Search results for: severe plastic deformation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1003

Search results for: severe plastic deformation

283 Numerical Simulation of unsteady MHD Flow and Heat Transfer of a Second Grade Fluid with Viscous Dissipation and Joule Heating using Meshfree Approach

Authors: R. Bhargava, Sonam Singh

Abstract:

In the present study, a numerical analysis is carried out to investigate unsteady MHD (magneto-hydrodynamic) flow and heat transfer of a non-Newtonian second grade viscoelastic fluid over an oscillatory stretching sheet. The flow is induced due to an infinite elastic sheet which is stretched oscillatory (back and forth) in its own plane. Effect of viscous dissipation and joule heating are taken into account. The non-linear differential equations governing the problem are transformed into system of non-dimensional differential equations using similarity transformations. A newly developed meshfree numerical technique Element free Galerkin method (EFGM) is employed to solve the coupled non linear differential equations. The results illustrating the effect of various parameters like viscoelastic parameter, Hartman number, relative frequency amplitude of the oscillatory sheet to the stretching rate and Eckert number on velocity and temperature field are reported in terms of graphs and tables. The present model finds its application in polymer extrusion, drawing of plastic films and wires, glass, fiber and paper production etc.

Keywords: EFGM, MHD, Oscillatory stretching sheet, Unsteady, Viscoelastic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888
282 Barriers to the Use of Factoring Accounts Receivables: The Ghanaian Contractor’s Perception

Authors: E. Kissi, V. K. Acheamfour, J. J. Gyimah, T. Adjei-Kumi

Abstract:

Factoring accounts receivable is widely accepted as an alternative financing source and utilized in almost every industry that sells business-to-business or business-to-government. However, its patronage in the construction industry is very limited as some barriers hinder its application in the construction industry. This study aims at assessing the barriers to the use of factoring accounts receivables in the Ghanaian construction industry. The study adopted the sequential exploratory research method where structured and unstructured questionnaires were conveniently distributed to D1K1 and D2K2 construction firms in Ghana. Using the one-sample t-test and Kendall’s Coefficient of concordance data were analyzed. The most severe challenge concluded is the high cost of factoring patronage. Other critical challenges identified were low knowledge on factoring processes, inadequate access to information on factoring, and high risks involved in factoring. Hence, it is recommended that contractors should be made aware of the prospects of factoring of accounts receivables in the construction industry. This study serves as basis for further rigorous research into factoring of accounts receivables in the industry.

Keywords: Barriers, contractors, factoring accounts receivables, Ghanaian, perception.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 537
281 Increase of Peroxidase Activity of Haptoglobin (2-2)-Hemoglobin at Pathologic Temperature and Presence of Antibiotics

Authors: M Tayari, SZ Moosavi-nejad, A Shabani, M Rezaei Tavirani

Abstract:

Free Hemoglobin promotes the accumulation of hydroxyl radicals by the heme iron, which can react with endogenous hydrogen peroxide to produce free radicals which may cause severe oxidative cell damage. Haptoglobin binds to Hemoglobin strongly and Haptoglobin-Hemoglobin binding is irreversible. Peroxidase activity of Haptoglobin(2-2)-Hemoglobin complex was assayed by following increase of absorption of produced tetraguaiacol as the second substrate of Haptoglobin-Hemoglobin complex at 470 nm and 42°C by UV-Vis spectrophotometer. The results have shown that peroxidase activity of Haptoglobin(2-2)-Hemoglobin complex is modulated via homotropic effect of hydrogen peroxide as allostric substrate. On the other hand antioxidant property of Haptoglobin(2- 2)-Hemoglobin was increased via heterotropic effect of the two drugs (especially ampicillin) on peroxidase activity of the complex. Both drugs also have mild effect on quality of homotropic property of peroxidase activity of Haptoglobin(2-2)-Hemoglobin complex. Therefore, in vitro studies show that the two drugs may help Hp-Hb complex to remove hydrogen peroxide from serum at pathologic temperature ature (42 C).

Keywords: Haptoglobin, Hemoglobin, Antioxidant, Antibiotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2263
280 Enhancing Rural Agricultural Value Chains through Electric Mobility Services in Ethiopia

Authors: Clemens Pizzinini, Philipp Rosner, David Ziegler, Markus Lienkamp

Abstract:

Transportation is a constitutional part of most supply and value chains in modern economies. Smallholder farmers in rural Ethiopia face severe challenges along their supply and value chains. In particular, suitable, affordable, and available transport services are in high demand. To develop context-specific technical solutions, a problem-to-solution methodology based on the interaction with technology is developed. With this approach, we fill the gap between proven transportation assessment frameworks and general user-centered techniques. Central to our approach is an electric test vehicle that is implemented in rural supply and value chains for research, development, and testing. Based on our objective and the derived methodological requirements, a set of existing methods is  selected. Local partners are integrated in an organizational framework that executes major parts of this research endeavour in Arsi Zone, Oromia Region, Ethiopia.

