
 

 

 
Abstract—Health issues are significantly increasing, putting a 

substantial strain on healthcare services. This has accelerated the 
integration of machine learning in healthcare, particularly following 
the COVID-19 pandemic. The utilization of machine learning in 
healthcare has grown significantly. We introduce DeClEx, a pipeline 
which ensures that data mirrors real-world settings by incorporating 
gaussian noise and blur and employing autoencoders to learn 
intermediate feature representations. Subsequently, our convolutional 
neural network, paired with spatial attention, provides comparable 
accuracy to state-of-the-art pre-trained models while achieving a 
threefold improvement in training speed. Furthermore, we provide 
interpretable results using explainable AI techniques. We integrate 
denoising and deblurring, classification and explainability in a single 
pipeline called DeClEx.  
 

Keywords—Machine learning, healthcare, classification, 
explainability. 

I. INTRODUCTION 

EALTHCARE is the systematic provision of medical care 
to individuals by trained professionals with the objective 

to keep them healthy. The healthcare sector is divided into two 
categories: general healthcare and critical healthcare. General 
healthcare includes preventative screenings, periodic 
examinations, vaccines, and dental treatment. Recently, 
artificial intelligence (AI) has been utilized to streamline patient 
data management and provide appropriate treatment options. 
Critical healthcare involves acute medical treatments such as 
emergency services, intensive care, and surgical procedures. AI 
is applied vastly in this sector for patient monitoring and 
quicker decision making under time-constrained situations. In 
recent years, machine learning (ML) has been used to perform 
several tasks in healthcare and biomedicine. These techniques 
are used for anomaly detection, predictive analytics, drug 
discovery and development, genetic mutation analysis, gene 
expression analysis, personal health monitoring, and disease 
spread modeling. Nanyue et al. [1] utilized principal component 
analysis (PCA) and least squares (LS) to analyze and 
differentiate pulse-diagnosis signals between patients with fatty 
liver disease and Cirrhosis, aiming to aid in TCM diagnosis. 
Kim et al. [2] used support vector machines (SVM), random 
forest, artificial neural networks (ANN) to identify risk of 
osteoporosis in postmenopausal women. Seixas et al. [3] 
employed k-nearest neighbors (KNN), decision tree, multi-
layer perceptron (MLP) and naïve-bayes for segmentation and 
pattern recognition of lower limb skin ulcers in medical images. 
Tulder and Bruijne [4] studied the use of convolutional 
classification restricted Boltzmann machines to help with 
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feature learning of lung texture classification and airway 
detection in CT images. Gerazov and Conceicao [5] made use 
of a deep convolutional neural network (DCNN) for tumor 
classification in homogeneous breast tissue. Tyagi, Mehra, and 
Saxena [6] adopted SVM and KNN for accurately predicting 
thyroid disease. Anastasiou et al. [7] proposed MODELHealth 
to process and anonymize health data using ML architectures. 
Tsarapatsani et al. [8] applied extreme grading boosting (XGB) 
and adaptive boosting (AdaBoost) for cardiovascular disease 
prediction. Sabir et al. [9] leveraged ResUNet to segment liver 
tumors from CT scans. Recent trends also show increased use 
of contrastive learning methods in medical care [10], [11]. In 
the past few years, explainable AI methods have turned opaque, 
"black box" models into transparent, "white box" models, 
allowing both experts and beginners to gain an in-depth 
understanding of the reasoning behind certain predictions. This 
approach has been extensively applied in healthcare, providing 
clinicians with crucial decision-making support. Workman et 
al. [12] provided explainability using impact scores for each 
feature within a deep learning model aimed at understanding 
opioid use disorder. Hossain, Muhammad and Guizani [13] 
integrated local interpretable model-agnostic explanations 
(LIME) in a healthcare framework to combat COVID 19-like 
pandemics. Marvin and Alam [14] utilized LIME, Shapely 
additive explanations (SHAP) to highlight feature importances 
in neonatal intensive care unit (NICU). Ammar et al. [15] 
proposed an explainable multimodal AI platform called 
SPACES for active surveillance, diagnosis, and management of 
adverse childhood experiences (ACEs). She et al. [16] 
investigated a web-based explainable AI screening for 
prolonged grief disorder. References [17] and [18] applied 
interpretable AI techniques for maternal health risk prediction 
and empowering glioma prognosis respectively.  

