Search results for: Fuzzy soft sets
972 On Combining Support Vector Machines and Fuzzy K-Means in Vision-based Precision Agriculture
Authors: A. Tellaeche, X. P. Burgos-Artizzu, G. Pajares, A. Ribeiro
Abstract:
One important objective in Precision Agriculture is to minimize the volume of herbicides that are applied to the fields through the use of site-specific weed management systems. In order to reach this goal, two major factors need to be considered: 1) the similar spectral signature, shape and texture between weeds and crops; 2) the irregular distribution of the weeds within the crop's field. This paper outlines an automatic computer vision system for the detection and differential spraying of Avena sterilis, a noxious weed growing in cereal crops. The proposed system involves two processes: image segmentation and decision making. Image segmentation combines basic suitable image processing techniques in order to extract cells from the image as the low level units. Each cell is described by two area-based attributes measuring the relations among the crops and the weeds. From these attributes, a hybrid decision making approach determines if a cell must be or not sprayed. The hybrid approach uses the Support Vector Machines and the Fuzzy k-Means methods, combined through the fuzzy aggregation theory. This makes the main finding of this paper. The method performance is compared against other available strategies.Keywords: Fuzzy k-Means, Precision agriculture, SupportVectors Machines, Weed detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778971 A Model for Estimation of Efforts in Development of Software Systems
Authors: Parvinder S. Sandhu, Manisha Prashar, Pourush Bassi, Atul Bisht
Abstract:
Software effort estimation is the process of predicting the most realistic use of effort required to develop or maintain software based on incomplete, uncertain and/or noisy input. Effort estimates may be used as input to project plans, iteration plans, budgets. There are various models like Halstead, Walston-Felix, Bailey-Basili, Doty and GA Based models which have already used to estimate the software effort for projects. In this study Statistical Models, Fuzzy-GA and Neuro-Fuzzy (NF) Inference Systems are experimented to estimate the software effort for projects. The performances of the developed models were tested on NASA software project datasets and results are compared with the Halstead, Walston-Felix, Bailey-Basili, Doty and Genetic Algorithm Based models mentioned in the literature. The result shows that the NF Model has the lowest MMRE and RMSE values. The NF Model shows the best results as compared with the Fuzzy-GA based hybrid Inference System and other existing Models that are being used for the Effort Prediction with lowest MMRE and RMSE values.Keywords: Neuro-Fuzzy Model, Halstead Model, Walston-Felix Model, Bailey-Basili Model, Doty Model, GA Based Model, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3226970 Neuro-Fuzzy Based Model for Phrase Level Emotion Understanding
Authors: Vadivel Ayyasamy
Abstract:
The present approach deals with the identification of Emotions and classification of Emotional patterns at Phrase-level with respect to Positive and Negative Orientation. The proposed approach considers emotion triggered terms, its co-occurrence terms and also associated sentences for recognizing emotions. The proposed approach uses Part of Speech Tagging and Emotion Actifiers for classification. Here sentence patterns are broken into phrases and Neuro-Fuzzy model is used to classify which results in 16 patterns of emotional phrases. Suitable intensities are assigned for capturing the degree of emotion contents that exist in semantics of patterns. These emotional phrases are assigned weights which supports in deciding the Positive and Negative Orientation of emotions. The approach uses web documents for experimental purpose and the proposed classification approach performs well and achieves good F-Scores.
Keywords: Emotions, sentences, phrases, classification, patterns, fuzzy, positive orientation, negative orientation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1078969 Sensorless PM Motor with Multi Degree of Freedom Fuzzy Control
Authors: Faeka M. H. Khater, Farouk I. Ahmed, Mohamed I. Abu El- Sebah
Abstract:
This paper introduces application of multi degree of freedom fuzzy(MDOFF) controller in permanent magnet (PM)drive system. The drive system model is developed for FO control. Simulation of the system is carried out to predict the performance at NL and under load,. The results indicate that application of MDOFF controller is effective for sensorless PM drive system.