Keywords: Agricultural value chain, participatory methods, agile methods, sub-Saharan Africa, Ethiopia, electric vehicle, transport service.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 147
279 Waste Management in a Hot Laboratory of Japan Atomic Energy Agency – 3: Volume Reduction and Stabilization of Solid Waste

Authors: Masaumi Nakahara, Sou Watanabe, Hiromichi Ogi, Atsuhiro Shibata, Kazunori Nomura

Abstract:

In the Japan Atomic Energy Agency, three types of experimental research, advanced reactor fuel reprocessing, radioactive waste disposal, and nuclear fuel cycle technology, have been carried out at the Chemical Processing Facility. The facility has generated high level radioactive liquid and solid wastes in hot cells. The high level radioactive solid waste is divided into three main categories, a flammable waste, a non-flammable waste, and a solid reagent waste. A plastic product is categorized into the flammable waste and molten with a heating mantle. The non-flammable waste is cut with a band saw machine for reducing the volume. Among the solid reagent waste, a used adsorbent after the experiments is heated, and an extractant is decomposed for its stabilization. All high level radioactive solid wastes in the hot cells are packed in a high level radioactive solid waste can. The high level radioactive solid waste can is transported to the 2nd High Active Solid Waste Storage in the Tokai Reprocessing Plant in the Japan Atomic Energy Agency.

Keywords: High level radioactive solid waste, advanced reactor fuel reprocessing, radioactive waste disposal, nuclear fuel cycle technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 911
278 Investigation of Crack Formation in Ordinary Reinforced Concrete Beams and in Beams Strengthened with Carbon Fiber Sheet: Theory and Experiment

Authors: Anton A. Bykov, Irina O. Glot, Igor N. Shardakov, Alexey P. Shestakov

Abstract:

This paper presents the results of experimental and theoretical investigations of the mechanisms of crack formation in reinforced concrete beams subjected to quasi-static bending. The boundary-value problem has been formulated in the framework of brittle fracture mechanics and has been solved by using the finite-element method. Numerical simulation of the vibrations of an uncracked beam and a beam with cracks of different size serves to determine the pattern of changes in the spectrum of eigenfrequencies observed during crack evolution. Experiments were performed on the sequential quasistatic four-point bending of the beam leading to the formation of cracks in concrete. At each loading stage, the beam was subjected to an impulse load to induce vibrations. Two stages of cracking were detected. At the first stage the conservative process of deformation is realized. The second stage is an active cracking, which is marked by a sharp change in eingenfrequencies. The boundary of a transition from one stage to another is well registered. The vibration behavior was examined for the beams strengthened by carbon-fiber sheet before loading and at the intermediate stage of loading after the grouting of initial cracks. The obtained results show that the vibrodiagnostic approach is an effective tool for monitoring of cracking and for assessing the quality of measures aimed at strengthening concrete structures.

Keywords: Crack formation. experiment. mathematical modeling. reinforced concrete. vibrodiagnostics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1269
277 Robust Integrated Design for a Mechatronic Feed Drive System of Machine Tools

Authors: Chin-Yin Chen, Chi-Cheng Cheng

Abstract:

This paper aims at to develop a robust optimization methodology for the mechatronic modules of machine tools by considering all important characteristics from all structural and control domains in one single process. The relationship between these two domains is strongly coupled. In order to reduce the disturbance caused by parameters in either one, the mechanical and controller design domains need to be integrated. Therefore, the concurrent integrated design method Design For Control (DFC), will be employed in this paper. In this connect, it is not only applied to achieve minimal power consumption but also enhance structural performance and system response at same time. To investigate the method for integrated optimization, a mechatronic feed drive system of the machine tools is used as a design platform. Pro/Engineer and AnSys are first used to build the 3D model to analyze and design structure parameters such as elastic deformation, nature frequency and component size, based on their effects and sensitivities to the structure. In addition, the robust controller,based on Quantitative Feedback Theory (QFT), will be applied to determine proper control parameters for the controller. Therefore, overall physical properties of the machine tool will be obtained in the initial stage. Finally, the technology of design for control will be carried out to modify the structural and control parameters to achieve overall system performance. Hence, the corresponding productivity is expected to be greatly improved.

Keywords: Machine tools, integrated structure and control design, design for control, multilevel decomposition, quantitative feedback theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941
276 Spatial-Temporal Awareness Approach for Extensive Re-Identification

Authors: Tyng-Rong Roan, Fuji Foo, Wenwey Hseush

Abstract:

Recent development of AI and edge computing plays a critical role to capture meaningful events such as detection of an unattended bag. One of the core problems is re-identification across multiple CCTVs. Immediately following the detection of a meaningful event is to track and trace the objects related to the event. In an extensive environment, the challenge becomes severe when the number of CCTVs increases substantially, imposing difficulties in achieving high accuracy while maintaining real-time performance. The algorithm that re-identifies cross-boundary objects for extensive tracking is referred to Extensive Re-Identification, which emphasizes the issues related to the complexity behind a great number of CCTVs. The Spatial-Temporal Awareness approach challenges the conventional thinking and concept of operations which is labor intensive and time consuming. The ability to perform Extensive Re-Identification through a multi-sensory network provides the next-level insights – creating value beyond traditional risk management.

