having at least one well recorded year).  

Although the AUC values of the SE models are always 
higher than those of the Stat models across all algorithms as 
shown in Table IV, the t-test shows that the subgraph mining 
algorithm does not yield a statistically significant improvement 
over the Stat model. 

 
TABLE IV 

AUC VALUES OF ALL ALGORITHMS AND DIFFERENT MODELS 
 SE model Stat Model P-value 

LR 0.901 0.898 0.1730 
ANN 0.865 0.864 0.686 
RF 0.855 0.843 0.274 

SVM 0.84 0.837 0.263 
GBC 0.862 0.838 0.200 

 
Ensemble Model: We take the best performed Stat model and 

the best performed SE model for model ensemble. Both models 
turn out to be LR. The AUC performance of the ensemble 
model and the two LR models is shown in Fig. 4. 

The ensemble model has a higher performance than either 
model. Furthermore, the t-test shows that ensemble is 
statistically better than the Stat model (with p-value of 0.0004) 
and the SE model (with p-value of 0.044).  

 

 
Fig. 4 ROC curve for Ensemble model on patient record slices 

D. Feature Importance 
Using the coefficients of trained LR models, we gain more 

information about important features and how they influence 
the probability of death. 

Table VIII shows the 10 most influential features of mortality 
prediction, together with the actual characteristics of each 

feature in alive group and deceased group. “Coefficient” 
indicates the change of the logit of probability of death, which 
is log     . For continuous features like ‘last 
measurement of MELD,’ whenever the value increases by 1 
unit (8.118), the logit of the patient’s probability of death would 
increase 0.428. For discrete feature like ‘no alcohol use,’ if the 
feature changes from 0 to 1 (clinically it means that the patient 
stops drinking alcohol), then the logit of the probability of death 
would decrease 0.719. All these features are known to be 
correlated with cirrhosis, and have a statistically significant 
difference between the alive and deceased groups. Among 
them, only ‘Bilirubin Total’ is a component of the MELD score. 

V. DISCUSSION 
To apply modern machine learning algorithms and data 

analysis methods on predicting one-year mortality of cirrhosis 
patients, we have built a model that predicts whether a patient 
would die within a year fairly accurately. The model can serve 
as a second opinion when clinicians decide whether the patient 
should get a liver transplantation. 

A. The Models 
Works [3-5] showed that MELD could serve as a mortality 

predictor, and we confirm that by only using the MELD score 
the AUC reaches 0.82. By using additional features and 
machine learning models however, all our models outperform 
the MELD-only model. One important reason of the 
improvement we believe is that the feature space we use is 
larger than the one used in previous models.  

We expect the SE model to outperform the Stat model since 
the SE model uses all features included in the Stat model and 
extra subgroup features. This is the case on average; however, 
the t-test does not show a statistically significant improvement 
of the model performance. The ensemble model outperforms 
both the SE and Stat models and the t-test shows that this is 
statistically significant. 

We believe that patterns of laboratory records do not 
significantly help in our study due to the sparsity of the records. 
On average, 36.8% of the data in a well recorded year is 
missing.  

B. Important Features 
The 10 most influential features exhibited in Appendix 4 are 

factors of cirrhosis. However, to the best of our knowledge, our 
study is the first to quantitively show the magnitude of feature 
importance. Our model provides an understanding of how a 
change of one feature would influence mortality. For example, 
‘No alcohol use,’ although other researches [3-5] have pointed 
out a strong relationship between alcohol intake and cirrhosis, 
we also quantitively show that if a patient stops drinking 
alcohol, how much would the probability of death change.  

VI. CONCLUSION 
Our main contributions are that we much more accurately 

predict one-year mortality of cirrhotic patients awaiting liver 
transplant and evaluate the performance of different machine 
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learning algorithms on this particular task. Our research shows 
that machine learning greatly improves the accuracy of 
prediction and largely outperforms the MELD model. The 
improvement on average is 10%, with an increase of AUC from 
0.822 to 0.904. Another contribution is the idea of creating 
‘patient slices,’ i.e., from a single patient we create several 
‘auxiliary’ patients with the survived label. This enlarges the 
training data set and improves the quality of the models. The 
last contribution is a combination of techniques based on FSM 
and ensemble that yields the best performing model. 