Keywords: Sensorless FO controller, PM drives system, MDOFF controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686968 Application of Fuzzy Neural Network for Image Tumor Description
Authors: Nahla Ibraheem Jabbar, Monica Mehrotra
Abstract:
This paper used a fuzzy kohonen neural network for medical image segmentation. Image segmentation plays a important role in the many of medical imaging applications by automating or facilitating the diagnostic. The paper analyses the tumor by extraction of the features of (area, entropy, means and standard deviation).These measurements gives a description for a tumor.
Keywords: FCM, features extraction, medical image processing, neural network, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108967 Glass Bottle Inspector Based on Machine Vision
Authors: Huanjun Liu, Yaonan Wang, Feng Duan
Abstract:
This text studies glass bottle intelligent inspector based machine vision instead of manual inspection. The system structure is illustrated in detail in this paper. The text presents the method based on watershed transform methods to segment the possible defective regions and extract features of bottle wall by rules. Then wavelet transform are used to exact features of bottle finish from images. After extracting features, the fuzzy support vector machine ensemble is putted forward as classifier. For ensuring that the fuzzy support vector machines have good classification ability, the GA based ensemble method is used to combining the several fuzzy support vector machines. The experiments demonstrate that using this inspector to inspect glass bottles, the accuracy rate may reach above 97.5%.Keywords: Intelligent Inspection, Support Vector Machines, Ensemble Methods, watershed transform, Wavelet Transform
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3894966 Mitigation of Sag in Real Time
Authors: Vijay Gajanan Neve, Pallavi V. Pullawar, G. M. Dhole
Abstract:
Modern industrial processes are based on a large amount of electronic devices such as programmable logic controllers and adjustable speed drives. Unfortunately, electronic devices are sensitive to disturbances, and thus, industrial loads become less tolerant to power quality problems such as sags, swells, and harmonics. Voltage sags are an important power quality problem. In this paper proposed a new configuration of Static Var Compensator (SVC) considering three different conditions named as topologies and Booster transformer with fuzzy logic based controller, capable of compensating for power quality problems associated with voltage sags and maintaining a prescribed level of voltage profile. Fuzzy logic controller is designed to achieve the firing angles for SVC such that it maintains voltage profile. The online monitoring system for voltage sag mitigation in the laboratory using the hardware is used. The results are presented from the performance of each topology and Booster transformer considered in this paper.
Keywords: Booster Transformer, Fuzzy logic, Static Var Compensator, Voltage sag.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2580965 Robust Fuzzy Observer Design for Nonlinear Systems
Authors: Michal Polanský, C. Ardil
Abstract:
This paper shows a new method for design of fuzzy observers for Takagi-Sugeno systems. The method is based on Linear matrix inequalities (LMIs) and it allows to insert H constraint into the design procedure. The speed of estimation can tuned be specification of a decay rate of the observer closed loop system. We discuss here also the influence of parametric uncertainties at the output control system stability.
