Search results for: Learning activities
2482 A Development of Creative Instruction Model through Digital Media
Authors: Kathaleeya Chanda, Panupong Chanplin, Suppara Charoenpoom
Abstract:
This purposes of the development of creative instruction model through digital media are to: 1) enable learners to learn from instruction media application; 2) help learners implementing instruction media correctly and appropriately; and 3) facilitate learners to apply technology for searching information and practicing skills to implement technology creatively. The sample group consists of 130 cases of secondary students studying in Bo Kluea School, Bo Kluea Nuea Sub-district, Bo Kluea District, Nan Province. The probability sampling was selected through the simple random sampling and the statistics used in this research are percentage, mean, standard deviation and one group pretest – posttest design. The findings are summarized as follows: The congruence index of instruction media for occupation and technology subjects is appropriate. By comparing between learning achievements before implementing the instruction media and learning achievements after implementing the instruction media, it is found that the posttest achievements are higher than the pretest achievements with statistical significance at the level of .05. For the learning achievements from instruction media implementation, pretest mean is 16.24 while posttest mean is 26.28. Besides, pretest and posttest results are compared and differences of mean are tested, the test results show that the posttest achievements are higher than the pretest achievements with statistical significance at the level of .05. This can be interpreted that the learners achieve better learning progress.
Keywords: Teaching learning model, digital media, creative instruction model, facilitate learners.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6922481 Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study
Authors: Nilubon Kurubanjerdjit, Nattakarn Iam-On, Ka-Lok Ng
Abstract:
MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation.Keywords: MicroRNA, miRNAs, lung cancer, machine learning, Naïve Bayes, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23872480 Deep Reinforcement Learning Approach for Trading Automation in the Stock Market
Authors: Taylan Kabbani, Ekrem Duman
Abstract:
Deep Reinforcement Learning (DRL) algorithms can scale to previously intractable problems. The automation of profit generation in the stock market is possible using DRL, by combining the financial assets price ”prediction” step and the ”allocation” step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. This work represents a DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem as a Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. We then solved the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm and achieved a 2.68 Sharpe ratio on the test dataset. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of DRL in financial markets over other types of machine learning and proves its credibility and advantages of strategic decision-making.
Keywords: Autonomous agent, deep reinforcement learning, MDP, sentiment analysis, stock market, technical indicators, twin delayed deep deterministic policy gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5252479 Collaborative Web Platform for Rich Media Educational Material Creation
Authors: I. Alberdi, H. Iribas, A. Martin, N. Aginako
Abstract:
This paper describes a platform that faces the main research areas for e-learning educational contents. Reusability tackles the possibility to use contents in different courses reducing costs and exploiting available data from repositories. In our approach the production of educational material is based on templates to reuse learning objects. In terms of interoperability the main challenge lays on reaching the audience through different platforms. E-learning solution must track social consumption evolution where nowadays lots of multimedia contents are accessed through the social networks. Our work faces it by implementing a platform for generation of multimedia presentations focused on the new paradigm related to social media. The system produces videos-courses on top of web standard SMIL (Synchronized Multimedia Integration Language) ready to be published and shared. Regarding interfaces it is mandatory to satisfy user needs and ease communication. To overcome it the platform deploys virtual teachers that provide natural interfaces while multimodal features remove barriers to pupils with disabilities.Keywords: Collaborative, multimedia e-learning, reusability, SMIL, virtual teacher
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15042478 Contribution for Rural Development through Training in Organic Farming
Authors: Raquel P. F. Guiné, Daniela V. T. A. Costa, Paula M. R. Correia, Moisés Castro, Luis T. Guerra, Cristina A. Costa
Abstract:
The aim of this work was to characterize a potential target group of people interested in participating into a training program in organic farming in the context of mobile-learning. The information sought addressed in particular, but not exclusively, possible contents, formats and forms of evaluation that will contribute to define the course objectives and curriculum, as well as to ensure that the course meets the needs of the learners and their preferences. The sample was selected among different European countries. The questionnaires were delivered electronically for answering on-line and in the end 135 consented valid questionnaires were obtained. The results allowed characterizing the target group and identifying their training needs and preferences towards m-learning formats, giving valuable tools to design the training offer.Keywords: Mobile-learning, organic farming, rural development, survey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20782477 Cirrhosis Mortality Prediction as Classification Using Frequent Subgraph Mining
Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride
Abstract:
In this work, we use machine learning and data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. Our work applies modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.
Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4492476 Remedying Students’ Misconceptions in Learning of Chemical Bonding and Spontaneity through Intervention Discussion Learning Model (IDLM)
Authors: Ihuarulam Ambrose Ikenna
Abstract:
In the past few decades, the field of chemistry education has grown tremendously and researches indicated that after traditional chemistry instruction students often lacked deep conceptual understanding and failed to integrate their ideas into coherent conceptual framework. For several concepts in chemistry, students at all levels have demonstrated difficulty in changing their initial perceptions. Their perceptions are most often wrong and don't agree with correct scientific concepts. This study explored the effectiveness of intervention discussion sections for a college general chemistry course designed to apply research on students preconceptions, knowledge integration and student explanation. Three interventions discussions lasting three hours on bond energy and spontaneity were done tested and intervention (treatment) students’ performances were compared with that of control group which did not use the experimental pedagogy. Results indicated that this instruction which was capable of identifying students' misconceptions, initial conceptions and integrating those ideas into class discussion led to enhanced conceptual understanding and better achievement for the experimental group.
Keywords: Intervention Discussion Learning Model, Learning, Remedying, Students’ misconceptions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25402475 Leaching of Mineral Nitrogen and Phosphate from Rhizosphere Soil Stressed by Drought and Intensive Rainfall
Authors: J. Elbl, J. K. Friedel, J. Záhora, L. Plošek, A. Kintl, J. Přichystalová, J. Hynšt, L. Dostálová, K. Zákoutská
Abstract:
This work presents the first results from the long-term experiment, which is focused on the impact of intensive rainfall and long period of drought on microbial activities in soil. Fifteen lysimeters were prepared in the area of our interest. This area is a protection zone of underground source of drinking water. These lysimeters were filed with topsoil and subsoil collected in this area and divided into two groups. These groups differ in fertilization and amount of water received during the growing season. Amount of microbial biomass and leaching of mineral nitrogen and phosphates were chosen as main indicators of microbial activities in soil. Content of mineral nitrogen and phosphates was measured in soil solution, which was collected from each lysimeters. Amount of microbial biomass was determined in soil samples that were taken from the lysimeters before and after the long period of drought and intensive rainfall.
Keywords: Mineral nitrogen, Phosphates, Microbial activities, Drought, Precipitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21462474 Container Chaos: The Impact of a Casual Game on Learning and Behavior
Authors: Lori L. Scarlatos, Ryan Courtney
Abstract:
This paper explores the impact that playing a casual game can have on a player's learning and subsequent behavior. A casual mobile game, Container Chaos, was created to teach undergraduate students about the carbon footprint of various disposable beverage containers. Learning was tested with a short quiz, and behavior was tested by observing which beverage containers players choose when offered a drink and a snack. The game was tested multiple times, under a variety of different circumstances. Findings of these tests indicate that, with extended play over time, players can learn new information and sometimes even change their behavior as a result. This has implications for how other casual games can be used to teach concepts and possibly modify behavior.
Keywords: Behavior, carbon footprint, casual games, environmental impact, material sciences.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9402473 Voltage Problem Location Classification Using Performance of Least Squares Support Vector Machine LS-SVM and Learning Vector Quantization LVQ
Authors: Khaled Abduesslam. M, Mohammed Ali, Basher H Alsdai, Muhammad Nizam, Inayati
Abstract:
This paper presents the voltage problem location classification using performance of Least Squares Support Vector Machine (LS-SVM) and Learning Vector Quantization (LVQ) in electrical power system for proper voltage problem location implemented by IEEE 39 bus New- England. The data was collected from the time domain simulation by using Power System Analysis Toolbox (PSAT). Outputs from simulation data such as voltage, phase angle, real power and reactive power were taken as input to estimate voltage stability at particular buses based on Power Transfer Stability Index (PTSI).The simulation data was carried out on the IEEE 39 bus test system by considering load bus increased on the system. To verify of the proposed LS-SVM its performance was compared to Learning Vector Quantization (LVQ). The results showed that LS-SVM is faster and better as compared to LVQ. The results also demonstrated that the LS-SVM was estimated by 0% misclassification whereas LVQ had 7.69% misclassification.
