Search results for: limit detection and avoidance
1287 Faults Forecasting System
Authors: Hanaa E.Sayed, Hossam A. Gabbar, Shigeji Miyazaki
Abstract:
This paper presents Faults Forecasting System (FFS) that utilizes statistical forecasting techniques in analyzing process variables data in order to forecast faults occurrences. FFS is proposing new idea in detecting faults. Current techniques used in faults detection are based on analyzing the current status of the system variables in order to check if the current status is fault or not. FFS is using forecasting techniques to predict future timing for faults before it happens. Proposed model is applying subset modeling strategy and Bayesian approach in order to decrease dimensionality of the process variables and improve faults forecasting accuracy. A practical experiment, designed and implemented in Okayama University, Japan, is implemented, and the comparison shows that our proposed model is showing high forecasting accuracy and BEFORE-TIME.Keywords: Bayesian Techniques, Faults Detection, Forecasting techniques, Multivariate Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15601286 Fault Detection and Identification of COSMED K4b2 Based On PCA and Neural Network
Authors: Jing Zhou, Steven Su, Aihuang Guo
Abstract:
COSMED K4b2 is a portable electrical device designed to test pulmonary functions. It is ideal for many applications that need the measurement of the cardio-respiratory response either in the field or in the lab is capable with the capability to delivery real time data to a sink node or a PC base station with storing data in the memory at the same time. But the actual sensor outputs and data received may contain some errors, such as impulsive noise which can be related to sensors, low batteries, environment or disturbance in data acquisition process. These abnormal outputs might cause misinterpretations of exercise or living activities to persons being monitored. In our paper we propose an effective and feasible method to detect and identify errors in applications by principal component analysis (PCA) and a back propagation (BP) neural network.
Keywords: BP Neural Network, Exercising Testing, Fault Detection and Identification, Principal Component Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30801285 The Comparison Study of Current Control Techniques for Active Power Filters
Authors: T. Narongrit, K-L. Areerak, K-N. Areerak
Abstract:
This paper presents the comparison study of current control techniques for shunt active power filter. The hysteresis current control, the delta modulation control and the carrier-based PWM control are considered in the paper. The synchronous detection method is used to calculate the reference currents for shunt active power filter. The simulation results show that the carrier-based PWM control technique provides the minimum %THD value of the source currents compared with other comparable techniques after compensation. However, the %THD values of all three techniques can follow the IEEE std.519-1992.
Keywords: hysteresis current control, delta modulation current control, pulse width modulation control, shunt active power filter, synchronous detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24991284 Indian License Plate Detection and Recognition Using Morphological Operation and Template Matching
Authors: W. Devapriya, C. Nelson Kennedy Babu, T. Srihari
Abstract:
Automatic License plate recognition (ALPR) is a technology which recognizes the registration plate or number plate or License plate of a vehicle. In this paper, an Indian vehicle number plate is mined and the characters are predicted in efficient manner. ALPR involves four major technique i) Pre-processing ii) License Plate Location Identification iii) Individual Character Segmentation iv) Character Recognition. The opening phase, named pre-processing helps to remove noises and enhances the quality of the image using the conception of Morphological Operation and Image subtraction. The second phase, the most puzzling stage ascertain the location of license plate using the protocol Canny Edge detection, dilation and erosion. In the third phase, each characters characterized by Connected Component Approach (CCA) and in the ending phase, each segmented characters are conceptualized using cross correlation template matching- a scheme specifically appropriate for fixed format. Major application of ALPR is Tolling collection, Border Control, Parking, Stolen cars, Enforcement, Access Control, Traffic control. The database consists of 500 car images taken under dissimilar lighting condition is used. The efficiency of the system is 97%. Our future focus is Indian Vehicle License Plate Validation (Whether License plate of a vehicle is as per Road transport and highway standard).
