Search results for: detection curves
1124 Support Vector Machines Approach for Detecting the Mean Shifts in Hotelling-s T2 Control Chart with Sensitizing Rules
Authors: Tai-Yue Wang, Hui-Min Chiang, Su-Ni Hsieh, Yu-Min Chiang
Abstract:
In many industries, control charts is one of the most frequently used tools for quality management. Hotelling-s T2 is used widely in multivariate control chart. However, it has little defect when detecting small or medium process shifts. The use of supplementary sensitizing rules can improve the performance of detection. This study applied sensitizing rules for Hotelling-s T2 control chart to improve the performance of detection. Support vector machines (SVM) classifier to identify the characteristic or group of characteristics that are responsible for the signal and to classify the magnitude of the mean shifts. The experimental results demonstrate that the support vector machines (SVM) classifier can effectively identify the characteristic or group of characteristics that caused the process mean shifts and the magnitude of the shifts.Keywords: Hotelling's T2 control chart, Neural networks, Sensitizing rules, Support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18721123 BER Analysis of Energy Detection Spectrum Sensing in Cognitive Radio Using GNU Radio
Authors: B. Siva Kumar Reddy, B. Lakshmi
Abstract:
Cognitive Radio is a turning out technology that empowers viable usage of the spectrum. Energy Detector-based Sensing is the most broadly utilized spectrum sensing strategy. Besides, it's a lot of generic as receivers doesn't would like any information on the primary user's signals, channel data, of even the sort of modulation. This paper puts forth the execution of energy detection sensing for AM (Amplitude Modulated) signal at 710 KHz, FM (Frequency Modulated) signal at 103.45 MHz (local station frequency), Wi-Fi signal at 2.4 GHz and WiMAX signals at 6 GHz. The OFDM/OFDMA based WiMAX physical layer with convolutional channel coding is actualized utilizing USRP N210 (Universal Software Radio Peripheral) and GNU Radio based Software Defined Radio (SDR). Test outcomes demonstrated the BER (Bit Error Rate) augmentation with channel noise and BER execution is dissected for different Eb/N0 (the energy per bit to noise power spectral density ratio) values.
Keywords: BER, Cognitive Radio, GNU Radio, OFDM, SDR, WiMAX.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45421122 Cardiac Disorder Classification Based On Extreme Learning Machine
Authors: Chul Kwak, Oh-Wook Kwon
Abstract:
In this paper, an extreme learning machine with an automatic segmentation algorithm is applied to heart disorder classification by heart sound signals. From continuous heart sound signals, the starting points of the first (S1) and the second heart pulses (S2) are extracted and corrected by utilizing an inter-pulse histogram. From the corrected pulse positions, a single period of heart sound signals is extracted and converted to a feature vector including the mel-scaled filter bank energy coefficients and the envelope coefficients of uniform-sized sub-segments. An extreme learning machine is used to classify the feature vector. In our cardiac disorder classification and detection experiments with 9 cardiac disorder categories, the proposed method shows significantly better performance than multi-layer perceptron, support vector machine, and hidden Markov model; it achieves the classification accuracy of 81.6% and the detection accuracy of 96.9%.