Keywords: Long-short-term memory, re-identification, security critical application, spatial-temporal awareness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 522
275 Nonlinear Response of Infinite Beams on a Tensionless Extensible Geosynthetic – Reinforced Earth Beds under Moving Load

Authors: Karuppsamy K., Eswara Prasad C. R.

Abstract:

In this paper analysis of an infinite beam resting on tensionless extensible geosynthetic reinforced granular bed overlying soft soil strata under moving load with constant velocity is presented. The beam is subjected to a concentrated load moving with constant velocity. The upper reinforced granular bed is modeled by a rough elastic membrane embedded in Pasternak shear layer overlying a series of compressible nonlinear Winkler springs representing the under-lied very poor soil. The tensionless extensible geosynthetic layer has been assumed to deform such that at interface the geosynthetic and the soil have some deformation. Nonlinear behavior of granular fill and the very poor soil has been considered in the analysis by means of hyperbolic constitutive relationships. Detailed parametric study has been conducted to study the influence of various parameters on the response of soil foundation system under consideration by means of deflection and bending moment in the beam and tension mobilized in the geosynthetic layer. This study clearly observed that the comparisons of tension and tensionless foundation and magnitude of applied load, relative compressibility of granular fill and ultimate resistance of poor soil has significant influence on the response of soil foundation system.

Keywords: Infinite Beams, Tensionless Extensible Geosynthetic, Granular layer, Moving Load and Nonlinear behavior of poor soil

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035
274 Thermo-Mechanical Approach to Evaluate Softening Behavior of Polystyrene: Validation and Modeling

Authors: Salah Al-Enezi, Rashed Al-Zufairi, Naseer Ahmad

Abstract:

A Thermo-mechanical technique was developed to determine softening point temperature/glass transition temperature (Tg) of polystyrene exposed to high pressures. The design utilizes the ability of carbon dioxide to lower the glass transition temperature of polymers and acts as plasticizer. In this apparatus, the sorption of carbon dioxide to induce softening of polymers as a function of temperature/pressure is performed and the extent of softening is measured in three-point-flexural-bending mode. The polymer strip was placed in the cell in contact with the linear variable differential transformer (LVDT). CO2 was pumped into the cell from a supply cylinder to reach high pressure. The results clearly showed that full softening point of the samples, accompanied by a large deformation on the polymer strip. The deflection curves are initially relatively flat and then undergo a dramatic increase as the temperature is elevated. It was found that increasing the pressure of CO2 causes the temperature curves to shift from higher to lower by increment of about 45 K, over the pressure range of 0-120 bars. The obtained experimental Tg values were validated with the values reported in the literature. Finally, it is concluded that the defection model fits consistently to the generated experimental results, which attempts to describe in more detail how the central deflection of a thin polymer strip affected by the CO2 diffusions in the polymeric samples.

Keywords: Softening, high-pressure, polystyrene, CO2 diffusions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 656
273 Plants Cover Effects on Overland Flow and on Soil Erosion under Simulated Rainfall Intensity

Authors: H. Madi, L. Mouzai, M. Bouhadef

Abstract:

The purpose of this article is to study the effects of plants cover on overland flow and, therefore, its influences on the amount of eroded and transported soil. In this investigation, all the experiments were conducted in the LEGHYD laboratory using a rainfall simulator and a soil tray. The experiments were conducted using an experimental plot (soil tray) which is 2m long, 0.5 m wide and 0.15 m deep. The soil used is an agricultural sandy soil (62,08% coarse sand, 19,14% fine sand, 11,57% silt and 7,21% clay). Plastic rods (4 mm in diameter) were used to simulate the plants at different densities: 0 stem/m2 (bared soil), 126 stems/m², 203 stems/m², 461 stems/m² and 2500 stems/m²). The used rainfall intensity is 73mm/h and the soil tray slope is fixed to 3°. The results have shown that the overland flow velocities decreased with increasing stems density, and the density cover has a great effect on sediment concentration. Darcy–Weisbach and Manning friction coefficients of overland flow increased when the stems density increased. Froude and Reynolds numbers decreased with increasing stems density and, consequently, the flow regime of all treatments was laminar and subcritical. From these findings, we conclude that increasing the plants cover can efficiently reduce soil loss and avoid denuding the roots plants.

Keywords: Soil erosion, vegetation, stems density, overland flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3122
272 Experimental Investigation on Cold-Formed Steel Foamed Concrete Composite Wall under Compression

Authors: Zhifeng Xu, Zhongfan Chen

Abstract:

A series of tests on cold-formed steel foamed concrete (CSFC) composite walls subjected to axial load were proposed. The primary purpose of the experiments was to study the mechanical behavior and identify the failure modes of CSFC composite walls. Two main factors were considered in this study: 1) specimen with pouring foamed concrete or without and 2) different foamed concrete density ranks (corresponding to different foamed concrete strength). The interior space between two pieces of straw board of the specimen W-2 and W-3 were poured foamed concrete, and the specimen W-1 does not have foamed concrete core. The foamed concrete density rank of the specimen W-2 was A05 grade, and that of the specimen W-3 was A07 grade. Results showed that the failure mode of CSFC composite wall without foamed concrete was distortional buckling of cold-formed steel (CFS) column, and that poured foamed concrete includes the local crushing of foamed concrete and local buckling of CFS column, but the former prior to the later. Compared with CSFC composite wall without foamed concrete, the ultimate bearing capacity of spec imens poured A05 grade and A07 grade foamed concrete increased 1.6 times and 2.2 times respectively, and specimen poured foamed concrete had a low vertical deformation. According to these results, the simplified calculation formula for the CSFC wall subjected to axial load was proposed, and the calculated results from this formula are in very good agreement with the test results.