Keywords: Automatic License plate recognition, Character recognition, Number plate Recognition, Template matching, morphological operation, canny edge detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24171283 Analysis of Acoustic Emission Signal for the Detection of Defective Manufactures in Press Process
Authors: Dong Hun Kim, Won Kyu Lee, Sok Won Kim
Abstract:
Small cracks or chips of a product appear very frequently in the course of continuous production of an automatic press process system. These phenomena become the cause of not only defective product but also damage of a press mold. In order to solve this problem AE system was introduced. AE system was expected to be very effective to real time detection of the defective product and to prevention of the damage of the press molds. In this study, for pick and analysis of AE signals generated from the press process, AE sensors/pre-amplifier/analysis and processing board were used as frequently found in the other similar cases. For analysis and processing the AE signals picked in real time from the good or bad products, specialized software called cdm8 was used. As a result of this work it was conformed that intensity and shape of the various AE signals differ depending on the weight and thickness of metal sheet and process type.Keywords: press, acoustic emission, signal processing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16361282 Potential Field Functions for Motion Planning and Posture of the Standard 3-Trailer System
Authors: K. Raghuwaiya, S. Singh, B. Sharma, J. Vanualailai
Abstract:
This paper presents a set of artificial potential field functions that improves upon, in general, the motion planning and posture control, with theoretically guaranteed point and posture stabilities, convergence and collision avoidance properties of 3-trailer systems in a priori known environment. We basically design and inject two new concepts; ghost walls and the distance optimization technique (DOT) to strengthen point and posture stabilities, in the sense of Lyapunov, of our dynamical model. This new combination of techniques emerges as a convenient mechanism for obtaining feasible orientations at the target positions with an overall reduction in the complexity of the navigation laws. The effectiveness of the proposed control laws were demonstrated via simulations of two traffic scenarios.
Keywords: Artificial potential fields, 3-trailer systems, motion planning, posture, parking and collision-free trajectories.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21351281 Study of Anti-Symmetric Flexural Mode Propagation along Wedge Tip with a Crack
Authors: Manikanta Prasad Banda, Che Hua Yang
Abstract:
Anti-symmetric wave propagation along the particle motion of the wedge waves is known as anti-symmetric flexural (ASF) modes which travel along the wedge tips of the mid-plane apex with a small truncation. This paper investigates the characteristics of the ASF modes propagation with the wedge tip crack. The simulation and experimental results obtained by a three-dimensional (3-D) finite element model explained the contact acoustic non-linear (CAN) behavior in explicit dynamics in ABAQUS and the ultrasonic non-destructive testing (NDT) method is used for defect detection. The effect of various parameters on its high and low-level conversion modes are known for complex reflections and transmissions involved with direct reflections and transmissions. The results are used to predict the location of crack through complex transmission and reflection coefficients.
Keywords: ASF mode, crack detection, finite elements method, laser ultrasound technique, wedge waves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5471280 Current Status and Future Trends of Mechanized Fruit Thinning Devices and Sensor Technology
Authors: Marco Lopes, Pedro D. Gaspar, Maria P. Simões
Abstract:
This paper reviews the different concepts that have been investigated concerning the mechanization of fruit thinning as well as multiple working principles and solutions that have been developed for feature extraction of horticultural products, both in the field and industrial environments. The research should be committed towards selective methods, which inevitably need to incorporate some kinds of sensor technology. Computer vision often comes out as an obvious solution for unstructured detection problems, although leaves despite the chosen point of view frequently occlude fruits. Further research on non-traditional sensors that are capable of object differentiation is needed. Ultrasonic and Near Infrared (NIR) technologies have been investigated for applications related to horticultural produce and show a potential to satisfy this need while simultaneously providing spatial information as time of flight sensors. Light Detection and Ranging (LIDAR) technology also shows a huge potential but it implies much greater costs and the related equipment is usually much larger, making it less suitable for portable devices, which may serve a purpose on smaller unstructured orchards. Portable devices may serve a purpose on these types of orchards. In what concerns sensor methods, on-tree fruit detection, major challenge is to overcome the problem of fruits’ occlusion by leaves and branches. Hence, nontraditional sensors capable of providing some type of differentiation should be investigated.
Keywords: Fruit thinning, horticultural field, portable devices, sensor technologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9921279 Guided Wave Sensitivity for De-Bond Defects in Aluminum Skin-Honeycomb Core
Authors: A. Satour, F. Boubenider, R. Halimi, A. Badidibouda
Abstract:
Sandwich plates are finding an increasing range of application in the aircraft industry. The inspection of honeycomb composite structure by conventional ultrasonic technique is complex and very time consuming. The present study demonstrates a technique using guided Lamb waves at low frequencies to predict de-bond defects in aluminum skin-honeycomb core sandwich structure used in aeronautics. The numerical method was investigated for drawing the dispersion and displacement curves of ultrasonic Lamb wave propagated in Aluminum plate. An experimental study was carried out to check the theoretical prediction. The detection of unsticking between the skin and the core was tested by the two first modes for a low frequency. It was found that A0 mode is more sensitive to delamination defect compared to S0 mode.