APPENDIX 

A. Appendix 1. Definition of Complications of Cirrhosis 
 TABLE V 

DEFINITION OF COMPLICATIONS OF CIRRHOSIS 
Complication Corresponding ICD-9 code 

HCV 070.41, 070.44, 070.51, 070.54, 070.70, 070.71, V02.62 

Hepatitis B 070.20, 070.21, 070.22, 070.23, 070.30, 070.31, 070.32, 
070.33, 070.42, V02.61 

Alcohol 571.0, 571.1, 571.2, 571.3 
NASH 571.8, 571.9 
HCC 155.0 

Cholestasis 571.6, 576.1 
Portal 

Hypertension 572.3 

Ascites 789.5, 789.51, 789.59, 568.82 
HE 572.2, 348.31, 348.30, 348.39, 349.82 

Jaundice 782.4, 277.4 
Esophageal 

Varices 456.1, 456.21 

Variceal Bleeding 456.0, 456.20 
SBP 567.23, 567.0, 567.21, 567.29, 567.89, 567.9 

Hepatorenal 572.4 
Hepatopulmonary 573.5 

Hepatic 
Hydrothorax 511.8, 511.9, 511.89 

Malnutrition 263.9, 728.2, 263.0, 263.1, 263.2, 263.8, 799.4, 260, 261, 
262, 783.2, 783.21, 783.22, 783.3 

Congestive Heart 
Failure 

398.91, 402.01, 402.11, 402.91, 404.01, 404.03, 404.11, 
404.13, 404.91, 404.93, 425.4, 425.5, 425.7, 425.8, 425.9, 

428.0, 428.1, 428.20, 428.21, 428.22, 428.23, 428.30, 
428.31, 428.32, 428.33, 428.40, 428.41, 428.42, 428.43, 

428.9 

Cardiac 
Arrhythmias 

 

426.0, 426.13, 426.7, 426.9, 426.10, 426.12, 427.0, 427.1, 
427.2, 427.31, 427.32, 427.41, 427.42, 427.60, 427.61, 
427.69, 427.81, 427.89, 427.9, 785.0, 996.01, 996.04, 

V45.00, V45.01, V53.31, V53.32, V53.39 

Valvular Disease 
 

093.20, 093.21, 093.22, 093.23, 093.24, 394.0, 394.1, 
394.2, 394.9, 395.0, 395.1, 395.2, 395.9, 396.0, 396.1, 
396.2, 396.3, 396.8, 396.9, 397.0, 397.1, 397.9, 424.0, 

424.1, 424.2, 424.3, 424.90, 424.91, 424.99, 746.3, 746.4, 
746.5, 746.6, V42.2, V43.3 

Pulmonary 
Circulation 
Disorders 

415.0, 415.11, 415.12, 415.13, 415.19, 416.0, 416.1, 
416.2, 416.8, 416.9, 417.0, 417.8, 417.9 

Peripheral 
Vascular 
Disorders 

 

093.0, 437.3, 440.0, 440.1, 440.20, 440.21, 440.22, 
440.23, 440.24, 440.29, 440.30, 440.31, 440.32, 440.4, 

440.8, 440.9, 441.00, 441.01, 441.02, 441.03, 441.1, 
441.2, 441.3, 441.4, 441.5, 441.6, 441.7, 441.9, 443.1, 

443.21, 443.22, 443.23, 443.24, 443.29, 443.81, 443.82, 
443.89, 443.9, 447.1, 557.1, 557.9, V43.4 

Hypertension 
Uncomplicated 

401.0, 401.1, 401.9 
 

Hypertension 
Complicated 

 