Keywords: IEEE 39 bus, Least Squares Support Vector Machine, Learning Vector Quantization, Voltage Collapse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24052472 An Analysis of Institutional Audits: Basis for Teaching, Learning and Assessment Framework and Principles
Authors: Nabil El Kadhi, Minerva M. Bunagan
Abstract:
The dynamism in education, particularly in the area of teaching, learning and assessment has caused Higher Education Institutions (HEIs) worldwide to seek for ways to continuously improve their educational processes. HEIs use outcomes of institutional audits, assessments and accreditations, for improvement. In this study, the published institutional audit reports of HEIs in the Sultanate of Oman were analyzed to produce features of good practice; identify challenges along Teaching, Learning Assessment (TLA); and propose a framework that puts major emphasis in having a quality-assured TLA, including a set of principles that can be used as basis in succeeding an institutional visit. The TLA framework, which shows the TLA components, characteristics of the components, related expectation, including implementation tool/ strategy and pitfalls can be used by HEIs to have an adequate understanding of the scope of audit and be able to satisfy institutional audit requirements. The scope of this study can be widened by exploring the other requirements of the Institutional Audits in the Sultanate of Oman, particularly the area on Governance and Management and Student Support Services.Keywords: Accreditation, audit, quality assurance, teaching, learning and assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14772471 Linguistic Competence Analysis and the Development of Speaking Instructional Material
Authors: Felipa M. Rico
Abstract:
Linguistic oral competence plays a vital role in attaining effective communication. Since the English language is considered as universally used language and has a high demand skill needed in the work-place, mastery is the expected output from learners. To achieve this, learners should be given integrated differentiated tasks which help them develop and strengthen the expected skills. This study aimed to develop speaking instructional supplementary material to enhance the English linguistic competence of Grade 9 students in areas of pronunciation, intonation and stress, voice projection, diction and fluency. A descriptive analysis was utilized to analyze the speaking level of performance of the students in order to employ appropriate strategies. There were two sets of respondents: 178 Grade 9 students selected through a stratified sampling and chosen at random. The other set comprised English teachers who evaluated the usefulness of the devised teaching materials. A teacher conducted a speaking test and activities were employed to analyze the speaking needs of students. Observation and recordings were also used to evaluate the students’ performance. The findings revealed that the English pronunciation of the students was slightly unclear at times, but generally fair. There were lapses but generally they rated moderate in intonation and stress, because of other language interference. In terms of voice projection, students have erratic high volume pitch. For diction, the students’ ability to produce comprehensible language is limited, and as to fluency, the choice of vocabulary and use of structure were severely limited. Based on the students’ speaking needs analyses, the supplementary material devised was based on Nunan’s IM model, incorporating context of daily life and global work settings, considering the principle that language is best learned in the actual meaningful situation. To widen the mastery of skill, a rich learning environment, filled with a variety instructional material tends to foster faster acquisition of the requisite skills for sustained learning and development. The role of IM is to encourage information to stick in the learners’ mind, as what is seen is understood more than what is heard. Teachers say they found the IM “very useful.” This implied that English teachers could adopt the materials to improve the speaking skills of students. Further, teachers should provide varied opportunities for students to get involved in real life situations where they could take turns in asking and answering questions and share information related to the activities. This would minimize anxiety among students in the use of the English language.Keywords: Fluency, intonation, instructional materials, linguistic competence, pronunciation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16532470 A Product Development for Green Logistics Model by Integrated Evaluation of Design and Manufacturing and Green Supply Chain
Authors: Yuan-Jye Tseng, Yen-Jung Wang
Abstract:
A product development for green logistics model using the fuzzy analytic network process method is presented for evaluating the relationships among the product design, the manufacturing activities, and the green supply chain. In the product development stage, there can be alternative ways to design the detailed components to satisfy the design concept and product requirement. In different design alternative cases, the manufacturing activities can be different. In addition, the manufacturing activities can affect the green supply chain of the components and product. In this research, a fuzzy analytic network process evaluation model is presented for evaluating the criteria in product design, manufacturing activities, and green supply chain. The comparison matrices for evaluating the criteria among the three groups are established. The total relational values between the three groups represent the relationships and effects. In application, the total relational values can be used to evaluate the design alternative cases for decision-making to select a suitable design case and the green supply chain. In this presentation, an example product is illustrated. It shows that the model is useful for integrated evaluation of design and manufacturing and green supply chain for the purpose of product development for green logistics.