Keywords: Damage detection, delamination, guided waves, Sandwich structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23311278 Decoder Design for a New Single Error Correcting/Double Error Detecting Code
Authors: M. T. Anwar, P. K. Lala, P. Thenappan
Abstract:
This paper presents the decoder design for the single error correcting and double error detecting code proposed by the authors in an earlier paper. The speed of error detection and correction of a code is largely dependent upon the associated encoder and decoder circuits. The complexity and the speed of such circuits are determined by the number of 1?s in the parity check matrix (PCM). The number of 1?s in the parity check matrix for the code proposed by the authors are fewer than in any currently known single error correcting/double error detecting code. This results in simplified encoding and decoding circuitry for error detection and correction.Keywords: Decoder, Hsiao code, Parity Check Matrix, Syndrome Pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20871277 A Fast Sign Localization System Using Discriminative Color Invariant Segmentation
Authors: G.P. Nguyen, H.J. Andersen
Abstract:
Building intelligent traffic guide systems has been an interesting subject recently. A good system should be able to observe all important visual information to be able to analyze the context of the scene. To do so, signs in general, and traffic signs in particular, are usually taken into account as they contain rich information to these systems. Therefore, many researchers have put an effort on sign recognition field. Sign localization or sign detection is the most important step in the sign recognition process. This step filters out non informative area in the scene, and locates candidates in later steps. In this paper, we apply a new approach in detecting sign locations using a new color invariant model. Experiments are carried out with different datasets introduced in other works where authors claimed the difficulty in detecting signs under unfavorable imaging conditions. Our method is simple, fast and most importantly it gives a high detection rate in locating signs.Keywords: Sign localization, color-based segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13011276 Autonomously Determining the Parameters for SVDD with RBF Kernel from a One-Class Training Set
Authors: Andreas Theissler, Ian Dear
Abstract:
The one-class support vector machine “support vector data description” (SVDD) is an ideal approach for anomaly or outlier detection. However, for the applicability of SVDD in real-world applications, the ease of use is crucial. The results of SVDD are massively determined by the choice of the regularisation parameter C and the kernel parameter of the widely used RBF kernel. While for two-class SVMs the parameters can be tuned using cross-validation based on the confusion matrix, for a one-class SVM this is not possible, because only true positives and false negatives can occur during training. This paper proposes an approach to find the optimal set of parameters for SVDD solely based on a training set from one class and without any user parameterisation. Results on artificial and real data sets are presented, underpinning the usefulness of the approach.
Keywords: Support vector data description, anomaly detection, one-class classification, parameter tuning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29441275 The Effect of Zeolite on Sandy-Silt Soil Mechanical Properties
Authors: Shahryar Aftabi, Saeed Fathi, Mohammad H. Aminfar
Abstract:
It is well known that cemented sand is one of the best approaches for soil stabilization. In some cases, a blend of sand, cement and other pozzolan materials such as zeolite, nano-particles and fiber can be widely (commercially) available and be effectively used in soil stabilization, especially in road construction. In this research, we investigate the effects of CaO which is based on the geotechnical characteristics of zeolite composition with sandy silt soil. Zeolites have low amount of CaO in their structures, that is, varying from 3% to 10%, and by removing the cement paste, we want to investigate the effect of zeolite pozzolan without any activator on soil samples strength. In this research, experiments are concentrated on various weight percentages of zeolite in the soil to examine the effect of the zeolite on drainage shear strength and California Bearing Ratio (CBR) both with and without curing. The study also investigates their liquid limit and plastic limit behavior and makes a comparative result by using Feng's and Wroth-Wood's methods in fall cone (cone penetrometer) device; in the final the SEM images have been presented. The results show that by increasing the percentage of zeolite in without-curing samples, the fine zeolite particles increase some soil's strength, but in the curing-state we can see a relatively higher strength toward without-curing state, since the zeolites have no plastic behavior, the pozzolanic property of zeolites plays a much higher role than cementing properties. Indeed, it is better to combine zeolite particle with activator material such as cement or lime to gain better results.