402.00, 402.01, 402.10, 402.11, 402.90, 402.91, 403.00, 
403.01, 403.10, 403.11, 403.90, 403.91, 404.00, 404.01, 
404.02, 404.03, 404.10, 404.11, 404.12, 404.13, 404.90, 

Complication Corresponding ICD-9 code 
404.91, 404.92, 404.93, 405.01, 405.09, 405.11, 405.19, 

405.91, 405.99 

Paralysis 
 

334.1, 342.00, 342.01, 342.02, 342.10, 342.11, 342.12, 
342.80, 342.81, 342.82, 342.90, 342.91, 342.92, 343.0, 

343.1, 343.2, 343.3, 343.4, 343.8, 343.9, 344.00, 344.01, 
344.02, 344.03, 344.04, 344.09, 344.1, 344.2, 344.30, 

344.31, 344.32, 344.40, 344.41, 344.42, 344.5, 344.60, 
344.61, 344.9 

Other 
Neurological 

Disorders 
 

331.9, 332.0, 332.1, 333.4, 333.5, 333.92, 334.0, 334.1, 
334.2, 334.3, 334.4, 334.8, 334.9, 335.0, 335.10, 335.11, 
335.19, 335.20, 335.21, 335.22, 335.23, 335.24, 335.29, 
335.8, 335.9, 336.2, 340, 341.0, 341.1, 341.20, 341.21, 
341.22, 341.8, 341.9, 345.00, 345.01, 345.10, 345.11, 
345.2, 345.3, 345.40, 345.41, 345.50, 345.51, 345.60, 

345.61, 345.70, 345.71, 345.80, 345.81, 345.90, 345.91, 
348.1, 780.31, 780.32, 780.33, 780.39, 784.3 

Chronic 
Pulmonary 

Disease 
 

416.8, 416.9, 490, 491.0, 491.1, 491.20, 491.21, 491.22, 
491.8, 491.9, 492.0, 492.8, 493.00, 493.01, 493.02, 

493.10, 493.11, 493.12, 493.20, 493.21, 493.22, 493.81, 
493.82, 493.90, 493.91, 493.92, 494.0, 494.1, 495.0, 

495.1, 495.2, 495.3, 495.4, 495.5,494.6, 495.7, 495.8, 
495.9, 496, 500, 501, 502, 503, 504, 505, 506.4, 508.1, 

508.8 
Diabetes, 

Uncomplicated 
 

250.00, 250.01, 250.02, 250.03, 250.10, 250.11, 250.12, 
250.13, 250.20, 250.21, 250.22, 250.23, 250.30, 250.31, 

250.32, 250.33 

Diabetes 
Complicated 

 

250.40, 250.41, 250.42, 250.43, 250.50, 250.51, 250.52, 
250.53, 250.60, 250.61, 250.62, 250.63, 250.70, 250.71, 
250.72, 250.73, 250.80, 250.81, 250.82, 250.83, 250.90, 

250.91, 250.92, 250.93 
Hypothyroidism 

 
240.9, 243, 244.0, 244.1, 244.2, 244.3, 244.8, 244.9, 

246.1, 246.8 

Renal Failure 
 

403.01, 403.11, 403.91, 404.02, 404.03, 404.12, 404.13, 
404.92, 404.93, 585.1, 585.2, 585.3, 585.4, 585.5, 585.6, 
585.9, 586, 588.0, V42.0, V45.1, V56.0, V56.1, V56.2, 

V56.31, V56.32, V56.8 
Peptic Ulcer 

Disease Excluding 
Bleeding 

531.70, 531.71, 531.90, 531.91, 532.70, 532.71, 532.90, 
532.91, 533.70, 533.71, 533.90, 533.91, 534.70, 534.71, 

534.90, 534.91 
AIDS/HIV 042 

Metastatic Cancer
 

196.0, 196.1, 196.2, 196.3, 196.5, 196.6, 196.8, 196.9, 
197.0, 197.1, 197.2, 197.3, 197.4, 197.5, 197.6, 197.7, 
197.8, 198.0, 198.1, 198.2, 198.3, 198.4, 198.5, 198.6, 