Keywords: Heart sound classification, extreme learning machine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19341121 Evidence Theory Enabled Quickest Change Detection Using Big Time-Series Data from Internet of Things
Authors: Hossein Jafari, Xiangfang Li, Lijun Qian, Alexander Aved, Timothy Kroecker
Abstract:
Traditionally in sensor networks and recently in the Internet of Things, numerous heterogeneous sensors are deployed in distributed manner to monitor a phenomenon that often can be model by an underlying stochastic process. The big time-series data collected by the sensors must be analyzed to detect change in the stochastic process as quickly as possible with tolerable false alarm rate. However, sensors may have different accuracy and sensitivity range, and they decay along time. As a result, the big time-series data collected by the sensors will contain uncertainties and sometimes they are conflicting. In this study, we present a framework to take advantage of Evidence Theory (a.k.a. Dempster-Shafer and Dezert-Smarandache Theories) capabilities of representing and managing uncertainty and conflict to fast change detection and effectively deal with complementary hypotheses. Specifically, Kullback-Leibler divergence is used as the similarity metric to calculate the distances between the estimated current distribution with the pre- and post-change distributions. Then mass functions are calculated and related combination rules are applied to combine the mass values among all sensors. Furthermore, we applied the method to estimate the minimum number of sensors needed to combine, so computational efficiency could be improved. Cumulative sum test is then applied on the ratio of pignistic probability to detect and declare the change for decision making purpose. Simulation results using both synthetic data and real data from experimental setup demonstrate the effectiveness of the presented schemes.Keywords: CUSUM, evidence theory, KL divergence, quickest change detection, time series data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9941120 A High Accuracy Measurement Circuit for Soil Moisture Detection
Authors: Sheroz Khan, A. H. M. Zahirul Alam, Othman O. Khalifa, Mohd Rafiqul Islam, Zuraidah Zainudin, Muzna S. Khan, Nurul Iman Muhamad Pauzi
Abstract:
The study of soil for agriculture purposes has remained the main focus of research since the beginning of civilization as humans- food related requirements remained closely linked with the soil. The study of soil has generated an interest among the researchers for very similar other reasons including transmission, reflection and refraction of signals for deploying wireless underground sensor networks or for the monitoring of objects on (or in ) soil in the form of better understanding of soil electromagnetic characteristics properties. The moisture content has been very instrumental in such studies as it decides on the resistance of the soil, and hence the attenuation on signals traveling through soil or the attenuation the signals may suffer upon their impact on soil. This work is related testing and characterizing a measurement circuit meant for the detection of moisture level content in soil.Keywords: Analog–digital Conversion, Bridge Circuits, Intelligent sensors, Pulse Time Modulation, Relaxation Oscillator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40241119 Control of Commutation of SR Motor Using Its Magnetic Characteristics and Back-of-Core Saturation Effects
Authors: Dr. N.H. Mvungi
Abstract:
The control of commutation of switched reluctance (SR) motor has nominally depended on a physical position detector. The physical rotor position sensor limits robustness and increases size and inertia of the SR drive system. The paper describes a method to overcome these limitations by using magnetization characteristics of the motor to indicate rotor and stator teeth overlap status. The method is using active current probing pulses of same magnitude that is used to simulate flux linkage in the winding being probed. A microprocessor is used for processing magnetization data to deduce rotor-stator teeth overlap status and hence rotor position. However, the back-of-core saturation and mutual coupling introduces overlap detection errors, hence that of commutation control. This paper presents the concept of the detection scheme and the effects of backof core saturation.Keywords: Microprocessor control, rotor position, sensorless, switched reluctance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12841118 The Performance Analysis of Valveless Micropump with Contoured Nozzle/Diffuser
Authors: Cheng-Chung Yang, Jr-Ming Miao, Fuh-Lin Lih, Tsung-Lung Liu, Ming-Hui Ho
Abstract:
The operation performance of a valveless micro-pump is strongly dependent on the shape of connected nozzle/diffuser and Reynolds number. The aims of present work are to compare the performance curves of micropump with the original straight nozzle/diffuser and contoured nozzle/diffuser under different back pressure conditions. The tested valveless micropumps are assembled of five pieces of patterned PMMA plates with hot-embracing technique. The structures of central chamber, the inlet/outlet reservoirs and the connected nozzle/diffuser are fabricated with laser cutting machine. The micropump is actuated with circular-type PZT film embraced on the bottom of central chamber. The deformation of PZT membrane with various input voltages is measured with a displacement laser probe. A simple testing facility is also constructed to evaluate the performance curves for comparison. In order to observe the evaluation of low Reynolds number multiple vortex flow patterns within the micropump during suction and pumping modes, the unsteady, incompressible laminar three-dimensional Reynolds-averaged Navier-Stokes equations are solved. The working fluid is DI water with constant thermo-physical properties. The oscillating behavior of PZT film is modeled with the moving boundary wall in way of UDF program. With the dynamic mesh method, the instants pressure and velocity fields are obtained and discussed.Results indicated that the volume flow rate is not monotony increased with the oscillating frequency of PZT film, regardless of the shapes of nozzle/diffuser. The present micropump can generate the maximum volume flow rate of 13.53 ml/min when the operation frequency is 64Hz and the input voltage is 140 volts. The micropump with contoured nozzle/diffuser can provide 7ml/min flow rate even when the back pressure is up to 400 mm-H2O. CFD results revealed that the flow central chamber was occupied with multiple pairs of counter-rotating vortices during suction and pumping modes. The net volume flow rate over a complete oscillating periodic of PZTKeywords: valveless micropump、PZT diagraph、contoured nozzle/diffuser、vortex flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28541117 Analysis for MHD Flow of a Maxwell Fluid past a Vertical Stretching Sheet in the Presence of Thermophoresis and Chemical Reaction
Authors: Noor Fadiya Mohd Noor
Abstract:
The hydromagnetic flow of a Maxwell fluid past a vertical stretching sheet with thermophoresis is considered. The impact of chemical reaction species to the flow is analyzed for the first time by using the homotopy analysis method (HAM). The h-curves for the flow boundary layer equations are presented graphically. Several values of wall skin friction, heat and mass transfer are obtained and discussed.
Keywords: homotopy, MHD, thermophoresis, chemical reaction, Maxwell
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20781116 Feature Point Reduction for Video Stabilization
Authors: Theerawat Songyot, Tham Manjing, Bunyarit Uyyanonvara, Chanjira Sinthanayothin
Abstract:
Corner detection and optical flow are common techniques for feature-based video stabilization. However, these algorithms are computationally expensive and should be performed at a reasonable rate. This paper presents an algorithm for discarding irrelevant feature points and maintaining them for future use so as to improve the computational cost. The algorithm starts by initializing a maintained set. The feature points in the maintained set are examined against its accuracy for modeling. Corner detection is required only when the feature points are insufficiently accurate for future modeling. Then, optical flows are computed from the maintained feature points toward the consecutive frame. After that, a motion model is estimated based on the simplified affine motion model and least square method, with outliers belonging to moving objects presented. Studentized residuals are used to eliminate such outliers. The model estimation and elimination processes repeat until no more outliers are identified. Finally, the entire algorithm repeats along the video sequence with the points remaining from the previous iteration used as the maintained set. As a practical application, an efficient video stabilization can be achieved by exploiting the computed motion models. Our study shows that the number of times corner detection needs to perform is greatly reduced, thus significantly improving the computational cost. Moreover, optical flow vectors are computed for only the maintained feature points, not for outliers, thus also reducing the computational cost. In addition, the feature points after reduction can sufficiently be used for background objects tracking as demonstrated in the simple video stabilizer based on our proposed algorithm.