Keywords: CBR, direct shear, fall-cone, sandy-silt, SEM, zeolite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6261274 Structural Damage Detection via Incomplete Modal Data Using Output Data Only
Authors: Ahmed Noor Al-Qayyim, Barlas Ozden Caglayan
Abstract:
Structural failure is caused mainly by damage that often occurs on structures. Many researchers focus on to obtain very efficient tools to detect the damage in structures in the early state. In the past decades, a subject that has received considerable attention in literature is the damage detection as determined by variations in the dynamic characteristics or response of structures. The study presents a new damage identification technique. The technique detects the damage location for the incomplete structure system using output data only. The method indicates the damage based on the free vibration test data by using ‘Two Points Condensation (TPC) technique’. This method creates a set of matrices by reducing the structural system to two degrees of freedom systems. The current stiffness matrices obtain from optimization the equation of motion using the measured test data. The current stiffness matrices compare with original (undamaged) stiffness matrices. The large percentage changes in matrices’ coefficients lead to the location of the damage. TPC technique is applied to the experimental data of a simply supported steel beam model structure after inducing thickness change in one element, where two cases consider. The method detects the damage and determines its location accurately in both cases. In addition, the results illustrate these changes in stiffness matrix can be a useful tool for continuous monitoring of structural safety using ambient vibration data. Furthermore, its efficiency proves that this technique can be used also for big structures.Keywords: Damage detection, two points–condensation, structural health monitoring, signals processing, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27071273 Structural Health Monitoring of Offshore Structures Using Wireless Sensor Networking under Operational and Environmental Variability
Authors: Srinivasan Chandrasekaran, Thailammai Chithambaram, Shihas A. Khader
Abstract:
The early-stage damage detection in offshore structures requires continuous structural health monitoring and for the large area the position of sensors will also plays an important role in the efficient damage detection. Determining the dynamic behavior of offshore structures requires dense deployment of sensors. The wired Structural Health Monitoring (SHM) systems are highly expensive and always needs larger installation space to deploy. Wireless sensor networks can enhance the SHM system by deployment of scalable sensor network, which consumes lesser space. This paper presents the results of wireless sensor network based Structural Health Monitoring method applied to a scaled experimental model of offshore structure that underwent wave loading. This method determines the serviceability of the offshore structure which is subjected to various environment loads. Wired and wireless sensors were installed in the model and the response of the scaled BLSRP model under wave loading was recorded. The wireless system discussed in this study is the Raspberry pi board with Arm V6 processor which is programmed to transmit the data acquired by the sensor to the server using Wi-Fi adapter, the data is then hosted in the webpage. The data acquired from the wireless and wired SHM systems were compared and the design of the wireless system is verified.Keywords: Condition assessment, damage detection, structural health monitoring, structural response, wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29761272 Global Security Using Human Face Understanding under Vision Ubiquitous Architecture System
Abstract:
Different methods containing biometric algorithms are presented for the representation of eigenfaces detection including face recognition, are identification and verification. Our theme of this research is to manage the critical processing stages (accuracy, speed, security and monitoring) of face activities with the flexibility of searching and edit the secure authorized database. In this paper we implement different techniques such as eigenfaces vector reduction by using texture and shape vector phenomenon for complexity removal, while density matching score with Face Boundary Fixation (FBF) extracted the most likelihood characteristics in this media processing contents. We examine the development and performance efficiency of the database by applying our creative algorithms in both recognition and detection phenomenon. Our results show the performance accuracy and security gain with better achievement than a number of previous approaches in all the above processes in an encouraging mode.Keywords: Ubiquitous architecture, verification, Identification, recognition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13451271 Wavelet Entropy Based Algorithm for Fault Detection and Classification in FACTS Compensated Transmission Line
Authors: Amany M. El-Zonkoly, Hussein Desouki
Abstract:
Distance protection of transmission lines including advanced flexible AC transmission system (FACTS) devices has been a very challenging task. FACTS devices of interest in this paper are static synchronous series compensators (SSSC) and unified power flow controller (UPFC). In this paper, a new algorithm is proposed to detect and classify the fault and identify the fault position in a transmission line with respect to a FACTS device placed in the midpoint of the transmission line. Discrete wavelet transformation and wavelet entropy calculations are used to analyze during fault current and voltage signals of the compensated transmission line. The proposed algorithm is very simple and accurate in fault detection and classification. A variety of fault cases and simulation results are introduced to show the effectiveness of such algorithm.