Keywords: H norm, Linear Matrix Inequalities, Observers, Takagi-Sugeno Systems, Parallel Distributed Compensation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2540964 Fuzzy Logic Speed Controller for Direct Vector Control of Induction Motor
Authors: Ben Hamed M., Sbita L
Abstract:
This paper presents a new method for the implementation of a direct rotor flux control (DRFOC) of induction motor (IM) drives. It is based on the rotor flux components regulation. The d and q axis rotor flux components feed proportional integral (PI) controllers. The outputs of which are the target stator voltages (vdsref and vqsref). While, the synchronous speed is depicted at the output of rotor speed controller. In order to accomplish variable speed operation, conventional PI like controller is commonly used. These controllers provide limited good performances over a wide range of operations even under ideal field oriented conditions. An alternate approach is to use the so called fuzzy logic controller. The overall investigated system is implemented using dSpace system based on digital signal processor (DSP). Simulation and experimental results have been presented for a one kw IM drives to confirm the validity of the proposed algorithms.Keywords: DRFOC, fuzzy logic, variable speed drives, control, IM and real time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921963 Intelligent Maximum Power Point Tracking Using Fuzzy Logic for Solar Photovoltaic Systems Under Non-Uniform Irradiation Conditions
Authors: P. Selvam, S. Senthil Kumar
Abstract:
Maximum Power Point Tracking (MPPT) has played a vital role to enhance the efficiency of solar photovoltaic (PV) power generation under varying atmospheric temperature and solar irradiation. However, it is hard to track the maximum power point using conventional linear controllers due to the natural inheritance of nonlinear I-V and P-V characteristics of solar PV systems. Fuzzy Logic Controller (FLC) is suitable for nonlinear system control applications and eliminating oscillations, circuit complexities present in the conventional perturb and observation and incremental conductance methods respectively. Hence, in this paper, FLC is proposed for tracking exact MPPT of solar PV power generation system under varying solar irradiation conditions. The effectiveness of the proposed FLC-based MPPT controller is validated through simulation and analysis using MATLAB/Simulink.
Keywords: Fuzzy logic controller, maximum power point tracking, photovoltaic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586962 Run-Time Customisation of Soft-Core CPUs on Field Programmable Gate Array
Authors: Rehab Abdullah Shendi
Abstract:
The use of customised soft-core processors in which instructions can be integrated into a system in application hardware is increasing in the Field Programmable Gate Array (FPGA) field. Specifically, the partial run-time reconfiguration of FPGAs in specialised processors for a particular domain can be very beneficial. In this report, the design and implementation for the customisation of a soft-core MIPS processor using an FPGA and partial reconfiguration (PR) of FPGA technology will be addressed to achieve efficient resource use. This can be achieved using a PR design flow that helps the design fit into a smaller device. Moreover, the impact of static power consumption could be reduced due to runtime reconfiguration. This will be done by configurable custom instructions implemented in the hardware as an extension on the MIPS CPU. The aim of this project is to investigate the PR of FPGAs for run-time adaptations of the instruction set of a soft-core CPU, including the integration of custom instructions and the exploration of the potential to use the MultiBoot feature available in Xilinx FPGAs to carry out the PR process. The system will be evaluated and tested on a Nexus 3 development board featuring a Xilinx Spartran-6 FPGA. The system will be able to load reconfigurable custom instructions dynamically into user programs with the help of the trap handler when the custom instruction is called by the MIPS CPU. The results of this experiment demonstrate that custom instructions in hardware can speed up a certain function and many instructions can be saved when compared to a software implementation of the same function. Implementing custom instructions in hardware is perfectly possible and worth exploring.
Keywords: Customisation, FPGA, MIPS, partial reconfiguration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1185961 Development of a Project Selection Method on Information System Using ANP and Fuzzy Logic
Authors: Ingu Kim, Shangmun Shin, Yongsun Choi, Nguyen Manh Thang, Edwin R. Ramos, Won-Joo Hwang
Abstract:
Project selection problems on management information system (MIS) are often considered a multi-criteria decision-making (MCDM) for a solving method. These problems contain two aspects, such as interdependencies among criteria and candidate projects and qualitative and quantitative factors of projects. However, most existing methods reported in literature consider these aspects separately even though these two aspects are simultaneously incorporated. For this reason, we proposed a hybrid method using analytic network process (ANP) and fuzzy logic in order to represent both aspects. We then propose a goal programming model to conduct an optimization for the project selection problems interpreted by a hybrid concept. Finally, a numerical example is conducted as verification purposes.Keywords: Analytic Network Process (ANP), Multi-Criteria Decision-Making (MCDM), Fuzzy Logic, Information System Project Selection, Goal Programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088960 Application of Fuzzy Logic Approach for an Aircraft Model with and without Winglet