Keywords: Cold-formed steel, composite wall, foamed concrete, axial behavior test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1334
271 Fast Generation of High-Performance Driveshafts: A Digital Approach to Automated Linked Topology and Design Optimization

Authors: Willi Zschiebsch, Alrik Dargel, Sebastian Spitzer, Philipp Johst, Robert Böhm, Niels Modler

Abstract:

In this article, we investigate an approach that digitally links individual development process steps by using the drive shaft of an aircraft engine as representative example of a fiber polymer composite. Such high-performance lightweight composite structures have many adjustable parameters that influence the mechanical properties. Only a combination of optimal parameter values can lead to energy efficient lightweight structures. The development tools required for the Engineering Design Process (EDP) are often isolated solutions and their compatibility with each other is limited. A digital framework is presented in this study, which allows individual specialised tools to be linked via the generated data in such a way that automated optimization across programs becomes possible. This is demonstrated using the example of linking geometry generation with numerical structural analysis. The proposed digital framework for automated design optimization demonstrates the feasibility of developing a complete digital approach to design optimization. The methodology shows promising potential for achieving optimal solutions in terms of mass, material utilization, eigenfrequency and deformation under lateral load with less development effort. The development of such a framework is an important step towards promoting a more efficient design approach that can lead to stable and balanced results.

Keywords: Digital Linked Process, composite, CFRP, multi-objective, EDP, NSGA-2, NSGA-3, TPE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 148
270 Novel D- glucose Based Glycomonomers Synthesis and Characterization

Authors: M.S. Mazăre, A. M. Pană, L. M. Ştefan, M. Silion, M. Bălan, G. Bandur, L. M. Rusnac

Abstract:

In the last decade, carbohydrates have attracted great attention as renewable resources for the chemical industry. Carbohydrates are abundantly found in nature in the form of monomers, oligomers and polymers, or as components of biopolymers and other naturally occurring substances. As natural products, they play important roles in conferring certain physical, chemical, and biological properties to their carrier molecules.The synthesis of this particular carbohydrate glycomonomer is part of our work to obtain biodegradable polymers. Our current paper describes the synthesis and characterization of a novel carbohydrate glycomonomer starting from D-glucose, in several synthesis steps, that involve the protection/deprotection of the D-glucose ring via acetylation, tritylation, then selective deprotection of the aromaticaliphatic protective group, in order to obtain 1,2,3,4-tetra-O-acetyl- 6-O-allyl-β-D-glucopyranose. The glycomonomer was then obtained by the allylation in drastic conditions of 1,2,3,4-tetra-O-acetyl-6-Oallyl- β-D-glucopyranose with allylic alcohol in the presence of stannic chloride, in methylene chloride, at room temperature. The proposed structure of the glycomonomer, 2,3,4-tri-O-acetyl-1,6-di- O-allyl-β-D-glucopyranose, was confirmed by FTIR, NMR and HPLC-MS spectrometry. This glycomonomer will be further submitted to copolymerization with certain acrylic or methacrylic monomers in order to obtain competitive plastic materials for applications in the biomedical field.

Keywords: allylation, D-glucose, glycomonomer, trityl chloride

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035
269 Assessment of Physicochemical Characteristics and Heavy Metals Concentration in Freshwater from Jega River, Kebbi State, Nigeria

Authors: D. Y. Bawa, M. I. Ribah, I. S. Jega, V. O. Oyedepo

Abstract:

This study was conducted to determine the physicochemical characteristics and heavy metal concentration (Cadmium (Cd), Copper (Cu), Iron (Fe), Lead (Pb) and Zinc (Zn)) in freshwater from Jega river. 30 water samples were collected in two 1-liter sterile plastic containers from three designated sampling points, namely; Station A (before the bridge; upstream), Station B (at the bridge where human activities such as washing of cars, motorbike, clothes, bathing and other household materials are concentrated), Station C (after the bridge; downstream) fortnightly, between March and July 2014. Results indicated that the highest pH mean value of 7.08 ± 1.12 was observed in station C, the highest conductivity with the mean 58.75 ± 7.87 µs/cm was observed at station A, the highest mean value of the water total hardness was observed at station A (54 ± 16.11 mg/L), the highest mean value of nitrate deposit was observed in station A (1.66 ± 1.33 mg/L), the highest mean value of alkalinity was observed at station B (51.33 ± 6.66 mg/L) and the highest mean (39.56 ± 3.24 mg/L) of total dissolved solids was observed at station A. The highest concentration mean value of Fe was observed in station C (65.33 ± 4.50 mg/L), the highest concentrations of Cd was observed in station C (0.99 ± 0.36 mg/L), the mean value of 2.13 ± 1.99 mg/L was the highest concentration of Zn observed in station B, the concentration of Pb was not detected (ND) and the highest concentration of Cu with the mean value of 0.43 ± 0.16 mg/L was observed in station B, while the lowest concentration was observed at station C (0.27 ± 0.26 mg/L). Statistical analysis shows no significant difference (P > 0.05) among the sampling stations for both the physicochemical characteristics and heavy metal concentrations. The results were found to be within the internationally acceptable standard limits.