II. PROPOSED METHOD 

Dedicated autoencoders are used to process noisy and blur 
images. Then we make predictions using three different models 
and select the best model to provide explainability. Fig. 1 
illustrates the entire process. 

A. Dataset  

The original data provided in this study is openly available at 
[19]. This data contains MRI scans of the brain, categorized into 
Glioma, Meningioma, Pituitary, or No tumor. It includes 7022 
images, comprising 1623 Glioma, 1647 Meningioma, 2002 No 
tumor, and 1750 Pituitary scans. 
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 Fig. 1 Proposed DeClEx Architecture  
 

B. Implementation of Pre-Trained Models for Comparison 

Initially, we use pre-trained models on the data to come up 
with baseline findings for future comparison. We implement 
two models namely ResNet-50 and VGG-16 for classifying 
tumor images into one of the four mentioned classes. Initially, 
the data is processed by an image data generator, which 
performs several random translations to improve 
generalization. The dataset is then divided into 80% training 
and 20% testing. Next, we train ResNet-50 by freezing the base 
model's layers, preventing their weights from updating. To 
prevent model overfitting dropout is used. We utilize SoftMax 
for probability distribution over classes, with categorical cross 
entropy as the loss function. We achieve 97.86% test accuracy. 
Subsequently, VGG-16 is trained using an identical setup with 
the same activation function and loss function. We achieve a 
test accuracy of 81.01%. Therefore, we select the ResNet-50 
model for benchmarking and comparative evaluation. 

C. Noise and Blur Introduction 

To improve the classification model's generalization to real-
world test data, we deliberately introduce noise and blur in our 
training set. Fig. 2 shows original images alongside their noisy 
and blurred representations. Real-time test images often contain 
subtle noise that is unnoticeable to the human eye but has an 
adverse impact on model performance. Some images may also 
have low resolution. To help classification models later, we 

create a pipeline which intentionally pixelates the image first 
and then introduces noise. Following an in-depth literature 
survey, in which most studies across different tasks included 
15% noise in their images, we add 15% noise in the data leaving 
the remainder unchanged. 

D. Autoencoders for Noise and Blur Introduction  

An autoencoder consists of an encoder-decoder architecture. 
The encoder transforms the input into a latent-space 
representation, learning to preserve the data's most important 
attributes. The decoder then reconstructs the input data using 
this compressed version. This not only helps with 
dimensionality reduction but also in learning efficient data 
encodings. Fig. 3 represents a high-level overview of an 
autoencoder. 

We experiment with convolutional and denoising 
autoencoders and then select the best model among these for 
our denoising task. For a convolutional autoencoder, the input 
is passed through a convolutional layer consisting of 32 filters. 
The activation function used is a rectified linear unit (ReLU) 
and we keep padding the same to preserve spatial dimensions. 
This is then followed by a max pooling layer. We add a dropout 
layer for regularization purposes. The decoder mirrors the 
encoder but in reverse and the activation function used in the 
last layer is sigmoid. A denoising autoencoder consists of a 
dense architecture with fully connected layers. The data is first 
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transformed by dense layers using ReLU as the activation 
function and subsequently decoded by dense layers having 
sigmoid activation. Convolutional autoencoders perform better, 

and hence, we use this for the denoising task. Figs. 4, 5, and 13 
prove this quantitatively and qualitatively respectively. 