Authors: Altab Hossain, Ataur Rahman, Jakir Hossen, A.K.M. P. Iqbal, SK. Hasan
Abstract:
The measurement of aerodynamic forces and moments acting on an aircraft model is important for the development of wind tunnel measurement technology to predict the performance of the full scale vehicle. The potentials of an aircraft model with and without winglet and aerodynamic characteristics with NACA wing No. 65-3- 218 have been studied using subsonic wind tunnel of 1 m × 1 m rectangular test section and 2.5 m long of Aerodynamics Laboratory Faculty of Engineering (University Putra Malaysia). Focusing on analyzing the aerodynamic characteristics of the aircraft model, two main issues are studied in this paper. First, a six component wind tunnel external balance is used for measuring lift, drag and pitching moment. Secondly, Tests are conducted on the aircraft model with and without winglet of two configurations at Reynolds numbers 1.7×105, 2.1×105, and 2.5×105 for different angle of attacks. Fuzzy logic approach is found as efficient for the representation, manipulation and utilization of aerodynamic characteristics. Therefore, the primary purpose of this work was to investigate the relationship between lift and drag coefficients, with free-stream velocities and angle of attacks, and to illustrate how fuzzy logic might play an important role in study of lift aerodynamic characteristics of an aircraft model with the addition of certain winglet configurations. Results of the developed fuzzy logic were compared with the experimental results. For lift coefficient analysis, the mean of actual and predicted values were 0.62 and 0.60 respectively. The coreelation between actual and predicted values (from FLS model) of lift coefficient in different angle of attack was found as 0.99. The mean relative error of actual and predicted valus was found as 5.18% for the velocity of 26.36 m/s which was found to be less than the acceptable limits (10%). The goodness of fit of prediction value was 0.95 which was close to 1.0.Keywords: Wind tunnel; Winglet; Lift coefficient; Fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903959 Sway Reduction on Gantry Crane System using Delayed Feedback Signal and PD-type Fuzzy Logic Controller: A Comparative Assessment
Authors: M.A. Ahmad
Abstract:
This paper presents the use of anti-sway angle control approaches for a two-dimensional gantry crane with disturbances effect in the dynamic system. Delayed feedback signal (DFS) and proportional-derivative (PD)-type fuzzy logic controller are the techniques used in this investigation to actively control the sway angle of the rope of gantry crane system. A nonlinear overhead gantry crane system is considered and the dynamic model of the system is derived using the Euler-Lagrange formulation. A complete analysis of simulation results for each technique is presented in time domain and frequency domain respectively. Performances of both controllers are examined in terms of sway angle suppression and disturbances cancellation. Finally, a comparative assessment of the impact of each controller on the system performance is presented and discussed.Keywords: Gantry crane, anti-sway control, DFS controller, PD-type Fuzzy Logic Controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2150958 A Fuzzy-Rough Feature Selection Based on Binary Shuffled Frog Leaping Algorithm
Authors: Javad Rahimipour Anaraki, Saeed Samet, Mahdi Eftekhari, Chang Wook Ahn
Abstract:
Feature selection and attribute reduction are crucial problems, and widely used techniques in the field of machine learning, data mining and pattern recognition to overcome the well-known phenomenon of the Curse of Dimensionality. This paper presents a feature selection method that efficiently carries out attribute reduction, thereby selecting the most informative features of a dataset. It consists of two components: 1) a measure for feature subset evaluation, and 2) a search strategy. For the evaluation measure, we have employed the fuzzy-rough dependency degree (FRFDD) of the lower approximation-based fuzzy-rough feature selection (L-FRFS) due to its effectiveness in feature selection. As for the search strategy, a modified version of a binary shuffled frog leaping algorithm is proposed (B-SFLA). The proposed feature selection method is obtained by hybridizing the B-SFLA with the FRDD. Nine classifiers have been employed to compare the proposed approach with several existing methods over twenty two datasets, including nine high dimensional and large ones, from the UCI repository. The experimental results demonstrate that the B-SFLA approach significantly outperforms other metaheuristic methods in terms of the number of selected features and the classification accuracy.Keywords: Binary shuffled frog leaping algorithm, feature selection, fuzzy-rough set, minimal reduct.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 730957 Empirical and Indian Automotive Equity Portfolio Decision Support
Authors: P. Sankar, P. James Daniel Paul, Siddhant Sahu
Abstract:
A brief review of the empirical studies on the methodology of the stock market decision support would indicate that they are at a threshold of validating the accuracy of the traditional and the fuzzy, artificial neural network and the decision trees. Many researchers have been attempting to compare these models using various data sets worldwide. However, the research community is on the way to the conclusive confidence in the emerged models. This paper attempts to use the automotive sector stock prices from National Stock Exchange (NSE), India and analyze them for the intra-sectorial support for stock market decisions. The study identifies the significant variables and their lags which affect the price of the stocks using OLS analysis and decision tree classifiers.