Keywords: background object tracking, feature point reduction, low cost tracking, video stabilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17671115 A New Color Image Database for Benchmarking of Automatic Face Detection and Human Skin Segmentation Techniques
Authors: Abdallah S. Abdallah, Mohamad A bou El-Nasr, A. Lynn Abbott
Abstract:
This paper presents a new color face image database for benchmarking of automatic face detection algorithms and human skin segmentation techniques. It is named the VT-AAST image database, and is divided into four parts. Part one is a set of 286 color photographs that include a total of 1027 faces in the original format given by our digital cameras, offering a wide range of difference in orientation, pose, environment, illumination, facial expression and race. Part two contains the same set in a different file format. The third part is a set of corresponding image files that contain human colored skin regions resulting from a manual segmentation procedure. The fourth part of the database has the same regions converted into grayscale. The database is available on-line for noncommercial use. In this paper, descriptions of the database development, organization, format as well as information needed for benchmarking of algorithms are depicted in detail.Keywords: Image database, color image analysis, facedetection, skin segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25881114 Multiple Targets Classification and Fuzzy Logic Decision Fusion in Wireless Sensor Networks
Authors: Ahmad Aljaafreh
Abstract:
This paper proposes a hierarchical hidden Markov model (HHMM) to model the detection of M vehicles in a wireless sensor network (WSN). The HHMM model contains an extra level of hidden Markov model to model the temporal transitions of each state of the first HMM. By modeling the temporal transitions, only those hypothesis with nonzero transition probabilities needs to be tested. Thus, this method efficiently reduces the computation load, which is preferable in WSN applications.This paper integrates several techniques to optimize the detection performance. The output of the states of the first HMM is modeled as Gaussian Mixture Model (GMM), where the number of states and the number of Gaussians are experimentally determined, while the other parameters are estimated using Expectation Maximization (EM). HHMM is used to model the sequence of the local decisions which are based on multiple hypothesis testing with maximum likelihood approach. The states in the HHMM represent various combinations of vehicles of different types. Due to the statistical advantages of multisensor data fusion, we propose a heuristic based on fuzzy weighted majority voting to enhance cooperative classification of moving vehicles within a region that is monitored by a wireless sensor network. A fuzzy inference system weighs each local decision based on the signal to noise ratio of the acoustic signal for target detection and the signal to noise ratio of the radio signal for sensor communication. The spatial correlation among the observations of neighboring sensor nodes is efficiently utilized as well as the temporal correlation. Simulation results demonstrate the efficiency of this scheme.
Keywords: Classification, decision fusion, fuzzy logic, hidden Markov model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 62491113 Capacitive Air Bubble Detector Operated at Different Frequencies for Application in Hemodialysis
Authors: Mawahib Gafare Abdalrahman Ahmed, Abdallah Belal Adam, John Ojur Dennis
Abstract:
Air bubbles have been detected in human circulation of end-stage renal disease patients who are treated by hemodialysis. The consequence of air embolism, air bubbles, is under recognized and usually overlooked in daily practice. This paper shows results of a capacitor based detection method that capable of detecting the presence of air bubbles in the blood stream in different frequencies. The method is based on a parallel plates capacitor made of platinum with an area of 1.5 cm2 and a distance between the two plates is 1cm. The dielectric material used in this capacitor is Dextran70 solution which mimics blood rheology. Simulations were carried out using RC circuit at two frequencies 30Hz and 3 kHz and results compared with experiments and theory. It is observed that by injecting air bubbles of different diameters into the device, there were significant changes in the capacitance of the capacitor. Furthermore, it is observed that the output voltage from the circuit increased with increasing air bubble diameter. These results demonstrate the feasibility of this approach in improving air bubble detection in Hemodialysis.Keywords: Air bubbles, Hemodialysis, Capacitor, Dextran70, Air bubbles diameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32461112 Artificial Neural Network Model for a Low Cost Failure Sensor: Performance Assessment in Pipeline Distribution