Keywords: Entropy calculation, FACTS, SSSC, UPFC, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20801270 An Advanced Stereo Vision Based Obstacle Detection with a Robust Shadow Removal Technique
Authors: Saeid Fazli, Hajar Mohammadi D., Payman Moallem
Abstract:
This paper presents a robust method to detect obstacles in stereo images using shadow removal technique and color information. Stereo vision based obstacle detection is an algorithm that aims to detect and compute obstacle depth using stereo matching and disparity map. The proposed advanced method is divided into three phases, the first phase is detecting obstacles and removing shadows, the second one is matching and the last phase is depth computing. We propose a robust method for detecting obstacles in stereo images using a shadow removal technique based on color information in HIS space, at the first phase. In this paper we use Normalized Cross Correlation (NCC) function matching with a 5 × 5 window and prepare an empty matching table τ and start growing disparity components by drawing a seed s from S which is computed using canny edge detector, and adding it to τ. In this way we achieve higher performance than the previous works [2,17]. A fast stereo matching algorithm is proposed that visits only a small fraction of disparity space in order to find a semi-dense disparity map. It works by growing from a small set of correspondence seeds. The obstacle identified in phase one which appears in the disparity map of phase two enters to the third phase of depth computing. Finally, experimental results are presented to show the effectiveness of the proposed method.
Keywords: obstacle detection, stereo vision, shadowremoval, color, stereo matching
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20791269 Real Time Detection, Tracking and Recognition of Medication Intake
Authors: H. H. Huynh, J. Meunier, J.Sequeira, M.Daniel
Abstract:
In this paper, the detection and tracking of face, mouth, hands and medication bottles in the context of medication intake monitoring with a camera is presented. This is aimed at recognizing medication intake for elderly in their home setting to avoid an inappropriate use. Background subtraction is used to isolate moving objects, and then, skin and bottle segmentations are done in the RGB normalized color space. We use a minimum displacement distance criterion to track skin color regions and the R/G ratio to detect the mouth. The color-labeled medication bottles are simply tracked based on the color space distance to their mean color vector. For the recognition of medication intake, we propose a three-level hierarchal approach, which uses activity-patterns to recognize the normal medication intake activity. The proposed method was tested with three persons, with different medication intake scenarios, and gave an overall precision of over 98%.
Keywords: Activity recognition, background subtraction, tracking, medication intake, video surveillance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19941268 SMCC: Self-Managing Congestion Control Algorithm
Authors: Sh. Jamali, A. Eftekhari
Abstract:
Transmission control protocol (TCP) Vegas detects network congestion in the early stage and successfully prevents periodic packet loss that usually occurs in TCP Reno. It has been demonstrated that TCP Vegas outperforms TCP Reno in many aspects. However, TCP Vegas suffers several problems that affect its congestion avoidance mechanism. One of the most important weaknesses in TCP Vegas is that alpha and beta depend on a good expected throughput estimate, which as we have seen, depends on a good minimum RTT estimate. In order to make the system more robust alpha and beta must be made responsive to network conditions (they are currently chosen statically). This paper proposes a modified Vegas algorithm, which can be adjusted to present good performance compared to other transmission control protocols (TCPs). In order to do this, we use PSO algorithm to tune alpha and beta. The simulation results validate the advantages of the proposed algorithm in term of performance.Keywords: Self-managing, Congestion control, TCP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14721267 Frequent and Systematic Timing Enhancement of Congestion Window in Typical Transmission Control Protocol
Authors: Ghassan A. Abed, Akbal O. Salman, Bayan M. Sabbar
Abstract:
Transmission Control Protocol (TCP) among the wired and wireless networks, it still has a practical problem; where the congestion control mechanism does not permit the data stream to get complete bandwidth over the existing network links. To solve this problem, many TCP protocols have been introduced with high speed performance. Therefore, an enhanced congestion window (cwnd) for the congestion control mechanism is proposed in this article to improve the performance of TCP by increasing the number of cycles of the new window to improve the transmitted packet number. The proposed algorithm used a new mechanism based on the available bandwidth of the connection to detect the capacity of network path in order to improve the regular clocking of congestion avoidance mechanism. The work in this paper based on using Network Simulator 2 (NS-2) to simulate the proposed algorithm.