Keywords: Indian Automotive Sector, Stock Market Decisions, Equity Portfolio Analysis, Decision Tree Classifiers, Statistical Data Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035956 Advanced Robust PDC Fuzzy Control of Nonlinear Systems
Authors: M. Polanský
Abstract:
This paper introduces a new method called ARPDC (Advanced Robust Parallel Distributed Compensation) for automatic control of nonlinear systems. This method improves a quality of robust control by interpolating of robust and optimal controller. The weight of each controller is determined by an original criteria function for model validity and disturbance appreciation. ARPDC method is based on nonlinear Takagi-Sugeno (T-S) fuzzy systems and Parallel Distributed Compensation (PDC) control scheme. The relaxed stability conditions of ARPDC control of nominal system have been derived. The advantages of presented method are demonstrated on the inverse pendulum benchmark problem. From comparison between three different controllers (robust, optimal and ARPDC) follows, that ARPDC control is almost optimal with the robustness close to the robust controller. The results indicate that ARPDC algorithm can be a good alternative not only for a robust control, but in some cases also to an adaptive control of nonlinear systems.
Keywords: Robust control, optimal control, Takagi–Sugeno (TS) fuzzy models, linear matrix inequality (LMI), observer, Advanced Robust Parallel Distributed Compensation (ARPDC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574955 A Subtractive Clustering Based Approach for Early Prediction of Fault Proneness in Software Modules
Authors: Ramandeep S. Sidhu, Sunil Khullar, Parvinder S. Sandhu, R. P. S. Bedi, Kiranbir Kaur
Abstract:
In this paper, subtractive clustering based fuzzy inference system approach is used for early detection of faults in the function oriented software systems. This approach has been tested with real time defect datasets of NASA software projects named as PC1 and CM1. Both the code based model and joined model (combination of the requirement and code based metrics) of the datasets are used for training and testing of the proposed approach. The performance of the models is recorded in terms of Accuracy, MAE and RMSE values. The performance of the proposed approach is better in case of Joined Model. As evidenced from the results obtained it can be concluded that Clustering and fuzzy logic together provide a simple yet powerful means to model the earlier detection of faults in the function oriented software systems.