198.7, 198.81, 198.82, 198.89, 199.0, 199.1, 199.2 

Lymphoma 
 

200.00, 200.01, 200.02, 200.03, 200.04, 200.05, 200.06, 
200.07, 200.08, 200.10, 200.11, 200.12, 200.13, 200.14, 
200.15, 200.16, 200.17, 200.18, 200.20, 200.21, 200.22, 
200.23, 200.24, 200.25, 200.26, 200.27, 200.28, 200.30, 
200.31, 200.32, 200.33, 200.34, 200.35, 200.36, 200.37, 
200.38, 200.40, 200.41, 200.42, 200.43, 200.44, 200.45, 
200.46, 200.47, 200.48, 200.50, 200.51, 200.52, 200.53, 
200.54, 200.55, 200.56, 200.57, 200.58, 200.60, 200.61, 
200.62, 200.63, 200.64, 200.65, 200.66, 200.67, 200.68, 
200.70, 200.71, 200.72, 200.73, 200.74, 200.75, 200.76, 
200.77, 200.78, 200.80, 200.81, 200.82, 200.83, 200.84, 
200.85, 200.86, 200.87, 200.88, 201.00, 201.01, 201.02, 
201.03, 201.04, 201.05, 201.06, 201.07, 201.08, 201.10, 
201.11, 201.12, 201.13, 201.14, 201.15, 201.16, 201.17, 
201.18, 201.20, 201.21, 201.22, 201.23, 201.24, 201.25, 
201.26, 201.27, 201.28, 201.40, 201.41, 201.42, 201.43, 
201.44, 201.45, 201.46, 201.47, 201.48, 201.50, 201.51, 
201.52, 201.53, 201.54, 201.55, 201.56, 201.57, 201.58, 
201.60, 201.61, 201.62, 201.63, 201.64, 201.65, 201.66, 
201.67, 201.68, 201.70, 201.71, 201.72, 201.73, 201.74, 
201.75, 201.76, 201.77, 201.78, 201.90, 201.91, 201.92, 
201.93, 201.94, 201.95, 201.96, 201.97, 201.98, 202.00, 
202.01, 202.02, 202.03, 202.04, 202.05, 202.06, 202.07, 
202.08, 202.10, 202.11, 202.12, 202.13, 202.14, 202.15, 
202.16, 202.17, 202.18, 202.20, 202.21, 202.22, 202.23, 
202.24, 202.25, 202.26, 202.27, 202.28, 202.30, 202.31, 
202.32, 202.33, 202.34, 202.35, 202.36, 202.37, 202.38, 
202.40, 202.41, 202.42, 202.43, 202.44, 202.45, 202.46, 
202.47, 202.48, 202.50, 202.51, 202.52, 202.53, 202.54, 
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Complication Corresponding ICD-9 code 
202.55, 202.56, 202.57, 202.58, 202.60, 202.61, 202.62, 
202.63, 202.64, 202.65, 202.66, 202.67, 202.68, 202.70, 
202.71, 202.72, 202.73, 202.74, 202.75, 202.76, 202.77, 
202.78, 202.80, 202.81, 202.82, 202.83, 202.84, 202.85, 
202.86, 202.87, 202.88, 202.90, 202.91, 202.92, 202.93, 
202.94, 202.95, 202.96, 202.97, 202.98, 203.00, 203.01, 
203.02, 203.10, 203.11, 203.12, 203.80, 203.81, 203.82, 

238.6 

Solid Tumor 
without Metastasis 

 