Authors: Asar Khan, Peter D. Widdop, Andrew J. Day, Aliaster S. Wood, Steve, R. Mounce, John Machell
Abstract:
This paper describes an automated event detection and location system for water distribution pipelines which is based upon low-cost sensor technology and signature analysis by an Artificial Neural Network (ANN). The development of a low cost failure sensor which measures the opacity or cloudiness of the local water flow has been designed, developed and validated, and an ANN based system is then described which uses time series data produced by sensors to construct an empirical model for time series prediction and classification of events. These two components have been installed, tested and verified in an experimental site in a UK water distribution system. Verification of the system has been achieved from a series of simulated burst trials which have provided real data sets. It is concluded that the system has potential in water distribution network management.Keywords: Detection, leakage, neural networks, sensors, water distribution networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17451111 Grating Scale Thermal Expansion Error Compensation for Large Machine Tools Based on Multiple Temperature Detection
Authors: Wenlong Feng, Zhenchun Du, Jianguo Yang
Abstract:
To decrease the grating scale thermal expansion error, a novel method which based on multiple temperature detection is proposed. Several temperature sensors are installed on the grating scale and the temperatures of these sensors are recorded. The temperatures of every point on the grating scale are calculated by interpolating between adjacent sensors. According to the thermal expansion principle, the grating scale thermal expansion error model can be established by doing the integral for the variations of position and temperature. A novel compensation method is proposed in this paper. By applying the established error model, the grating scale thermal expansion error is decreased by 90% compared with no compensation. The residual positioning error of the grating scale is less than 15μm/10m and the accuracy of the machine tool is significant improved.Keywords: Thermal expansion error of grating scale, error compensation, machine tools, integral method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19601110 Comparative Analysis of Machine Learning Tools: A Review
Authors: S. Sarumathi, M. Vaishnavi, S. Geetha, P. Ranjetha
Abstract:
Machine learning is a new and exciting area of artificial intelligence nowadays. Machine learning is the most valuable, time, supervised, and cost-effective approach. It is not a narrow learning approach; it also includes a wide range of methods and techniques that can be applied to a wide range of complex realworld problems and time domains. Biological image classification, adaptive testing, computer vision, natural language processing, object detection, cancer detection, face recognition, handwriting recognition, speech recognition, and many other applications of machine learning are widely used in research, industry, and government. Every day, more data are generated, and conventional machine learning techniques are becoming obsolete as users move to distributed and real-time operations. By providing fundamental knowledge of machine learning tools and research opportunities in the field, the aim of this article is to serve as both a comprehensive overview and a guide. A diverse set of machine learning resources is demonstrated and contrasted with the key features in this survey.Keywords: Artificial intelligence, machine learning, deep learning, machine learning algorithms, machine learning tools.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18481109 An Effective Noise Resistant FM Continuous-Wave Radar Vital Sign Signal Detection Method