Keywords: TCP, cwnd, Congestion Control, NS-2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16641266 Fault Detection of Broken Rotor Bars Using Stator Current Spectrum for the Direct Torque Control Induction Motor
Authors: Ridha Kechida, Arezki Menacer, Abdelhamid Benakcha
Abstract:
The numerous qualities of squirrel cage induction machines enhance their use in industry. However, various faults can occur, such as stator short-circuits and rotor failures. In this paper, we use a technique based on the spectral analysis of stator current in order to detect the fault in the machine: broken rotor bars. Thus, the number effect of the breaks has been highlighted. The effect is highlighted by considering the machine controlled by the Direct Torque Control (DTC). The key to fault detection is the development of a simplified dynamic model of a squirrel cage induction motor taking account the broken bars fault and the stator current spectrum analysis (FFT).Keywords: Rotor faults, diagnosis, induction motor, DTC, statorcurrent spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31281265 Segmental and Subsegmental Lung Vessel Segmentation in CTA Images
Authors: H. Özkan
Abstract:
In this paper, a novel and fast algorithm for segmental and subsegmental lung vessel segmentation is introduced using Computed Tomography Angiography images. This process is quite important especially at the detection of pulmonary embolism, lung nodule, and interstitial lung disease. The applied method has been realized at five steps. At the first step, lung segmentation is achieved. At the second one, images are threshold and differences between the images are detected. At the third one, left and right lungs are gathered with the differences which are attained in the second step and Exact Lung Image (ELI) is achieved. At the fourth one, image, which is threshold for vessel, is gathered with the ELI. Lastly, identifying and segmentation of segmental and subsegmental lung vessel have been carried out thanks to image which is obtained in the fourth step. The performance of the applied method is found quite well for radiologists and it gives enough results to the surgeries medically.Keywords: Computed tomography angiography (CTA), Computer aided detection (CAD), Lung segmentation, Lung vessel segmentation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21861264 Delay and Packet Loss Analysis for Handovers between MANETs and NEMO Networks
Authors: Jirawat Thaenthong, Steven Gordon
Abstract:
MANEMO is the integration of Network Mobility (NEMO) and Mobile Ad Hoc Network (MANET). A MANEMO node has an interface to both a MANET and NEMO network, and therefore should choose the optimal interface for packet delivery, however such a handover between interfaces will introduce packet loss. We define the steps necessary for a MANEMO handover, using Mobile IP and NEMO to signal the new binding to the relevant Home Agent(s). The handover steps aim to minimize the packet loss by avoiding waiting for Duplicate Address Detection and Neighbour Unreachability Detection. We present expressions for handover delay and packet loss, and then use numerical examples to evaluate a MANEMO handover. The analysis shows how the packet loss depends on level of nesting within NEMO, the delay between Home Agents and the load on the MANET, and hence can be used to developing optimal MANEMO handover algorithms.Keywords: IP mobility, handover, MANET, network mobility
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20871263 Image Ranking to Assist Object Labeling for Training Detection Models
Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman
Abstract:
Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.Keywords: Computer vision, deep learning, object detection, semiconductor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8381262 Face Recognition with Image Rotation Detection, Correction and Reinforced Decision using ANN
Authors: Hemashree Bordoloi, Kandarpa Kumar Sarma
Abstract:
Rotation or tilt present in an image capture by digital means can be detected and corrected using Artificial Neural Network (ANN) for application with a Face Recognition System (FRS). Principal Component Analysis (PCA) features of faces at different angles are used to train an ANN which detects the rotation for an input image and corrected using a set of operations implemented using another system based on ANN. The work also deals with the recognition of human faces with features from the foreheads, eyes, nose and mouths as decision support entities of the system configured using a Generalized Feed Forward Artificial Neural Network (GFFANN). These features are combined to provide a reinforced decision for verification of a person-s identity despite illumination variations. The complete system performing facial image rotation detection, correction and recognition using re-enforced decision support provides a success rate in the higher 90s.Keywords: Rotation, Face, Recognition, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20671261 Analysis of Linear Equalizers for Cooperative Multi-User MIMO Based Reporting System
Authors: S. Hariharan, P. Muthuchidambaranathan
Abstract:
In this paper, we consider a multi user multiple input multiple output (MU-MIMO) based cooperative reporting system for cognitive radio network. In the reporting network, the secondary users forward the primary user data to the common fusion center (FC). The FC is equipped with linear equalizers and an energy detector to make the decision about the spectrum. The primary user data are considered to be a digital video broadcasting - terrestrial (DVB-T) signal. The sensing channel and the reporting channel are assumed to be an additive white Gaussian noise and an independent identically distributed Raleigh fading respectively. We analyzed the detection probability of MU-MIMO system with linear equalizers and arrived at the closed form expression for average detection probability. Also the system performance is investigated under various MIMO scenarios through Monte Carlo simulations.