Keywords: Supply chain management, green supply chain, product development for logistics, fuzzy analytic network process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22432469 Learning Materials of Atmospheric Pressure Plasma Process: Turning Hydrophilic Surface to Hydrophobic
Authors: C.W. Kan
Abstract:
This paper investigates the use of atmospheric pressure plasma for improving the surface hydrophobicity of polyurethane synthetic leather with tetramethylsilane (TMS). The atmospheric pressure plasma treatment with TMS is a single-step process to enhance the hydrophobicity of polyurethane synthetic leather. The hydrophobicity of the treated surface was examined by contact angle measurement. The physical and chemical surface changes were evaluated by scanning electron microscopy (SEM) and infrared spectroscopy (FTIR). The purpose of this paper is to provide learning materials for understanding how to use atmospheric pressure plasma in the textile finishing process to transform a hydrophilic surface to hydrophobic.
Keywords: Learning materials, atmospheric pressure plasma treatment, hydrophobic, hydrophilic, surface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17852468 Individual Differences and Paired Learning in Virtual Environments
Authors: Patricia M. Boechler, Heather M. Gautreau
Abstract:
In this research study, postsecondary students completed an information learning task in an avatar-based 3D virtual learning environment. Three factors were of interest in relation to learning; 1) the influence of collaborative vs. independent conditions, 2) the influence of the spatial arrangement of the virtual environment (linear, random and clustered), and 3) the relationship of individual differences such as spatial skill, general computer experience and video game experience to learning. Students completed pretest measures of prior computer experience and prior spatial skill. Following the premeasure administration, students were given instruction to move through the virtual environment and study all the material within 10 information stations. In the collaborative condition, students proceeded in randomly assigned pairs, while in the independent condition they proceeded alone. After this learning phase, all students individually completed a multiple choice test to determine information retention. The overall results indicated that students in pairs did not perform any better or worse than independent students. As far as individual differences, only spatial ability predicted the performance of students. General computer experience and video game experience did not. Taking a closer look at the pairs and spatial ability, comparisons were made on pairs high/matched spatial ability, pairs low/matched spatial ability and pairs that were mismatched on spatial ability. The results showed that both high/matched pairs and mismatched pairs outperformed low/matched pairs. That is, if a pair had even one individual with strong spatial ability they would perform better than pairs with only low spatial ability individuals. This suggests that, in virtual environments, the specific individuals that are paired together are important for performance outcomes. The paper also includes a discussion of trends within the data that have implications for virtual environment education.
Keywords: Avatar-based, virtual environment, paired learning, individual differences.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7792467 Personal Information Classification Based on Deep Learning in Automatic Form Filling System
Authors: Shunzuo Wu, Xudong Luo, Yuanxiu Liao
Abstract:
Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results.Keywords: Personal information, deep learning, auto fill, NLP, document analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8612466 Comparing the Willingness to Communicate in a Foreign Language of Bilinguals and Monolinguals
Authors: S. Tarighat, F. Shateri
Abstract:
This study explored the relationship between L2 Willingness to Communicate (WTC) of bilinguals and monolinguals in a foreign language using a snowball sampling method to collect questionnaire data from 200 bilinguals and monolinguals studying a foreign language (FL). The results indicated a higher willingness to communicate in a foreign language (WTC-FL) performed by bilinguals compared to that of the monolinguals with a weak significance. Yet a stronger significance was found in the relationship between the age of onset of bilingualism and WTC-FL. The researcher proposed that L2 WTC is indirectly influenced by knowledge of other languages, which can boost L2 confidence and reduce L2 anxiety and consequently lead to higher L2 WTC when learning a different L2. The study also found the age of onset of bilingualism to be a predictor of L2 WTC when learning a FL. The results emphasize the importance of bilingualism and early bilingualism in particular.