Keywords: Subtractive clustering, fuzzy inference system, fault proneness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2579954 Unsupervised Clustering Methods for Identifying Rare Events in Anomaly Detection
Authors: Witcha Chimphlee, Abdul Hanan Abdullah, Mohd Noor Md Sap, Siriporn Chimphlee, Surat Srinoy
Abstract:
It is important problems to increase the detection rates and reduce false positive rates in Intrusion Detection System (IDS). Although preventative techniques such as access control and authentication attempt to prevent intruders, these can fail, and as a second line of defence, intrusion detection has been introduced. Rare events are events that occur very infrequently, detection of rare events is a common problem in many domains. In this paper we propose an intrusion detection method that combines Rough set and Fuzzy Clustering. Rough set has to decrease the amount of data and get rid of redundancy. Fuzzy c-means clustering allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to detect suspicious activity that may be the result of a new, unknown attack. The experimental results on Knowledge Discovery and Data Mining-(KDDCup 1999) Dataset show that the method is efficient and practical for intrusion detection systems.Keywords: Network and security, intrusion detection, fuzzy cmeans, rough set.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2859953 Application of Neuro-Fuzzy Dynamic Programming to Improve the Reactive Power and Voltage Profile of a Distribution Substation
Authors: M. Tarafdar Haque, S. Najafi
Abstract:
Improving the reactive power and voltage profile of a distribution substation is investigated in this paper. The purpose is to properly determination of the shunt capacitors on/off status and suitable tap changer (TC) position of a substation transformer. In addition, the limitation of secondary bus voltage, the maximum allowable number of switching operation in a day for on load tap changer and on/off status of capacitors are taken into account. To achieve these goals, an artificial neural network (ANN) is designed to provide preliminary scheduling. Input of ANN is active and reactive powers of transformer and its primary and secondary bus voltages. The output of ANN is capacitors on/off status and TC position. The preliminary schedule is further refined by fuzzy dynamic programming in order to reach the final schedule. The operation of proposed method in Q/V improving is compared with the results obtained by operator operation in a distribution substation.Keywords: Neuro-fuzzy, Dynamic programming, Reactive power, Voltage profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627952 Development of Predictive Model for Surface Roughness in End Milling of Al-SiCp Metal Matrix Composites using Fuzzy Logic
Authors: M. Chandrasekaran, D. Devarasiddappa
Abstract:
Metal matrix composites have been increasingly used as materials for components in automotive and aerospace industries because of their improved properties compared with non-reinforced alloys. During machining the selection of appropriate machining parameters to produce job for desired surface roughness is of great concern considering the economy of manufacturing process. In this study, a surface roughness prediction model using fuzzy logic is developed for end milling of Al-SiCp metal matrix composite component using carbide end mill cutter. The surface roughness is modeled as a function of spindle speed (N), feed rate (f), depth of cut (d) and the SiCp percentage (S). The predicted values surface roughness is compared with experimental result. The model predicts average percentage error as 4.56% and mean square error as 0.0729. It is observed that surface roughness is most influenced by feed rate, spindle speed and SiC percentage. Depth of cut has least influence.Keywords: End milling, fuzzy logic, metal matrix composites, surface roughness
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2169951 Enhance the Modeling of BLDC Motor Based on Fuzzy Logic
Authors: Murugan Marimuthu, Jeyabharath Rajaih
Abstract:
This paper describes a simple way to control the speed of PMBLDC motor using Fuzzy logic control method. In the conventional PI controller the performance of the motor system is simulated and the speed is regulated by using PI controller. These methods used to improve the performance of PMSM drives, but in some cases at different operating conditions when the dynamics of the system also vary over time and it can change the reference speed, parameter variations and the load disturbance. The simulation is powered with the MATLAB program to get a reliable and flexible simulation. In order to highlight the effectiveness of the speed control method the FLC method is used. The proposed method targeted in achieving the improved dynamic performance and avoids the variations of the motor drive. This drive has high accuracy, robust operation from near zero to high speed. The effectiveness and flexibility of the individual techniques of the speed control method will be thoroughly discussed for merits and demerits and finally verified through simulation and experimental results for comparative analysis.Keywords: Hall position sensors, permanent magnet brushless DC motor, PI controller, Fuzzy Controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784950 Automatic Detection of Proliferative Cells in Immunohistochemically Images of Meningioma Using Fuzzy C-Means Clustering and HSV Color Space
Authors: Vahid Anari, Mina Bakhshi
Abstract:
Visual search and identification of immunohistochemically stained tissue of meningioma was performed manually in pathologic laboratories to detect and diagnose the cancers type of meningioma. This task is very tedious and time-consuming. Moreover, because of cell's complex nature, it still remains a challenging task to segment cells from its background and analyze them automatically. In this paper, we develop and test a computerized scheme that can automatically identify cells in microscopic images of meningioma and classify them into positive (proliferative) and negative (normal) cells. Dataset including 150 images are used to test the scheme. The scheme uses Fuzzy C-means algorithm as a color clustering method based on perceptually uniform hue, saturation, value (HSV) color space. Since the cells are distinguishable by the human eye, the accuracy and stability of the algorithm are quantitatively compared through application to a wide variety of real images.