Authors: Lu Yang, Meiyang Song, Xiang Yu, Wenhao Zhou, Chuntao Feng
Abstract:
To address the problem that the FM continuous-wave (FMCW) radar extracts human vital sign signals which are susceptible to noise interference and low reconstruction accuracy, a detection scheme for the sign signals is proposed. Firstly, an improved complete ensemble empirical modal decomposition with adaptive noise (ICEEMDAN) algorithm is applied to decompose the radar-extracted thoracic signals to obtain several intrinsic modal functions (IMF) with different spatial scales, and then the IMF components are optimized by a backpropagation (BP) neural network improved by immune genetic algorithm (IGA). The simulation results show that this scheme can effectively separate the noise, accurately extract the respiratory and heartbeat signals and improve the reconstruction accuracy and signal to-noise ratio of the sign signals.
Keywords: Frequency modulated continuous wave radar, ICEEMDAN, BP Neural Network, vital signs signal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4781108 A Hybrid Method for Eyes Detection in Facial Images
Authors: Muhammad Shafi, Paul W. H. Chung
Abstract:
This paper proposes a hybrid method for eyes localization in facial images. The novelty is in combining techniques that utilise colour, edge and illumination cues to improve accuracy. The method is based on the observation that eye regions have dark colour, high density of edges and low illumination as compared to other parts of face. The first step in the method is to extract connected regions from facial images using colour, edge density and illumination cues separately. Some of the regions are then removed by applying rules that are based on the general geometry and shape of eyes. The remaining connected regions obtained through these three cues are then combined in a systematic way to enhance the identification of the candidate regions for the eyes. The geometry and shape based rules are then applied again to further remove the false eye regions. The proposed method was tested using images from the PICS facial images database. The proposed method has 93.7% and 87% accuracies for initial blobs extraction and final eye detection respectively.Keywords: Erosion, dilation, Edge-density
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20501107 SiC Merged PiN and Schottky (MPS) Power Diodes Electrothermal Modeling in SPICE
Abstract:
This paper sets out a behavioral macro-model of a Merged PiN and Schottky (MPS) diode based on silicon carbide (SiC). This model holds good for both static and dynamic electrothermal simulations for industrial applications. Its parameters have been worked out from datasheets curves by drawing on the optimization method: Simulated Annealing (SA) for the SiC MPS diodes made available in the industry. The model also adopts the Analog Behavioral Model (ABM) of PSPICE in which it has been implemented. The thermal behavior of the devices was also taken into consideration by making use of Foster’ canonical network as figured out from electro-thermal measurement provided by the manufacturer of the device.Keywords: SiC MPS Diode, electro-thermal, SPICE Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19591106 A Subtractive Clustering Based Approach for Early Prediction of Fault Proneness in Software Modules
Authors: Ramandeep S. Sidhu, Sunil Khullar, Parvinder S. Sandhu, R. P. S. Bedi, Kiranbir Kaur
Abstract:
In this paper, subtractive clustering based fuzzy inference system approach is used for early detection of faults in the function oriented software systems. This approach has been tested with real time defect datasets of NASA software projects named as PC1 and CM1. Both the code based model and joined model (combination of the requirement and code based metrics) of the datasets are used for training and testing of the proposed approach. The performance of the models is recorded in terms of Accuracy, MAE and RMSE values. The performance of the proposed approach is better in case of Joined Model. As evidenced from the results obtained it can be concluded that Clustering and fuzzy logic together provide a simple yet powerful means to model the earlier detection of faults in the function oriented software systems.