Keywords: Bilingualism, foreign language learning, L2 acquisition, willingness to communicate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14792465 EASEL: Evaluation of Algorithmic Skills in an Environment Learning
Authors: A. Bey, T. Bensebaa, H. Benselem
Abstract:
This paper attempts to explore a new method to improve the teaching of algorithmic for beginners. It is well known that algorithmic is a difficult field to teach for teacher and complex to assimilate for learner. These difficulties are due to intrinsic characteristics of this field and to the manner that teachers (the majority) apprehend its bases. However, in a Technology Enhanced Learning environment (TEL), assessment, which is important and indispensable, is the most delicate phase to implement, for all problems that generate (noise...). Our objective registers in the confluence of these two axes. For this purpose, EASEL focused essentially to elaborate an assessment approach of algorithmic competences in a TEL environment. This approach consists in modeling an algorithmic solution according to basic and elementary operations which let learner draw his/her own step with all autonomy and independently to any programming language. This approach assures a trilateral assessment: summative, formative and diagnostic assessment.Keywords: Algorithmic, assessment of competences, Technology Enhanced Learning (TEL).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14432464 Integrating Computer Games with Mathematics Instruction in Elementary School- An Analysis of Motivation, Achievement, and Pupil-Teacher Interactions
Authors: Kuo Hung Huang, Chong-Ji Ke
Abstract:
The purpose of this study is to explore the impacts of computer games on the mathematics instruction. First, the research designed and implemented the web-based games according to the content of existing textbook. And the researcher collected and analyzed the information related to the mathematics instruction integrating the computer games. In this study, the researcher focused on the learning motivation of mathematics, mathematics achievement, and pupil-teacher interactions in classroom. The results showed that students under instruction integrating computer games significantly improved in motivation and achievement. The teacher tended to use less direct teaching and provide more time for student-s active learning.Keywords: computer games, mathematics instruction, pupil-teacher interaction, technology-enhanced learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19262463 DeClEx-Processing Pipeline for Tumor Classification
Authors: Gaurav Shinde, Sai Charan Gongiguntla, Prajwal Shirur, Ahmed Hambaba
Abstract:
Health issues are significantly increasing, putting a substantial strain on healthcare services. This has accelerated the integration of machine learning in healthcare, particularly following the COVID-19 pandemic. The utilization of machine learning in healthcare has grown significantly. We introduce DeClEx, a pipeline which ensures that data mirrors real-world settings by incorporating gaussian noise and blur and employing autoencoders to learn intermediate feature representations. Subsequently, our convolutional neural network, paired with spatial attention, provides comparable accuracy to state-of-the-art pre-trained models while achieving a threefold improvement in training speed. Furthermore, we provide interpretable results using explainable AI techniques. We integrate denoising and deblurring, classification and explainability in a single pipeline called DeClEx.
Keywords: Machine learning, healthcare, classification, explainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 662462 Uplink Throughput Prediction in Cellular Mobile Networks
Authors: Engin Eyceyurt, Josko Zec
Abstract:
The current and future cellular mobile communication networks generate enormous amounts of data. Networks have become extremely complex with extensive space of parameters, features and counters. These networks are unmanageable with legacy methods and an enhanced design and optimization approach is necessary that is increasingly reliant on machine learning. This paper proposes that machine learning as a viable approach for uplink throughput prediction. LTE radio metric, such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Noise Ratio (SNR) are used to train models to estimate expected uplink throughput. The prediction accuracy with high determination coefficient of 91.2% is obtained from measurements collected with a simple smartphone application.Keywords: Drive test, LTE, machine learning, uplink throughput prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8952461 Motor Imagery Based Brain-Computer Interface for Cerebellar Impaired Patients
Authors: Young-Seok Choi
Abstract:
Cerebellar ataxia is a steadily progressive neurodegenerative disease associated with loss of motor control, leaving patients unable to walk, talk, or perform activities of daily living. Direct motor instruction in cerebella ataxia patients has limited effectiveness, presumably because an inappropriate closed-loop cerebellar response to the inevitable observed error confounds motor learning mechanisms. Could the use of EEG based BCI provide advanced biofeedback to improve motor imagery and provide a “backdoor” to improving motor performance in ataxia patients? In order to determine the feasibility of using EEG-based BCI control in this population, we compare the ability to modulate mu-band power (8-12 Hz) by performing a cued motor imagery task in an ataxia patient and healthy control.Keywords: Cerebellar ataxia, Electroencephalogram, brain-computer interface, motor imagery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17512460 Building the Professional Readiness of Graduates from Day One: An Empirical Approach to Curriculum Continuous Improvement
Authors: Fiona Wahr, Sitalakshmi Venkatraman
Abstract:
Industry employers require new graduates to bring with them a range of knowledge, skills and abilities which mean these new employees can immediately make valuable work contributions. These will be a combination of discipline and professional knowledge, skills and abilities which give graduates the technical capabilities to solve practical problems whilst interacting with a range of stakeholders. Underpinning the development of these disciplines and professional knowledge, skills and abilities, are “enabling” knowledge, skills and abilities which assist students to engage in learning. These are academic and learning skills which are essential to common starting points for both the learning process of students entering the course as well as forming the foundation for the fully developed graduate knowledge, skills and abilities. This paper reports on a project created to introduce and strengthen these enabling skills into the first semester of a Bachelor of Information Technology degree in an Australian polytechnic. The project uses an action research approach in the context of ongoing continuous improvement for the course to enhance the overall learning experience, learning sequencing, graduate outcomes, and most importantly, in the first semester, student engagement and retention. The focus of this is implementing the new curriculum in first semester subjects of the course with the aim of developing the “enabling” learning skills, such as literacy, research and numeracy based knowledge, skills and abilities (KSAs). The approach used for the introduction and embedding of these KSAs, (as both enablers of learning and to underpin graduate attribute development), is presented. Building on previous publications which reported different aspects of this longitudinal study, this paper recaps on the rationale for the curriculum redevelopment and then presents the quantitative findings of entering students’ reading literacy and numeracy knowledge and skills degree as well as their perceived research ability. The paper presents the methodology and findings for this stage of the research. Overall, the cohort exhibits mixed KSA levels in these areas, with a relatively low aggregated score. In addition, the paper describes the considerations for adjusting the design and delivery of the new subjects with a targeted learning experience, in response to the feedback gained through continuous monitoring. Such a strategy is aimed at accommodating the changing learning needs of the students and serves to support them towards achieving the enabling learning goals starting from day one of their higher education studies.