Keywords: Positive cell, color segmentation, HSV color space, immunohistochemistry, meningioma, thresholding, fuzzy c-means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 691949 A New Framework for Evaluation and Prioritization of Suppliers using a Hierarchical Fuzzy TOPSIS
Authors: Mohammad Taghi Taghavifard, Danial Mirheydari
Abstract:
This paper suggests an algorithm for the evaluation and selection of suppliers. At the beginning, all the needed materials and services used by the organization were identified and categorized with regard to their nature by ABC method. Afterwards, in order to reduce risk factors and maximize the organization's profit, purchase strategies were determined. Then, appropriate criteria were identified for primary evaluation of suppliers applying to the organization. The output of this stage was a list of suppliers qualified by the organization to participate in its tenders. Subsequently, considering a material in particular, appropriate criteria on the ordering of the mentioned material were determined, taking into account the particular materials' specifications as well as the organization's needs. Finally, for the purpose of validation and verification of the proposed model, it was applied to Mobarakeh Steel Company (MSC), the qualified suppliers of this Company are ranked by the means of a Hierarchical Fuzzy TOPSIS method. The obtained results show that the proposed algorithm is quite effective, efficient and easy to apply.Keywords: ABC analysis, Hierarchical Fuzzy TOPSIS, Primary supplier evaluation, Purchasing strategy, supplier selection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403948 Model based Soft-Sensor for Industrial Crystallization: On-line Mass of Crystals and Solubility Measurement
Authors: Cédric Damour, Michel Benne, Brigitte Grondin-Perez, Jean-Pierre Chabriat
Abstract:
Monitoring and control of cane sugar crystallization processes depend on the stability of the supersaturation (σ ) state. The most widely used information to represent σ is the electrical conductivity κ of the solutions. Nevertheless, previous studies point out the shortcomings of this approach: κ may be regarded as inappropriate to guarantee an accurate estimation of σ in impure solutions. To improve the process control efficiency, additional information is necessary. The mass of crystals in the solution ( c m ) and the solubility (mass ratio of sugar to water / s w m m ) are relevant to complete information. Indeed, c m inherently contains information about the mass balance and / s w m m contains information about the supersaturation state of the solution. The main problem is that c m and / s w m m are not available on-line. In this paper, a model based soft-sensor is presented for a final crystallization stage (C sugar). Simulation results obtained on industrial data show the reliability of this approach, c m and the crystal content ( cc ) being estimated with a sufficient accuracy for achieving on-line monitoring in industryKeywords: Soft-sensor, on-line monitoring, cane sugarcrystallization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135947 Vibration Control of a Cantilever Beam Using a Tunable Vibration Absorber Embedded with ER Fluids
Authors: Chih-Jer Lin, Chun-Ying Lee, Chiang-Ho Cheng, Geng-Fung Chen
Abstract:
This paper investigates experimental studies on vibration suppression for a cantilever beam using an Electro-Rheological (ER) sandwich shock absorber. ER fluid (ERF) is a class of smart materials that can undergo significant reversible changes immediately in its rheological and mechanical properties under the influence of an applied electric field. Firstly, an ER sandwich beam is fabricated by inserting a starch-based ERF into a hollow composite beam. At the same time, experimental investigations are focused on the frequency response of the ERF sandwich beam. Second, the ERF sandwich beam is attached to a cantilever beam to become as a shock absorber. Finally, a fuzzy semi-active vibration control is designed to suppress the vibration of the cantilever beam via the ERF sandwich shock absorber. To check the consistency of the proposed fuzzy controller, the real-time implementation validated the performance of the controller.