Keywords: Subtractive clustering, fuzzy inference system, fault proneness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25801105 Oil Debris Signal Detection Based on Integral Transform and Empirical Mode Decomposition
Authors: Chuan Li, Ming Liang
Abstract:
Oil debris signal generated from the inductive oil debris monitor (ODM) is useful information for machine condition monitoring but is often spoiled by background noise. To improve the reliability in machine condition monitoring, the high-fidelity signal has to be recovered from the noisy raw data. Considering that the noise components with large amplitude often have higher frequency than that of the oil debris signal, the integral transform is proposed to enhance the detectability of the oil debris signal. To cancel out the baseline wander resulting from the integral transform, the empirical mode decomposition (EMD) method is employed to identify the trend components. An optimal reconstruction strategy including both de-trending and de-noising is presented to detect the oil debris signal with less distortion. The proposed approach is applied to detect the oil debris signal in the raw data collected from an experimental setup. The result demonstrates that this approach is able to detect the weak oil debris signal with acceptable distortion from noisy raw data.Keywords: Integral transform, empirical mode decomposition, oil debris, signal processing, detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17171104 LiDAR Based Real Time Multiple Vehicle Detection and Tracking
Authors: Zhongzhen Luo, Saeid Habibi, Martin v. Mohrenschildt
Abstract:
Self-driving vehicle require a high level of situational awareness in order to maneuver safely when driving in real world condition. This paper presents a LiDAR based real time perception system that is able to process sensor raw data for multiple target detection and tracking in dynamic environment. The proposed algorithm is nonparametric and deterministic that is no assumptions and priori knowledge are needed from the input data and no initializations are required. Additionally, the proposed method is working on the three-dimensional data directly generated by LiDAR while not scarifying the rich information contained in the domain of 3D. Moreover, a fast and efficient for real time clustering algorithm is applied based on a radially bounded nearest neighbor (RBNN). Hungarian algorithm procedure and adaptive Kalman filtering are used for data association and tracking algorithm. The proposed algorithm is able to run in real time with average run time of 70ms per frame.Keywords: LiDAR, real-time system, clustering, tracking, data association.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46701103 An Advanced Time-Frequency Domain Method for PD Extraction with Non-Intrusive Measurement
Authors: Guomin Luo, Daming Zhang, Yong Kwee Koh, Kim Teck Ng, Helmi Kurniawan, Weng Hoe Leong
Abstract:
Partial discharge (PD) detection is an important method to evaluate the insulation condition of metal-clad apparatus. Non-intrusive sensors which are easy to install and have no interruptions on operation are preferred in onsite PD detection. However, it often lacks of accuracy due to the interferences in PD signals. In this paper a novel PD extraction method that uses frequency analysis and entropy based time-frequency (TF) analysis is introduced. The repetitive pulses from convertor are first removed via frequency analysis. Then, the relative entropy and relative peak-frequency of each pulse (i.e. time-indexed vector TF spectrum) are calculated and all pulses with similar parameters are grouped. According to the characteristics of non-intrusive sensor and the frequency distribution of PDs, the pulses of PD and interferences are separated. Finally the PD signal and interferences are recovered via inverse TF transform. The de-noised result of noisy PD data demonstrates that the combination of frequency and time-frequency techniques can discriminate PDs from interferences with various frequency distributions.Keywords: Entropy, Fourier analysis, non-intrusive measurement, time-frequency analysis, partial discharge
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15891102 Design, Construction and Performance Evaluation of a HPGe Detector Shield
Authors: M. Sharifi, M. Mirzaii, F. Bolourinovin, H. Yousefnia, M. Akbari, K. Yousefi-Mojir
Abstract:
A multilayer passive shield composed of low-activity lead (Pb), copper (Cu), tin (Sn) and iron (Fe) was designed and manufactured for a coaxial HPGe detector placed at a surface laboratory for reducing background radiation and radiation dose to the personnel. The performance of the shield was evaluated and efficiency curves of the detector were plotted by using of various standard sources in different distances. Monte Carlo simulations and a set of TLD chips were used for dose estimation in two distances of 20 and 40 cm. The results show that the shield reduced background spectrum and the personnel dose more than 95%.Keywords: HPGe shield, background count, personnel dose, efficiency curve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29381101 Fuzzy based Security Threshold Determining for the Statistical En-Route Filtering in Sensor Networks
Authors: Hae Young Lee, Tae Ho Cho
Abstract:
In many sensor network applications, sensor nodes are deployed in open environments, and hence are vulnerable to physical attacks, potentially compromising the node's cryptographic keys. False sensing report can be injected through compromised nodes, which can lead to not only false alarms but also the depletion of limited energy resource in battery powered networks. Ye et al. proposed a statistical en-route filtering scheme (SEF) to detect such false reports during the forwarding process. In this scheme, the choice of a security threshold value is important since it trades off detection power and overhead. In this paper, we propose a fuzzy logic for determining a security threshold value in the SEF based sensor networks. The fuzzy logic determines a security threshold by considering the number of partitions in a global key pool, the number of compromised partitions, and the energy level of nodes. The fuzzy based threshold value can conserve energy, while it provides sufficient detection power.
Keywords: Fuzzy logic, security, sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15811100 Land Use Change Detection Using Remote Sensing and GIS
Authors: Naser Ahmadi Sani, Karim Solaimani, Lida Razaghnia, Jalal Zandi
Abstract:
In recent decades, rapid and incorrect changes in land-use have been associated with consequences such as natural resources degradation and environmental pollution. Detecting changes in land-use is one of the tools for natural resource management and assessment of changes in ecosystems. The target of this research is studying the land-use changes in Haraz basin with an area of 677000 hectares in a 15 years period (1996 to 2011) using LANDSAT data. Therefore, the quality of the images was first evaluated. Various enhancement methods for creating synthetic bonds were used in the analysis. Separate training sites were selected for each image. Then the images of each period were classified in 9 classes using supervised classification method and the maximum likelihood algorithm. Finally, the changes were extracted in GIS environment. The results showed that these changes are an alarm for the HARAZ basin status in future. The reason is that 27% of the area has been changed, which is related to changing the range lands to bare land and dry farming and also changing the dense forest to sparse forest, horticulture, farming land and residential area.