Keywords: Cooperative MU-MIMO, DVB-T, Linear Equalizers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20291260 Three-Dimensional Off-Line Path Planning for Unmanned Aerial Vehicle Using Modified Particle Swarm Optimization
Authors: Lana Dalawr Jalal
Abstract:
This paper addresses the problem of offline path planning for Unmanned Aerial Vehicles (UAVs) in complex threedimensional environment with obstacles, which is modelled by 3D Cartesian grid system. Path planning for UAVs require the computational intelligence methods to move aerial vehicles along the flight path effectively to target while avoiding obstacles. In this paper Modified Particle Swarm Optimization (MPSO) algorithm is applied to generate the optimal collision free 3D flight path for UAV. The simulations results clearly demonstrate effectiveness of the proposed algorithm in guiding UAV to the final destination by providing optimal feasible path quickly and effectively.Keywords: Obstacle Avoidance, Particle Swarm Optimization, Three-Dimensional Path Planning Unmanned Aerial Vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20541259 Perforation Analysis of the Aluminum Alloy Sheets Subjected to High Rate of Loading and Heated Using Thermal Chamber: Experimental and Numerical Approach
Authors: A. Bendarma, T. Jankowiak, A. Rusinek, T. Lodygowski, M. Klósak, S. Bouslikhane
Abstract:
The analysis of the mechanical characteristics and dynamic behavior of aluminum alloy sheet due to perforation tests based on the experimental tests coupled with the numerical simulation is presented. The impact problems (penetration and perforation) of the metallic plates have been of interest for a long time. Experimental, analytical as well as numerical studies have been carried out to analyze in details the perforation process. Based on these approaches, the ballistic properties of the material have been studied. The initial and residual velocities laser sensor is used during experiments to obtain the ballistic curve and the ballistic limit. The energy balance is also reported together with the energy absorbed by the aluminum including the ballistic curve and ballistic limit. The high speed camera helps to estimate the failure time and to calculate the impact force. A wide range of initial impact velocities from 40 up to 180 m/s has been covered during the tests. The mass of the conical nose shaped projectile is 28 g, its diameter is 12 mm, and the thickness of the aluminum sheet is equal to 1.0 mm. The ABAQUS/Explicit finite element code has been used to simulate the perforation processes. The comparison of the ballistic curve was obtained numerically and was verified experimentally, and the failure patterns are presented using the optimal mesh densities which provide the stability of the results. A good agreement of the numerical and experimental results is observed.Keywords: Aluminum alloy, ballistic behavior, failure criterion, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9391258 Design and Implementation of a Control System for a Walking Robot with Color Sensing and Line Following Using PIC and ATMEL Microcontrollers
Authors: Ibraheem K. Ibraheem
Abstract:
The aim of this research is to design and implement line-tracking mobile robot. The robot must follow a line drawn on the floor with different color, avoids hitting moving object like another moving robot or walking people and achieves color sensing. The control system reacts by controlling each of the motors to keep the tracking sensor over the middle of the line. Proximity sensors used to avoid hitting moving objects that may pass in front of the robot. The programs have been written using micro c instructions, then converted into PIC16F887 ATmega48/88/168 microcontrollers counterparts. Practical simulations show that the walking robot accurately achieves line following action and exactly recognizes the colors and avoids any obstacle in front of it.
Keywords: Color sensing, H-bridge, line following, mobile robot, PIC microcontroller, obstacle avoidance, phototransistor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3256