 

 

Fig. 2 Images along their noisy and blurred versions 
 

 

Fig. 3 Schematic representation of an Autoencoder [20] 
 

 

Fig. 4 Loss curves for convolutional autoencoder 
 

 

Fig. 5 Loss curves for denoising autoencoder 
 

We first scale down the image by 20% and then resize it back 
to obtain the pixelated effect. Then we train an autoencoder 
with successive convolution layers to learn hidden feature 
representation and de-blur the images. The final layer outputs a 
three-channel image while maintaining the original color depth. 
Fig. 6 shows the loss curve for deblurring autoencoder. 
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Fig. 6 Loss curves for deblurring autoencoder 

E. Noise Ablation Study 

We conduct a noise ablation study to explore autoencoders' 
resilience to noise during testing. This involves intentionally 
adding increasing degrees of noise, specifically 15%, 20%, and 
30% into the training data using noise perturbation methods. By 
doing so, we hope to see if training autoencoders with such 
distortions improves the ability to reconstruct data properly 
when faced with similar noise patterns during testing. This 
method aids in determining the model's noise resistance and 
practical applicability in situations when data corruption is 
possible. We add Gaussian noise into our data during train as 
well as test time. Gaussian noise, also known as normal noise, 
is a type of statistical noise that has the same probability density 
function as the normal distribution. This is an effective 
representation of random noise that may be found in both 
natural and man-made systems. Gaussian distribution is defined 
by a bell-shaped curve symmetrical around the mean value. 
Adding Gaussian noise to data during training can make ML 
models more resilient to unexpected inputs in real-world 
scenarios. This method not only assesses models' robustness in 
noisy environments, but also improves their capacity to 

generalize.  

III. RESULTS 

With our pipeline, we first add noise to the training dataset, 
allowing autoencoders to reconstruct the data. This approach 
has proven effective in a wide range of applications, from 
simple image classification to complex time-series regression 
problems. Chen, Hong, and Zhou [21] introduced noise to 
estimate the capacity degradation over time using an 
autoencoder followed by a transformer encoder architecture. 
First, we aim to evaluate ResNet-50 which we previously 
identified as our best model. We perform ablation study on a 
noisy test set using both a stand-alone ResNet-50 and a 
combination of autoencoder and ResNet-50. Our findings 
detailed in Table I indicate that integrating autoencoders with 
ResNet-50 enhances performance in noisy environments. 

 
TABLE I 

TEST ACCURACY COMPARISON WITH AND WITHOUT AUTOENCODER 

Noise Level (%) ResNet-50 Autoencoder + ResNet-50 

15% 88.94% 94.51% 

20% 81.69% 83.60% 

30% 73.07% 77.96% 

 
We then implement a CNN with spatial attention for the 

classification task. This architecture significantly reduces the 
number of parameters, maintains comparable accuracy, and 
achieves a threefold increase in training speed relative to 
ResNet-50. Spatial attention is a technique that improves 
performance of neural nets for image classification and 
detection tasks. This method directs the model’s attention to 
specific parts of the image, prioritizing informative feature 
regions over non-informative ones. It generates a spatial feature 
map (Fig. 7) by concatenating features obtained through 
average and max pooling. This is passed through a sigmoid 
function which normalizes the values between 0 and 1. The 
values closer to 1 are considered more important. 

 

 

Fig. 7 Concatenated feature maps for two image samples 
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Fig. 8 Spatial attention module [22] 
 
In this architecture (Figs. 8 and 9), the images first pass 

through alternating convolution layers and max pooling layers 

to capture spatial hierarchies and reduce dimensionality. 
Subsequently, we pass it through a spatial attention module 
followed by dense layers to obtain classification results. 
Experiments are run on a system using Python 3.10, 
TensorFlow 2.0 and Keras with Nvidia A100 and Nvidia T4 
GPUs. We obtain 93.13% accuracy on the test set, comparable 
to ResNet-50. Consequently, we replace ResNet-50 with CNN 
+ spatial attention as our optimal model due to its faster training 
time as shown in Fig. 10.