Keywords: Enabling skills, student retention, embedded learning support, continuous improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7822459 Towards a Simulation Model to Ensure the Availability of Machines in Maintenance Activities
Authors: Maryam Gallab, Hafida Bouloiz, Youness Chater, Mohamed Tkiouat
Abstract:
The aim of this paper is to present a model based on multi-agent systems in order to manage the maintenance activities and to ensure the reliability and availability of machines just with the required resources (operators, tools). The interest of the simulation is to solve the complexity of the system and to find results without cost or wasting time. An implementation of the model is carried out on the AnyLogic platform to display the defined performance indicators.Keywords: Maintenance, complexity, simulation, multi-agent systems, AnyLogic platform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15082458 Usage of Military Continuity Management System for Supporting of Emergency Management
Authors: R. Hajkova, J. Palecek, H. Malachova, A. Oulehlova
Abstract:
Ensuring of continuity of business is basic strategy of every company. Continuity of organization activities includes comprehensive procedures that help in solving unexpected situations of natural and anthropogenic character (for example flood, blaze, economic situations). Planning of continuity operations is a process that helps identify critical processes and implement plans for the security and recovery of key processes. The aim of this article is to demonstrate application of system approach to managing business continuity called business continuity management systems in military issues. This article describes the life cycle of business continuity management which is based on the established cycle PDCA (Plan- Do-Check-Act). After this is carried out by activities which are making by University of Defence during activation of forces and means of the integrated rescue system in case of emergencies - accidents at a nuclear power plant in Czech Republic. Activities of various stages of deployment earmarked forces and resources are managed and evaluated by using MCMS application (Military Continuity Management System).Keywords: Business continuity management system, emergency management, military, nuclear safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21332457 Machine Learning Methods for Network Intrusion Detection
Authors: Mouhammad Alkasassbeh, Mohammad Almseidin
Abstract:
Network security engineers work to keep services available all the time by handling intruder attacks. Intrusion Detection System (IDS) is one of the obtainable mechanisms that is used to sense and classify any abnormal actions. Therefore, the IDS must be always up to date with the latest intruder attacks signatures to preserve confidentiality, integrity, and availability of the services. The speed of the IDS is a very important issue as well learning the new attacks. This research work illustrates how the Knowledge Discovery and Data Mining (or Knowledge Discovery in Databases) KDD dataset is very handy for testing and evaluating different Machine Learning Techniques. It mainly focuses on the KDD preprocess part in order to prepare a decent and fair experimental data set. The J48, MLP, and Bayes Network classifiers have been chosen for this study. It has been proven that the J48 classifier has achieved the highest accuracy rate for detecting and classifying all KDD dataset attacks, which are of type DOS, R2L, U2R, and PROBE.