Keywords: Assessment, freshwater, heavy metal concentration, physicochemical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1018
268 Effect of Shell Dimensions on Buckling Behavior and Entropy Generation of Thin Welded Shells

Authors: Sima Ziaee, Khosro Jafarpur

Abstract:

Among all mechanical joining processes, welding has been employed for its advantage in design flexibility, cost saving, reduced overall weight and enhanced structural performance. However, for structures made of relatively thin components, welding can introduce significant buckling distortion which causes loss of dimensional control, structural integrity and increased fabrication costs. Different parameters can affect buckling behavior of welded thin structures such as, heat input, welding sequence, dimension of structure. In this work, a 3-D thermo elastic-viscoplastic finite element analysis technique is applied to evaluate the effect of shell dimensions on buckling behavior and entropy generation of welded thin shells. Also, in the present work, the approximated longitudinal transient stresses which produced in each time step, is applied to the 3D-eigenvalue analysis to ratify predicted buckling time and corresponding eigenmode. Besides, the possibility of buckling prediction by entropy generation at each time is investigated and it is found that one can predict time of buckling with drawing entropy generation versus out of plane deformation. The results of finite element analysis show that the length, span and thickness of welded thin shells affect the number of local buckling, mode shape of global buckling and post-buckling behavior of welded thin shells.

Keywords: Buckling behavior, Elastic viscoplastic model, Entropy generation, Finite element method, Shell dimensions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
267 Multiple-Channel Piezoelectric Actuated Tunable Optical Filter for WDM Application

Authors: Hailu Dessalegn, T. Srinivas

Abstract:

We propose new multiple-channel piezoelectric (PZT) actuated tunable optical filter based on racetrack multi-ring resonators for wavelength de-multiplexing network applications. We design tunable eight-channel wavelength de-multiplexer consisting of eight cascaded PZT actuated tunable multi-ring resonator filter with a channel spacing of 1.6nm. The filter for each channel is basically structured on a suspended beam, sandwiched with piezoelectric material and built in integrated ring resonators which are placed on the middle of the beam to gain uniform stress and linearly varying longitudinal strain. A reference single mode serially coupled multi stage racetrack ring resonator with the same radii and coupling length is designed with a line width of 0.8974nm with a flat top pass band at 1dB of 0.5205nm and free spectral range of about 14.9nm. In each channel, a small change in the perimeter of the rings is introduced to establish the shift in resonance wavelength as per the defined channel spacing. As a result, when a DC voltage is applied, the beams will elongate, which involves mechanical deformation of the ring resonators that induces a stress and a strain, which brings a change in refractive index and perimeter of the rings leading to change in the output spectrum shift providing the tunability of central wavelength in each channel. Simultaneous wave length shift as high as 45.54pm/

Keywords: Optical MEMS, piezoelectric (PZT) actuation, tunable optical filter, wavelength de-multiplexer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007
266 Idealization of Licca-chan and Barbie: Comparison of Two Dolls across the Pacific

Authors: Miho Tsukamoto

Abstract:

Since the initial creation of the Barbie doll in 1959, it became a symbol of US society. Likewise, the Licca-chan, a Japanese doll created in 1967, also became a Japanese symbolic doll of Japanese society. Prior to the introduction of Licca-chan, Barbie was already marketed in Japan but their sales were dismal. Licca-chan (an actual name: Kayama Licca) is a plastic doll with a variety of sizes ranging from 21.0 cm to 29.0 cm which many Japanese girls dream of having. For over 35 years, the manufacturer, Takara Co., Ltd. has sold over 48 million dolls and has produced doll houses, accessories, clothes, and Licca-chan video games for the Nintendo DS. Many First-generation Licca-chan consumers still are enamored with Licca-chan, and go to Licca-chan House, in an amusement park with their daughters. These people are called Licca-chan maniacs, as they enjoy touring the Licca-chan’s factory in Tohoku or purchase various Licca-chan accessories. After the successful launch of Licca-chan into the Japanese market, a mixed-like doll from the US and Japan, a doll, JeNny, was later sold in the same Japanese market by Takara Co., Ltd. in 1982. Comparison of these cultural iconic dolls, Barbie and Licca-chan, are analyzed in this paper. In fact, these dolls have concepts of girls’ dreams. By using concepts of mythology of Jean Baudrillard, these dolls can be represented idealized images of figures in the products for consumers, but at the same time, consumers can see products with different perspectives, which can cause controversy.