140.0, 140.1, 140.3, 140.4, 140.5, 140.6, 140.8, 140.9, 
141.0, 141.1, 141.2, 141.3, 141.4, 141.5, 141.6, 141.8, 
141.9, 142.0, 142.1, 142.2, 142.8, 142.9, 143.0, 143.1, 
143.8, 143.9, 144.0, 144.1, 144.8, 144.9, 145.0, 145.1, 
145.2, 145.3, 145.4, 145.5, 145.6, 145.8, 145.9, 146.0, 
146.1, 146.2, 146.3, 146.4, 146.5, 146.6, 146.7, 146.8, 
146.9, 147.0, 147.1, 147.2, 147.3, 147.8, 147.9, 148.0, 
148.1, 148.2, 148.3, 148.8, 148.9, 149.0, 149.1, 149.8, 
149.9, 150.0, 150.1, 150.2, 150.3, 150.4, 150.5, 150.8, 
150.9, 151.0, 151.1, 151.2, 151.3, 151.4, 151.5, 151.6, 
151.8, 151.9, 152.0, 152.1, 152.2, 152.3, 152.8, 152.9, 
153.0, 153.1, 153.2, 153.3, 153.4, 153.5, 153.6, 153.7, 
153.8, 153.9, 154.0, 154.1, 154.2, 154.3, 154.8, 155.1, 
155.2, 156.0, 156.1, 156.2, 156.8, 156.9, 157.0, 157.1, 
157.2, 157.3, 157.4, 157.8, 157.9, 158.0, 158.8, 158.9, 
159.0, 159.1, 159.8, 159.9, 160.0, 160.1, 160.2, 160.3, 
160.4, 160.5, 160.8, 160.9, 161.0, 161.1, 161.2, 161.3, 
161.8, 161.9, 162.0, 162.2, 162.3, 162.4, 162.5, 162.8, 
162.9, 163.0, 163.1, 163.8, 163.9, 164.0, 164.1, 164.2, 
164.3, 164.8, 164.9, 165.0, 165.8, 165.9, 170.0, 170.1, 
170.2, 170.3, 170.4, 170.5, 170.6, 170.7, 170.8, 170.9, 
171.0, 171.2, 171.3, 171.4, 171.5, 171.6, 171.7, 171.8, 
171.9, 172.0, 172.1, 172.2, 172.3, 172.4, 172.5, 172.6, 
172.7, 172.8, 172.9, 174.0, 174.1, 174.2, 174.3, 174.4, 
174.5, 174.6, 174.8, 174.9, 175.0, 175.9, 176.0, 176.1, 
176.2, 176.3, 176.4, 176.5, 176.8, 176.9, 179, 180.0, 
180.1, 180.8, 180.9, 181, 182.0, 182.1, 182.8, 183.0, 

183.2, 183.3, 183.4, 183.5, 183.8, 183.9, 184.0, 184.1, 
184.2, 184.3, 184.4, 184.8, 184.9, 185, 186.0, 186.9, 

187.1, 187.2, 187.3, 187.4, 187.5, 187.6, 187.7, 187.8, 
187.9, 188.0, 188.1, 188.2, 188.3, 188.4, 188.5, 188.6, 
188.7, 188.8, 188.9, 189.0, 189.1, 189.2, 189.3, 189.4, 
189.8, 189.9, 190.0, 190.1, 190.2, 190.3, 190.4, 190.5, 
190.6, 190.7, 190.8, 190.9, 191.0, 191.1, 191.2, 191.3, 
191.4, 191.5, 191.6, 191.7, 191.8, 191.9, 192.0, 192.1, 
192.2, 192.3, 192.8, 192.9, 193, 194.0, 194.1, 194.3, 

194.4, 194.5, 194.6, 194.8, 194.9, 195.0, 195.1, 195.2, 
195.3, 195.4, 195.5, 195.8 

Rheumatoid 
Arthritis 

 

446.0, 446.1, 446.20, 446.21, 446.29, 446.3, 446.4, 446.5, 
446.6, 446.7, 701.0, 710.0, 710.1, 710.2, 710.3, 710.4, 

710.8, 710.9, 711.2, 714.0, 714.1, 714.2, 714.30, 714.31, 
714.32, 714.33, 714.4, 714.81, 714.89, 714.9, 719.3, 