Keywords: IDS, DDoS, MLP, KDD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7272456 Information Retrieval in Domain Specific Search Engine with Machine Learning Approaches
Authors: Shilpy Sharma
Abstract:
As the web continues to grow exponentially, the idea of crawling the entire web on a regular basis becomes less and less feasible, so the need to include information on specific domain, domain-specific search engines was proposed. As more information becomes available on the World Wide Web, it becomes more difficult to provide effective search tools for information access. Today, people access web information through two main kinds of search interfaces: Browsers (clicking and following hyperlinks) and Query Engines (queries in the form of a set of keywords showing the topic of interest) [2]. Better support is needed for expressing one's information need and returning high quality search results by web search tools. There appears to be a need for systems that do reasoning under uncertainty and are flexible enough to recover from the contradictions, inconsistencies, and irregularities that such reasoning involves. In a multi-view problem, the features of the domain can be partitioned into disjoint subsets (views) that are sufficient to learn the target concept. Semi-supervised, multi-view algorithms, which reduce the amount of labeled data required for learning, rely on the assumptions that the views are compatible and uncorrelated. This paper describes the use of semi-structured machine learning approach with Active learning for the “Domain Specific Search Engines". A domain-specific search engine is “An information access system that allows access to all the information on the web that is relevant to a particular domain. The proposed work shows that with the help of this approach relevant data can be extracted with the minimum queries fired by the user. It requires small number of labeled data and pool of unlabelled data on which the learning algorithm is applied to extract the required data.Keywords: Search engines; machine learning, Informationretrieval, Active logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20832455 Internationalization and Multilingualism in Brazil: Possibilities of Content and Language Integrated Learning and Intercomprehension Approaches
Authors: Kyria Rebeca Finardi
Abstract:
The study discusses the role of foreign languages in general and of English in particular in the process of internationalization of higher education (IHE), defined as the intentional integration of an international, intercultural or global dimension in the purpose, function or offer of higher education. The study is bibliographical and offers a brief outline of the current political, economic and educational scenarios in Brazil, before discussing some possibilities and challenges for the development of multilingualism and IHE there. The theoretical background includes a review of Brazilian language and internationalization policies. The review and discussion concludes that the use of the Content and Language Integrated Learning (CLIL) approach and the Intercomprehension approach to foreign language teaching/learning are relevant alternatives to foster multilingualism in that context.
Keywords: Brazil, higher education, internationalization, multilingualism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8042454 Survey of Curriculum Quality of Postgraduate Studies of Insurance Management Field Case: University of Allameh Taba Tabaee
Authors: F. Havas Beigi, E. Mohammadi, M.Vafaee Yeganeh
Abstract:
Curriculum is one of the most important inputs in higher education system and for knowing the strong and weak spots of it we need evaluation. The main purpose of this study was to survey of the curriculum quality of Insurance Management field. Case: University of Allameh Taba Tabaee(according to view point of students,alumni,employer and faculty members).Descriptive statistics (mean, tables, percentages, frequency distribution) and inferential statistics (CHI SQUARE) were used to analyze the data. Six criterions considered for the Quality of curriculum: objectives, content, teaching and learning methods, space and facilities, Time, assessment of learning. objectives, teaching and learning methods criterions was desirable level, content criteria was undesirable level, space and facilities, time and assessment of learning were rather desirable level. The quality of curriculum of insurance management field was relatively desirable level.
Keywords: Quality, curriculum, insurance management, higher education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13302453 Developing Problem Solving Skills through a Project-Based Course as Part of a Lifelong Learning for Engineering Students
Authors: Robin Lok-Wang
Abstract:
The purpose of this paper is to investigate how engineering students’ motivation and interests are maintained through a project-based course in their lifelong learning journeys. In recent years, different pedagogies of teaching including entrepreneurship, experiential and lifelong learnings as well as dream builder, etc., have been widely used for education purpose. University advocates hands-on practice, learning by experiencing and experimenting throughout different courses. Students are not limited to gain knowledge via traditional lectures, laboratory demonstration, tutorial and so on. The capabilities to identify both complex problems and its corresponding solutions in daily lives are one of the criteria/skill sets required for graduates to obtain their careers at professional organizations and companies. A project-based course, namely Mechatronic Design and Prototyping, was developed for students to design and build a physical prototype for solving existing problems in their daily lives, thereby encouraging them as an entrepreneur to explore further possibilities to commercialize their designed prototypes and launch it to the market. Feedbacks from students show that they are keen to propose their own ideas freely with guidance from instructor instead of using either suggested or assigned topics. Proposed ideas of the prototypes reflect that if students’ interests are maintained, they acquire the knowledges and skills they need, including essential communication, logical thinking and more importantly problem solving for their lifelong learning journey.
Keywords: Problem solving, lifelong learning, entrepreneurship, mechanical engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 379