Keywords: Barbie, Dolls, JeNny, Idealization, Licca-chan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3565
265 Effects of SRT and HRT on Treatment Performance of MBR and Membrane Fouling

Authors: M. I. Aida Isma, Azni Idris, Rozita Omar, A. R. Putri Razreena

Abstract:

40L of hollow fiber membrane bioreactor with solids retention times (SRT) of 30, 15 and 4 days were setup for treating synthetic wastewater at hydraulic retention times (HRT) of 12, 8 and 4 hours. The objectives of the study were to investigate the effects of SRT and HRT on membrane fouling. A comparative analysis was carried out for physiochemical quality parameters (turbidity, suspended solids, COD, NH3-N and PO43-). Scanning electron microscopy (SEM), energy diffusive X-ray (EDX) analyzer and particle size distribution (PSD) were used to characterize the membrane fouling properties. The influence of SRT on the quality of effluent, activated sludge quality, and membrane fouling were also correlated. Lower membrane fouling and slower rise in trans-membrane pressure (TMP) were noticed at the longest SRT and HRT of 30d and 12h, respectively. Increasing SRT results in noticeable reduction of dissolved organic matters. The best removal efficiencies of COD, TSS, NH3-N and PO43- were 93%, 98%, 80% and 30% respectively. The high HRT with shorter SRT induced faster fouling rate. The main fouling resistance was cake layer. The most severe membrane fouling was observed at SRT and HRT of 4 and 12, respectively with thickness cake layer of 17mm as reflected by higher TMP, lower effluent removal and thick sludge cake layer.

 

Keywords: Membrane bioreactor, SRT, HRT, membrane fouling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6234
264 Effect of Irrigation Methods on Water Use Efficiency Applied to Citrus Crop in the Souss Region (Morocco) in the Context of Climate Change

Authors: H. Elomari, M. Fallah, A. Elmousadik

Abstract:

This work was conducted in the Souss region, known by severe water scarcity and a high agricultural activity dominated by the citrus (representing 40% of the area of Morocco's citrus). The objective of this work is to diagnose the current situation of the water efficiency in citrus irrigation and analyze the impact of various production factors on water productivity and its sustainability in the context of climate change. A field survey was conducted on 65 farms with areas varying from 0.5 to 350 ha. The stratification method was adopted as a sampling frame. Initial result indicates that the use of water shows a huge shortfall, since 31% of farms in the region are still using the surface irrigation system and 67% of farms are still using only the experience of the manager to control and adjust irrigation. The assessment of water productivity showed a value of 1.2 kg/m3 for surface irrigation and 3.8 kg/m3 for drip irrigation. The use of tools for control and adjustment of irrigation increases the water productivity of drip irrigation by 25%. The availability of the technical staff (internal or external) allows an increase in productivity of 172.4% compared to farms without technical advice.

Keywords: Citrus, irrigation efficiency, water productivity, drip irrigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1105
263 Finite Element Assessment on Bond Behavior of FRP-to-Concrete Joints under Cyclic Loading

Authors: F. Atheer, Al-Saoudi, Robin Kalfat, Riadh Al-Mahaidi

Abstract:

Over the last two decades, externally bonded fiber reinforced polymer (FRP) composites bonded to concrete substrates has become a popular method for strengthening reinforced concrete (RC) highway and railway bridges. Such structures are exposed to severe cyclic loading throughout their lifetime often resulting in fatigue damage to structural components and a reduction in the service life of the structure. Since experimental and numerical results on the fatigue performance of FRP-to-concrete joints are still limited, the current research focuses on assessing the fatigue performance of externally bonded FRP-to-concrete joints using a direct shear test. Some early results indicate that the stress ratio and the applied cyclic stress level have a direct influence on the fatigue life of the externally bonded FRP. In addition, a calibrated finite element model is developed to provide further insight into the influence of certain parameters such as: concrete strength, FRP thickness, number of cycles, frequency, and stiffness on the fatigue life of the FRP-toconcrete joints.

Keywords: FRP, concrete bond, control, fatigue, finite element model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
262 Failure Cases Analysis in Petrochemical Industry

Authors: S. W. Liu, J. H. Lv, W. Z. Wang

Abstract:

In recent years, the failure accidents in petrochemical industry have been frequent, and have posed great security problems in personnel and property. The improvement of petrochemical safety is highly requested in order to prevent re-occurrence of severe accident. This study focuses on surveying the failure cases occurred in petrochemical field, which were extracted from journals of engineering failure, including engineering failure analysis and case studies in engineering failure analysis. The relation of failure mode, failure mechanism, type of components, and type of materials was analyzed in this study. And the analytical results showed that failures occurred more frequently in vessels and piping among the petrochemical equipment. Moreover, equipment made of carbon steel and stainless steel accounts for the majority of failures compared to other materials. This may be related to the application of the equipment and the performance of the material. In addition, corrosion failures were the largest in number of occurrence in the failure of petrochemical equipment, in which stress corrosion cracking accounts for a large proportion. This may have a lot to do with the service environment of the petrochemical equipment. Therefore, it can be concluded that the corrosion prevention of petrochemical equipment is particularly important.

