Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32718
Using Data Mining for Learning and Clustering FCM

Authors: Somayeh Alizadeh, Mehdi Ghazanfari, Mohammad Fathian

Abstract:

Fuzzy Cognitive Maps (FCMs) have successfully been applied in numerous domains to show relations between essential components. In some FCM, there are more nodes, which related to each other and more nodes means more complex in system behaviors and analysis. In this paper, a novel learning method used to construct FCMs based on historical data and by using data mining and DEMATEL method, a new method defined to reduce nodes number. This method cluster nodes in FCM based on their cause and effect behaviors.

Keywords: Clustering, Data Mining, Fuzzy Cognitive Map(FCM), Learning.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1078887

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954

References:


[1] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Eds., Advances in Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI/MIT Press, 1996.
[2] S. K. Pal and S. Mitra, Neuro-Fuzzy Pattern Recognition: Methods in Soft Computing. New York: Wiley, 1999.
[3] Jiawei Han and Micheline Kamber, Data Mining : concepts and techniques, Morgan kaufman publishers, 2006
[4] Hussein Aly Abbass, Ruhul Amin, Sarker, Charles S. Newton. Data mining: a heuristic approach, 2002, Idea Group Publishing.
[5] R.Axelrod, Structure of Decision: The Cognitive Maps of Political Elites, Princeton University Press, Princeton, NJ, 1976.
[6] M.A. Styblinski, B.D. Meyer, Signal flow graphs versus fuzzy cognitive maps in application to qualitative circuit analysis, Internet. J. Man Mach. Studies 35 (1991) 175-186.
[7] V.C. Georgopoulos, G.A. Malandraki, C.D. Stylios, A fuzzy cognitive map approach to differential diagnosis of specific language impairment, J. Artif. Intel Med. 29 (3) (2003) 261-278.
[8] C.D. Stylios, P.P. Groumpos, Fuzzy cognitive map in modeling supervisory control systems, J. Intel. & Fuzzy Systems 8 (2) (2000) 83- 98.
[9] M. G. Bougon, "Congregate Cognitive Maps: a Unified Dynamic Theory of Organization and Strategy," Journal of Management Studies, 29:369- 389, (1992)
[10] K.C. Lee,W.J. Lee, O.B. Kwon, J.H. Han, P.I.Yu, Strategic planning simulation based on fuzzy cognitive map knowledge and differential game, Simulation 71 (5) (1998) 316-327.
[11] D. Kardaras, G. Mentzas, Using fuzzy cognitive maps to model and analyze business performance assessment, in: J. Chen, A. Mital (Eds.), Advances in Industrial Engineering Applications and Practice II, 1997, pp. 63-68.
[12] W. Stach, L. Kurgan, Modeling software development project using fuzzy cognitive maps, Proc. 4th ASERCWorkshop on Quantitative and Soft Software Engineering (QSSE-04), 2004, pp. 55-60.
[13] W. Stach, L. Kurgan,W. Pedrycz, M. Reformat, Parallel fuzzy cognitive maps as a tool for modeling software development project, Proc. 2004 North American Fuzzy Information Processing Society Conf. (NAFIPS-04), Banff, AB, 2004, pp. 28-33.
[14] A. R. Montazemi, D. W. Conrath, "The Use of Cognitive Mapping for Information Requirements Analysis," MIS Quarterly, 10:44-55, (1986)
[15] K. Gotoh, J. Murakami, T.Yamaguchi, Y.Yamanaka, Application of fuzzy cognitive maps to supporting for plant control, Proc. SICE Joint Symp. 15th Systems Symp. and Tenth Knowledge Engineering Symp., 1989, pp. 99-104.
[16] Carvalho, J.P., Tomé, J.A.,"Rule Based Fuzzy Cognitive Maps and Fuzzy Cognitive Maps - A Comparative Study", Proceedings of the 18th International Conference of the North American Fuzzy Information Processing Society, NAFIPS99, New York
[17] Carvalho, J.P., Tomé, J.A.,"Rule Based Fuzzy Cognitive Maps- Fuzzy Causal Relations", Computational Intelligence for Modeling, Control and Automation, Edited by M. Mohammadian, 1999
[18] Carvalho, J.P., Tomé, J.A., "Fuzzy Mechanisms for Causal Relations", Proceedings of the Eighth International Fuzzy Systems Association World Congress, IFSA'99, Taiwan
[19] Carvalho, J.P., Tomé, J.A.,"Rule Based Fuzzy Cognitive Maps - Qualitative Systems Dynamics", Proceedings of the 19th International Conference of the North American Fuzzy Information Processing Society, NAFIPS2000, Atlanta