720.0, 720.1, 720.2, 720.81, 720.89, 720.9, 725, 728.5, 
728.89, 729.30 

Obesity 278.00, 278.01, 278.02, 278.03 
Fluid and 

Electrolyte 
Disorders 

253.6, 276.0, 276.1, 276.2, 276.3, 276.4, 276.50, 276.51, 
276.52, 276.61, 276.69, 276.7, 276.8, 276.9 

Blood Loss 
Anemia 280.0 

Deficiency 
Anemia 

280.1, 280.8, 280.9, 281.0, 281.1, 281.2, 281.3, 281.4, 
281.8, 281.9 

Drug Abuse 
 

265.2, 291.0, 291.1, 291.2, 291.3, 291.4, 291.5, 291.81, 
291.82, 291.89, 291.9, 303.0, 303.9, 305.0, 357.5, 425.5, 

535.5, 980.0, 980.1, 980.2, 980.3, 980.8, 980.9, V11.3 

 

292.0, 292.11, 292.12, 292.2, 292.81, 292.82, 292.83, 
292.84, 292.85, 292.89, 292.9, 304.00, 304.01, 304.02, 

304.03, 304.10, 304.11, 304.12, 304.13, 304.20, 304.21, 
304.22, 304.23, 304.30, 304.31, 304.32, 304.33, 304.40, 
304.41, 304.42, 304.43, 304.50, 304.51, 304.52, 304.53, 
304.60, 304.61, 304.62, 304.63, 304.70, 304.71, 304.72, 
304.73, 304.80, 304.81, 304.82, 304.83, 304.90, 304.91, 
304.92, 304.93, 305.20, 305.21, 305.22, 305.23, 305.30, 
305.31, 305.32, 305.33, 305.40, 305.41, 305.42, 305.43, 
305.50, 305.51, 305.52, 305.53, 305.60, 305.61, 305.62, 

Complication Corresponding ICD-9 code 
305.63, 305.70, 305.71, 305.72, 305.73, 305.80, 305.81, 
305.82, 305.83, 305.90, 305.91, 305.92, 305.93, V65.42 

Psychoses 
 

293.8, 295.00, 295.01, 295.02, 295.03, 295.04, 295.05, 
295.10, 295.11, 295.12, 295.13, 295.14, 295.15, 295.20, 
295.21, 295.22, 295.23, 295.24, 295.25, 295.30, 295.31, 
295.32, 295.33, 295.34, 295.35, 295.40, 295.41, 295.42, 
295.43, 295.44, 295.45, 295.50, 295.51, 295.52, 295.53, 
295.54, 295.55, 295.60, 295.61, 295.62, 295.63, 295.64, 
295.65, 295.70, 295.71, 295.72, 295.73, 295.74, 295.75, 
295.80, 295.81, 295.82, 295.83, 295.84, 295.85, 295.90, 
295.91, 295.92, 295.93, 295.94, 295.95, 296.04, 296.14, 
296.44, 296.54, 297.0, 297.1, 297.2, 297.3, 297.8, 297.9, 

298.0, 298.1, 298.2, 298.3, 298.4, 298.8, 298.9 

Depression 
 

296.2, 296.3, 296.5, 300.4, 309.0, 309.1, 309.21, 309.22, 
309.23, 309.24, 309.28, 309.29, 309.3, 309.4, 309.81, 

309.82, 309.83, 309.89, 309.9, 311 

B. Appendix 2. Positive Key Phrases Used in NLP Process 
TABLE VI 

POSITIVE KEY PHRASES USED IN NLP PROCESS 
Key phrases: 

consistent with (history of) 
compatible with (history of) 

suggest(ive|ing) 
there is 

the liver is (a) | there is (a) 
evidence of 

stable findings of 
the liver is again noted to be 

indicate of 
presumed 

reflect 
re-identified is 

morphologic changes of 

C. Appendix 3. Definition of Clinical Procedures 
TABLE VII 

DEFINITION OF CLINICAL PROCEDURES 
CPT code Clinical Procedure 

32554 
 

Thoracentesis, needle or catheter, aspiration of the pleural space; 
without imaging guidance 