Keywords: Cases analysis, corrosion, failure, petrochemical industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1393
261 The Impact of Post-Disaster Relocation on Community Solidarity: The Case of Post-Disaster Reconstruction after Typhoon Morakot in Taiwan

Authors: Tsung-Hsi Fu, Wan-I Lin, Jyh-Cherng Shieh

Abstract:

Typhoon Morakot hit Taiwan in 2009 and caused severe damages. The government employs a compulsory relocation strategy for post-disaster reconstruction. This study analyzes the impact of this strategy on community solidarity. It employs a multiple approach for data collection, including semi-structural interview, secondary data, and documentation. The results indicate that the government-s strategy for distributing housing has led to conflicts within the communities. In addition, the relocating process has stimulated tensions between victims of the disaster and those residents whose lands were chosen to be new sites for relocation. The government-s strategy of “collective relocation" also worsened community integration. In addition, the fact that a permanent housing community may accommodate people from different places also posts challenge for the development of new inter-personal relations in the communities. This study concludes by emphasizing the importance of bringing social, economic and cultural aspects into consideration for post-disaster relocation..

Keywords: community solidarity, permanent housing, post-disaster reconstruction, relocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
260 Study of Coupled Lateral-Torsional Free Vibrations of Laminated Composite Beam: Analytical Approach

Authors: S.H. Mirtalaie, M.A. Hajabasi

Abstract:

In this paper, an analytical approach is used to study the coupled lateral-torsional vibrations of laminated composite beam. It is known that in such structures due to the fibers orientation in various layers, any lateral displacement will produce a twisting moment. This phenomenon is modeled by the bending-twisting material coupling rigidity and its main feature is the coupling of lateral and torsional vibrations. In addition to the material coupling, the effects of shear deformation and rotary inertia are taken into account in the definition of the potential and kinetic energies. Then, the governing differential equations are derived using the Hamilton-s principle and the mathematical model matches the Timoshenko beam model when neglecting the effect of bending-twisting rigidity. The equations of motion which form a system of three coupled PDEs are solved analytically to study the free vibrations of the beam in lateral and rotational modes due to the bending, as well as the torsional mode caused by twisting. The analytic solution is carried out in three steps: 1) assuming synchronous motion for the kinematic variables which are the lateral, rotational and torsional displacements, 2) solving the ensuing eigenvalue problem which contains three coupled second order ODEs and 3) imposing different boundary conditions related to combinations of simply, clamped and free end conditions. The resulting natural frequencies and mode shapes are compared with similar results in the literature and good agreement is achieved.

Keywords: Free vibration, laminated composite beam, material coupling, state space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2286
259 Analysis and Modeling of Stresses and Creeps Resulting from Soil Mechanics in Southern Plains of Kerman Province

Authors: Kourosh Nazarian

Abstract:

Many of the engineering materials, such as behavioral metals, have at least a certain level of linear behavior. It means that if the stresses are doubled, the deformations would be also doubled. In fact, these materials have linear elastic properties. Soils do not follow this law, for example, when compressed, soils become gradually tighter. On the surface of the ground, the sand can be easily deformed with a finger, but in high compressive stresses, they gain considerable hardness and strength. This is mainly due to the increase in the forces among the separate particles. Creeps also deform the soils under a constant load over time. Clay and peat soils have creep behavior. As a result of this phenomenon, structures constructed on such soils will continue their collapse over time. In this paper, the researchers analyzed and modeled the stresses and creeps in the southern plains of Kerman province in Iran through library-documentary, quantitative and software techniques, and field survey. The results of the modeling showed that these plains experienced severe stresses and had a collapse of about 26 cm in the last 15 years and also creep evidence was discovered in an area with a gradient of 3-6 degrees.

Keywords: Stress, creep, surface runoff.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 710
258 Micromechanics Modeling of 3D Network Smart Orthotropic Structures

Authors: E. M. Hassan, A. L. Kalamkarov

Abstract:

Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite Element Analysis (FEA) is subsequently developed and used to examine the aforementioned periodic 3D network reinforced smart structures. The deformation responses from the FE simulations are used to extract effective coefficients. The results from both techniques are compared. This work considers piezoelectric materials that respond linearly to changes in electric field, electric displacement, mechanical stress and strain and thermal effects. This combination of electric fields and thermo-mechanical response in smart composite structures is characterized by piezoelectric and thermal expansion coefficients. The problem is represented by unitcell and the models are developed using the AHM and the FEA to determine the effective piezoelectric and thermal expansion coefficients. Each unit cell contains a number of orthotropic inclusions in the form of structural reinforcements and actuators. Using matrix representation of the coupled response of the unit cell, the effective piezoelectric and thermal expansion coefficients are calculated and compared with results of the asymptotic homogenization method. A very good agreement is shown between these two approaches.