 

 
Fig. 9 CNN with spatial attention architecture 

 

 

Fig. 10 Train time for ResNet-50 and CNN + spatial attention 
 
Next, we utilize Explainable AI (XAI) techniques, 

specifically Local Interpretable Model-Agnostic Explanations 
(LIME) and Shapley Additive Explanations (SHAP), to 
transform the black box CNN with spatial attention into a 
transparent model. XAI is crucial in healthcare since decisions 
that have life-changing repercussions must be clear. The use of 
XAI allows healthcare professionals to interpret AI generated 
diagnosis and treatment plans. Ribeiro, Singh, and Guestrin 
[23] proposed LIME to explain the decisions of any classifier. 
LIME achieves this by zooming into the local area of interest. 
This area is analyzed in depth to gain insights. LIME fits a 
sparse linear model from a set of linear interpretable models in 
the local area. Lundenberg and Lee [24] proposed SHAP to 
interpret complex ML models. SHAP values are used to 
ascertain the importance of individual pixels in brain MRI 
scans. An ML model is utilized to make a prediction. Then a 
baseline image is selected. Pixels of this image are altered to 
evaluate single pixel and multiple pixels change impact on 

model’s prediction. Shapley values are calculated according to 
the contribution across all possible combinations. Higher 
Shapley values indicate a higher pixel importance. Figs. 11 and 
12 depict the results for LIME and SHAP across all four classes. 

IV. DISCUSSION 

The study demonstrates the effectiveness of our proposed 
pipeline for tumor classification from brain MRI scans. Our 
comprehensive approach enhances interpretability for 
diagnostic imaging applications. However, there are additional 
areas we aim to explore in future research. Large Language 
Models (LLMs) such as GPT [25], Llama [26] and MedPaLM 
[27] have been the talk of the town in recent years and have 
received significant attention from both industry as well as 
academia. LLMs have been used for a wide range of tasks from 
creating human-like language, generating sophisticated code, 
and engaging in nuanced dialogues. We plan on using LLMs 
for precise tumor classification in brain MRI scans, as well as 
providing detailed explanatory narratives. This will streamline 
the current three-step diagnostic process into a single step. We 
plan to integrate retrieval augmented generation (RAG) [28] in 
our framework in such a way that once the pipeline gets 
executed, clinicians can ask relevant medical questions and the 
RAG model can give informed answers to these questions. This 
integration will lead to even better decision support. We also 
aim to explore various adversarial attacks and defense 
mechanisms [29] in the future. Integrating all the above 
components can lead to better treatment plans. 
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V. CONCLUSION 

We propose a pipeline which 1) improves model resilience 
to real-world data by including noise and blur in the train set 
and using autoencoders to learn data representations from these 
altered inputs. Furthermore, 2) we demonstrate that CNN with 
spatial attention not only equals the performance of state-of-
the-art pretrained models, but does so with a threefold 

improvement in training speed. The spatial attention component 
successfully captures subtle spatial information in MRI scans. 
3) We also examine explainable AI techniques to provide 
transparency in the decision-making phase. 4) We implement 
this pipeline as a web application where clinicians can upload 
brain MRI scans and receive a comprehensive analysis of these 
images. 

 

 

Fig. 11 LIME segment masks and heat maps for all 4 classes 
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Fig. 12 SHAP pixel value for all 4 classes 
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VI. SUPPLEMENTARY MATERIALS 
A. Quantitative Train Set Analysis of Noise Ablation Study 

 

Fig. 13 Train and validation accuracy curves for different noise levels 
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B. Quantitative Train Set Analysis of Noise Ablation Study 

 

Fig. 14 Qualitative evaluation of convolutional and denoising autoencoder 
 

 

Fig. 15 Qualitative evaluation of deblurring autoencoder 
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