32555 Thoracentesis, needle or catheter, aspiration of the pleural space; 
with imaging guidance 

32556 Pleural drainage, percutaneous, with insertion of indwelling 
catheter; without imaging guidance 

32557 Pleural drainage, percutaneous, with insertion of indwelling 
catheter; with imaging guidance 

37182 Insertion of TIPS 
37204 Embolization code (deleted) 

37243 

Vascular embolization or occlusion, inclusive of all radiological 
supervision and interpretation, intraprocedural road mapping, and 

imaging guidance necessary to complete the intervention; for 
tumors, organ ischemia, or infarction 

43204 Esophagoscopy, flexible, transoral; with injection sclerosis of 
esophageal varices 

43205 Esophagoscopy, flexible, transoral; with band ligation of 
esophageal varices 

43227 Esophagoscopy, flexible, transoral; with control of bleeding, any 
method 

43235 
Esophagogastroduodenoscopy, flexible, transoral; diagnostic, 

including collection of specimen(s) by brushing or washing, when 
performed (separate procedure) 

43236 Esophagogastroduodenoscopy, flexible, transoral; with directed 
submucosal injection(s), any substance 

43243 Esophagogastroduodenoscopy, flexible, transoral; with injection 
sclerosis of esophageal/gastric varices 

43244 Esophagogastroduodenoscopy, flexible, transoral; with band 
ligation of esophageal/gastric varices 

43255 Esophagogastroduodenoscopy, flexible, transoral; with control of 
bleeding, any method 

47120 Hepatectomy, resection of liver; partial lobectomy 
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47122 Hepatectomy, resection of liver; trisegmentectomy 
47125 Hepatectomy, resection of liver; total left lobectomy 
47130 Hepatectomy, resection of liver; total right lobectomy 

49082 Abdominal paracentesis (diagnostic or therapeutic); without 
imaging guidance 

49083 Abdominal paracentesis (diagnostic or therapeutic); with imaging 
guidance 

75894 Transcatheter therapy, embolization, any method, radiological 
supervision and interpretation 

77778 Interstitial radiation source application, complex, includes 
supervision, handling, loading of radiation source, when performed

79445 Radiopharmaceutical therapy, by intra-arterial particulate 
administration 

D. Appendix 4. Top 10 Most Influential Features and 
Characteristics among Different Patient Groups 

TABLE VIII 
TOP 10 MOST INFLUENTIAL FEATURES AND CHARACTERISTICS AMONG 

DIFFERENT PATIENT GROUP 

 coefficient unit alive 
(n = 2,003) 

deceased 
(n = 319) 

last MELD 1.745 8.118 12.38 (6.70-
15.25) 

22.65 (15.00-
30.49) 

cpt_75894 1.615 1 9.44% 27.90% 

t0 age 1.397 11.28 57.02 (51.00-
64.00) 

60.95 (54.00-
69.00) 

last Alpha 
Fetoprotein Tumor 1.243 299.77 34.23 (2.70-

8.50) 
210.50 (2.70-

20.80) 
mean White Cell 

Count 1.192 2.854 5.80 (4.09-6.91) 7.29 (4.50-8.72) 

standard deviation 
of Sodium 1.172 1.348 2.31 (1.52-2.80) 3.26 (2.14-4.17) 

last Bilirubin Total 1.114 5.879 2.31 (0.80-2.20) 8.05 (1.60-8.95) 

last AST 1.1 109.56 60.60 (28.00-
68.00) 

133.92 (44.00-
124.00) 

No alcohol use 0.442 1 52.22% 26.02% 
last Albumin 0.498 0.777 3.51 (3.00-4.10) 2.69 (2.20-3.20) 

cpt_75894: Under Transcatheter Diagnostic Radiology (Diagnostic 
Imaging) Procedures; discrete variables are presented as percentages; 
continuous variables are presented as mean (25th – 75th percentile). 
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