[20] D.E. Koulouriotis, I.E. Diakoulakis, D.M. Emiris, E.N. Antonidakis, I.A. Kaliakatsos, Efficiently modeling and controlling complex dynamic systems using evolutionary fuzzy cognitive maps (Invited Paper), Internet. J. Comput. Cognition 1 (2) (2003) 41-65.
[21] C.D. Stylios, P.P. Groumpos, Modeling complex systems using fuzzy cognitive maps, IEEE Trans. Systems Man, Cybern. Part A: Systems Humans 34 (1) (2004).
[22] D.E. Koulouriotis, I.E. Diakoulakis, D.M. Emiris, Anamorphous of fuzzy cognitive maps for operation in ambiguous and multi-stimulus real world environments, 10th IEEE Internet. Conf. on Fuzzy Systems, 2001, pp. 1156-1159.
[23] B. Kosko, Hidden patterns in combined and adaptive knowledge networks, Internet. J. Approx Reason. 2 (1988) 377-393.
[24] M. Schneider, E. Shnaider, A. Kandel, G. Chew, Automatic construction of FCMs, Fuzzy Sets and Systems 93 (2) (1998) 161-172.
[25] D. Kardaras, B. Karakostas "The use of fuzzy cognitive maps to simulate the information systems strategic planning process". Information and Software Technology 41 (1999) 197-210
[26] J.A. Dickerson, B. Kosko, Fuzzy virtual worlds, Artif. Intel. Expert 7 (1994) 25-31.
[27] A. Vazquez, A balanced differential learning algorithm in fuzzy cognitive maps, Technical Report, Departament de Llenguatges I Sistemes Informatics, Universitat Politecnica de Catalunya (UPC), 2002.
[28] E. Papageorgiou, C.D. Stylios, P.P. Groumpos, Fuzzy cognitive map learning based on nonlinear Hebbian rule, Australian Conf. on Artificial Intelligence, 2003, pp. 256-268.
[29] E. Papageorgiou, C.D. Stylios, P.P. Groumpos, Active Hebbian learning algorithm to train fuzzy cognitive maps, Internat. J. Approx. Reason. 37 (3) (2004) 219-249.
[30] D.E. Koulouriotis, I.E. Diakoulakis, D.M. Emiris, Learning fuzzy cognitive maps using evolution strategies: a novel schema for modeling and simulating high-level behavior, IEEE Congr. On Evolutionary Computation (CEC2001), 2001, pp. 364-371.
[31] K.E. Parsopoulos, E.I. Papageorgiou, P.P. Groumpos, M.N. Vrahatis, A first study off uzzy cognitive maps learning using particle swarm optimization, Proc. IEEE 2003 Congr. on Evolutionary Computation, 2003, pp. 1440-1447.
[32] E.I. Papageorgiou, K.E. Parsopoulos, C.D. Stylios, P.P. Groumpos, M.N. Vrahatis, Fuzzy cognitive maps learning using particle swarm optimization, J. Intel. Inform. Systems, in press. 2003
[33] M. Khan, A. Chong, Fuzzy cognitive map analysis with genetic algorithm, Proc. 1st Indian Internat. Conf. on Artificial Intelligence (IICAI-03), 2003
[34] W. Stach, Lukasz Kurgan,Witold Pedrycz, Marek Reformat Genetic learning of fuzzy cognitive maps, Fuzzy Sets and Systems 153 (2005) 371-401
[35] E Papageorgiou,C.Stylios P. Groumpos, Unsupervised learning techniques for fine-tuning fuzzy cognitive map causal links, Int. J. Human-Computer Studies 64 (2006) 727-743
[36] Amit Konar, Uday K. Chakraborty , Reasoning and unsupervised learning in a fuzzy cognitive map , Information Sciences 170 (2005) 419- 441
[37] M.Ghazanfari, S.Alizadeh, M.Fathian, D.E.Koulouriotis, Comparing Simulated Annealing and Genetic Algorithm in Learning FCM, Applied Mathematics and Computation (2007), doi: 10.1016/ j.amc.2007.02.144
[38] Gabus, A. and Fontela, E. Perceptions of the World Problematique: Communication Procedure, Communicating With Those Bearing Collective Responsibility (DEMATEL Report No.1). Battelle Geneva Research Centre, Geneva, Switzerland. (1973)
[39] Yamazaki, M., Ishibe, K. and Yamashita, S. An analysis of obstructive factors to welfare service using DEMATEL method. Reports of the Faculty of Engineering, Yamanashi University, pp. 48 25-30. (1997).
[40] S.M. Seyed-Hosseini, N. Safaei, M.J. Asgharpour , Reprioritization of failures in a system failure mode and effects analysis by decision making trial and evaluation laboratory technique, Reliability Engineering and System Safety (2005) 1-10
[41] Goodman, R. (1988). Introduction to Stochastic Models. Benjamin/Cummings Publishing Company Inc., California, U.S.A.
[42] Marc Pirlot, General local search methods, European journal of operational research 92, 1996 , 493-511
[43] Duc Truong Pham and Dervis Karaboga, Intelligent Algorithms, tabu search, simulated annealing and neural networks, Springer, New York, 1998
[44] van Laarhoven, P. and Aarts, E. (1987): Simulated Annealing: Theory and Applications. Dordrect: Reidel.