Keywords: Electro-Rheological Fluid, Semi-active vibration control, shock absorber, fuzzy control, Real-time control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3227946 Combining Fuzzy Logic and Data Miningto Predict the Result of an EIA Review
Authors: Kevin Fong-Rey Liu, Jia-Shen Chen, Han-Hsi Liang, Cheng-Wu Chen, Yung-Shuen Shen
Abstract:
The purpose of determining impact significance is to place value on impacts. Environmental impact assessment review is a process that judges whether impact significance is acceptable or not in accordance with the scientific facts regarding environmental, ecological and socio-economical impacts described in environmental impact statements (EIS) or environmental impact assessment reports (EIAR). The first aim of this paper is to summarize the criteria of significance evaluation from the past review results and accordingly utilize fuzzy logic to incorporate these criteria into scientific facts. The second aim is to employ data mining technique to construct an EIS or EIAR prediction model for reviewing results which can assist developers to prepare and revise better environmental management plans in advance. The validity of the previous prediction model proposed by authors in 2009 is 92.7%. The enhanced validity in this study can attain 100.0%.Keywords: Environmental impact assessment review, impactsignificance, fuzzy logic, data mining, classification tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943945 Using Data Mining for Learning and Clustering FCM
Authors: Somayeh Alizadeh, Mehdi Ghazanfari, Mohammad Fathian
Abstract:
Fuzzy Cognitive Maps (FCMs) have successfully been applied in numerous domains to show relations between essential components. In some FCM, there are more nodes, which related to each other and more nodes means more complex in system behaviors and analysis. In this paper, a novel learning method used to construct FCMs based on historical data and by using data mining and DEMATEL method, a new method defined to reduce nodes number. This method cluster nodes in FCM based on their cause and effect behaviors.Keywords: Clustering, Data Mining, Fuzzy Cognitive Map(FCM), Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015944 Fuzzy Group Decision Making for the Assessment of Health-Care Waste Disposal Alternatives in Istanbul
Authors: Mehtap Dursun, E. Ertugrul Karsak, Melis Almula Karadayi
Abstract:
Disposal of health-care waste (HCW) is considered as an important environmental problem especially in large cities. Multiple criteria decision making (MCDM) techniques are apt to deal with quantitative and qualitative considerations of the health-care waste management (HCWM) problems. This research proposes a fuzzy multi-criteria group decision making approach with a multilevel hierarchical structure including qualitative as well as quantitative performance attributes for evaluating HCW disposal alternatives for Istanbul. Using the entropy weighting method, objective weights as well as subjective weights are taken into account to determine the importance weighting of quantitative performance attributes. The results obtained using the proposed methodology are thoroughly analyzed.Keywords: Entropy weighting method, group decision making, health-care waste management, hierarchical fuzzy multi-criteriadecision making
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686943 An Approach for Coagulant Dosage Optimization Using Soft Jar Test: A Case Study of Bangkhen Water Treatment Plant
Authors: Ninlawat Phuangchoke, Waraporn Viyanon, Setta Sasananan
Abstract:
The most important process of the water treatment plant process is coagulation, which uses alum and poly aluminum chloride (PACL). Therefore, determining the dosage of alum and PACL is the most important factor to be prescribed. This research applies an artificial neural network (ANN), which uses the Levenberg–Marquardt algorithm to create a mathematical model (Soft Jar Test) for chemical dose prediction, as used for coagulation, such as alum and PACL, with input data consisting of turbidity, pH, alkalinity, conductivity, and, oxygen consumption (OC) of the Bangkhen Water Treatment Plant (BKWTP), under the authority of the Metropolitan Waterworks Authority of Thailand. The data were collected from 1 January 2019 to 31 December 2019 in order to cover the changing seasons of Thailand. The input data of ANN are divided into three groups: training set, test set, and validation set. The coefficient of determination and the mean absolute errors of the alum model are 0.73, 3.18 and the PACL model are 0.59, 3.21, respectively.
Keywords: Soft jar test, jar test, water treatment plant process, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 662