Keywords: Asymptotic Homogenization Method, Effective Piezothermoelastic Coefficients, Finite Element Analysis, 3D Smart Network Composite Structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094
257 Thermo-Mechanical Treatments of Cu-Ti Alloys

Authors: M. M. Morgham, A. A. Hameda, N. A. Zriba, H. A. Jawan

Abstract:

This paper aims to study the effect of cold work condition on the microstructure of Cu-1.5wt%Ti, and Cu-3.5wt%Ti and hence mechanical properties. The samples under investigation were machined, and solution heat treated. X-ray diffraction technique is used to identify the different phases present after cold deformation by compression and also different heat treatment and also measuring the relative quantities of phases present. The metallographic examination is used to study the microstructure of the samples. The hardness measurements were used to indicate the change in mechanical properties. The results are compared with the mechanical properties obtained by previous workers. Experiments on cold compression followed by aging of Cu-Ti alloys have indicated that the most efficient hardening of the material results from continuous precipitation of very fine particles within the matrix. These particles were reported to be β`-type, Cu4Ti phase. The β`-β transformation and particles coarsening within the matrix as well as long grain boundaries were responsible for the overaging of Cu-1.5wt%Ti and Cu-3.5wt%Ti alloys. It is well known that plate-like particles are β – type, Cu3Ti phase. Discontinuous precipitation was found to start at the grain boundaries and expand into grain interior. At the higher aging temperature, a classic Widmanstätten morphology forms giving rise to a coarse microstructure comprised of α and the equilibrium phase β. Those results were confirmed by X-ray analysis, which found that a few percent of Cu3Ti, β precipitates are formed during aging at high temperature for long time for both Cu- Ti alloys (i.e. Cu-1.5wt%Ti and Cu-3.5wt%Ti).

Keywords: Metallographic, hardness, precipitation, aging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
256 Parametric Study on Dynamic Analysis of Composite Laminated Plate

Authors: Junaid Kameran Ahmed

Abstract:

A laminated plate composite of graphite/epoxy has been analyzed dynamically in the present work by using a quadratic element (8-node diso-parametric), and by depending on 1st order shear deformation theory, every node in this element has 6-degrees of freedom (displacement in x, y, and z axis and twist about x, y, and z axis). The dynamic analysis in the present work covered parametric studies on a composite laminated plate (square plate) to determine its effect on the natural frequency of the plate. The parametric study is represented by set of changes (plate thickness, number of layers, support conditions, layer orientation), and the plates have been simulated by using ANSYS package 12. The boundary conditions considered in this study, at all four edges of the plate, are simply supported and fixed boundary condition. The results obtained from ANSYS program show that the natural frequency for both fixed and simply supported increases with increasing the number of layers, but this increase in the natural frequency for the first five modes will be neglected after 10 layers. And it is observed that the natural frequency of a composite laminated plate will change with the change of ply orientation, the natural frequency increases and it will be at maximum with angle 45 of ply for simply supported laminated plate, and maximum natural frequency will be with cross-ply (0/90) for fixed laminated composite plate. It is also observed that the natural frequency increase is approximately doubled when the thickness is doubled.

Keywords: Laminated plate, orthotropic plate, square plate, natural frequency, graphite/epoxy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 973
255 Analysis of a Mathematical Model for Dengue Disease in Pregnant Cases

Authors: Rujira Kongnuy, Puntani Pongsumpun, I-Ming Tang

Abstract:

Dengue fever is an important human arboviral disease. Outbreaks are now reported quite often from many parts of the world. The number of cases involving pregnant women and infant cases are increasing every year. The illness is often severe and complications may occur. Deaths often occur because of the difficulties in early diagnosis and in the improper management of the diseases. Dengue antibodies from pregnant women are passed on to infants and this protects the infants from dengue infections. Antibodies from the mother are transferred to the fetus when it is still in the womb. In this study, we formulate a mathematical model to describe the transmission of this disease in pregnant women. The model is formulated by dividing the human population into pregnant women and non-pregnant human (men and non-pregnant women). Each class is subdivided into susceptible (S), infectious (I) and recovered (R) subclasses. We apply standard dynamical analysis to our model. Conditions for the local stability of the equilibrium points are given. The numerical simulations are shown. The bifurcation diagrams of our model are discussed. The control of this disease in pregnant women is discussed in terms of the threshold conditions.

Keywords: Dengue disease, local stability, mathematical model, pregnancy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
254 ABURAS Index: A Statistically Developed Index for Dengue-Transmitting Vector Population Prediction

Authors: Hani M. Aburas

Abstract:

“Dengue" is an African word meaning “bone breaking" because it causes severe joint and muscle pain that feels like bones are breaking. It is an infectious disease mainly transmitted by female mosquito, Aedes aegypti, and causes four serotypes of dengue viruses. In recent years, a dramatic increase in the dengue fever confirmed cases around the equator-s belt has been reported. Several conventional indices have been designed so far to monitor the transmitting vector populations known as House Index (HI), Container Index (CI), Breteau Index (BI). However, none of them describes the adult mosquito population size which is important to direct and guide comprehensive control strategy operations since number of infected people has a direct relationship with the vector density. Therefore, it is crucial to know the population size of the transmitting vector in order to design a suitable and effective control program. In this context, a study is carried out to report a new statistical index, ABURAS Index, using Poisson distribution based on the collection of vector population in Jeddah Governorate, Saudi Arabia.

Keywords: Poisson distribution, statistical index, prediction, Aedes aegypti.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909