Keywords: HARAZ Basin, Change Detection, Land-use, Satellite Data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23251099 High Perfomance Communication Protocol for Wireless Ad-Hoc Sensor Networks
Authors: Toshihiko Sasama, Takahide Yanaka, Kazunori Sugahara, Hiroshi Masuyama
Abstract:
In order to monitor for traffic traversal, sensors can be deployed to perform collaborative target detection. Such a sensor network achieves a certain level of detection performance with the associated costs of deployment and routing protocol. This paper addresses these two points of sensor deployment and routing algorithm in the situation where the absolute quantity of sensors or total energy becomes insufficient. This discussion on the best deployment system concluded that two kinds of deployments; Normal and Power law distributions, show 6 and 3 times longer than Random distribution in the duration of coverage, respectively. The other discussion on routing algorithm to achieve good performance in each deployment system was also addressed. This discussion concluded that, in place of the traditional algorithm, a new algorithm can extend the time of coverage duration by 4 times in a Normal distribution, and in the circumstance where every deployed sensor operates as a binary model.Keywords: binary sensor, coverage rate, power energy consumption, routing algorithm, sensor deployment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13761098 Determining Cluster Boundaries Using Particle Swarm Optimization
Authors: Anurag Sharma, Christian W. Omlin
Abstract:
Self-organizing map (SOM) is a well known data reduction technique used in data mining. Data visualization can reveal structure in data sets that is otherwise hard to detect from raw data alone. However, interpretation through visual inspection is prone to errors and can be very tedious. There are several techniques for the automatic detection of clusters of code vectors found by SOMs, but they generally do not take into account the distribution of code vectors; this may lead to unsatisfactory clustering and poor definition of cluster boundaries, particularly where the density of data points is low. In this paper, we propose the use of a generic particle swarm optimization (PSO) algorithm for finding cluster boundaries directly from the code vectors obtained from SOMs. The application of our method to unlabeled call data for a mobile phone operator demonstrates its feasibility. PSO algorithm utilizes U-matrix of SOMs to determine cluster boundaries; the results of this novel automatic method correspond well to boundary detection through visual inspection of code vectors and k-means algorithm.
Keywords: Particle swarm optimization, self-organizing maps, clustering, data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17201097 Dynamically Monitoring Production Methods for Identifying Structural Changes relevant to Logistics
Authors: Marco Kennemann, Steffen C. Eickemeyer, Peter Nyhuis
Abstract:
Due to the growing dynamic and complexity within the market environment production enterprises in particular are faced with new logistic challenges. Moreover, it is here in this dynamic environment that the Logistic Operating Curve Theory also reaches its limits as a method for describing the correlations between the logistic objectives. In order to convert this theory into a method for dynamically monitoring productions this paper will introduce methods for reliably and quickly identifying structural changes relevant to logistics.Keywords: Dynamics, Logistic Operating Curves, Production Logistics, Production Planning and Control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13851096 UDCA: An Energy Efficient Clustering Algorithm for Wireless Sensor Network
Authors: Boregowda S.B., Hemanth Kumar A.R. Babu N.V, Puttamadappa C., And H.S Mruthyunjaya
Abstract:
In the past few years, the use of wireless sensor networks (WSNs) potentially increased in applications such as intrusion detection, forest fire detection, disaster management and battle field. Sensor nodes are generally battery operated low cost devices. The key challenge in the design and operation of WSNs is to prolong the network life time by reducing the energy consumption among sensor nodes. Node clustering is one of the most promising techniques for energy conservation. This paper presents a novel clustering algorithm which maximizes the network lifetime by reducing the number of communication among sensor nodes. This approach also includes new distributed cluster formation technique that enables self-organization of large number of nodes, algorithm for maintaining constant number of clusters by prior selection of cluster head and rotating the role of cluster head to evenly distribute the energy load among all sensor nodes.
Keywords: Clustering algorithms, Cluster head, Energy consumption, Sensor nodes, and Wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23901095 The Effect of Chemical Treatment on TL Glow Curves of CdS/ZnS Thin Films Deposited by Vacuum Deposition Method
Authors: N. Dahbi, D-E. Arafah
Abstract:
The effect of chemical treatment in CdCl2 and thermal annealing in 400°C, on the defect structures of potentially useful ZnS\CdS solar cell thin films deposited onto quartz substrate and prepared by vacuum deposition method was studied using the Thermoluminesence (TL) techniques. A series of electron and hole traps are found in the various deposited samples studied. After annealing, however, it was observed that the intensity and activation energy of TL signal increases with loss of the low temperature electron traps.Keywords: CdS, chemical treatment, heat treatment, Thermoluminescence, trapping parameters, thin film, vacuumdeposition, ZnS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523