Search results for: stainless steel alloy.
317 Optimization of Artificial Ageing Time and Temperature on Evaluation of Hardness and Resistivity of Al-Si-Mg (Cu or/& Ni) Alloys
Authors: A. Hossain, A. S. W. Kurny
Abstract:
The factors necessary to obtain an optimal heat treatment that influence the hardness and resistivity of Al-6Si-0.5Mg casting alloys with Cu or/and Ni additions were investigated. The alloys were homogenised (24hr at 500oC), solutionized (2hr at 540oC) and artificially ageing at various times and temperatures. The alloys were aged isochronally for 60 minutes at temperatures up to 400oC and isothermally at 150, 175, 200, 225, 250 & 300oC for different periods in the range 15 to 360 minutes. The hardness and electrical resistivity of the alloys were measured for various artificial ageing times and temperatures. From the isochronal ageing treatment, hardness found maximum ageing at 225oC. And from the isothermal ageing treatment, hardness found maximum for 60 minutes at 225oC. So the optimal heat treatment consists of 60 minutes ageing at 225oC.
Keywords: Ageing, Al-Si-Mg alloy, hardness, resistivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3066316 Impact Temperature in Splat and Splat-Substrate Interface in HVOF Thermal Spraying
Authors: M. Jalali Azizpour, D. Sajedipour, H. Mohammadi Majd, M.R. Tahmasbi Birgani, M.Rabiae
Abstract:
An explicit axisymmetrical FE methodology is developed here to study the particle temperature arising in WC-Co particle on an AISI 1045 steel substrate. Parameters of constitutive Johnson-cook model were used for simulation. The results show that particle velocity and kinetic energy have important role in temperature arising of particles.Keywords: FEM, HVOF, Interfacial Temperature, Splat
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888315 STM Spectroscopy of Alloyed Nanocrystal Composite CdSxSe1-X
Authors: T. Abdallah, K. Easawi, A. Khalid, S. Negm, H. Talaat
Abstract:
Nanocrystals (NC) alloyed composite CdSxSe1-x(x=0 to 1) have been prepared using the chemical solution deposition technique. The energy band gap of these alloyed nanocrystals of approximately the same size, have been determined by scanning tunneling spectroscopy (STS) technique at room temperature. The values of the energy band gap obtained directly using STS are compared to those measured by optical spectroscopy. Increasing the molar fraction ratio x from 0 to 1 causes clearly observed increase in the band gap of the alloyed composite nanocrystal. Vegard-s law was applied to calculate the parameters of the effective mass approximation (EMA) model and the dimension obtained were compared to the values measured by STM. The good agreement of the calculated and measured values is a direct result of applying Vegard's law in the nanocomposites.Keywords: Alloy semiconductor nanocrystals, STM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1467314 Preparation and Characterization of Newly Developed Trabecular Structures in Titanium Alloy to Optimize Osteointegration
Authors: M. Regis, E. Marin, S. Fusi, M. Pressacco, L. Fedrizzi
Abstract:
Electron Beam Melting (EBM) process was used to prepare porous scaffolds with controlled porosity to ensure optimal levels of osteointegration for different trabeculae sizes. Morphological characterization by means of SEM analyses was carried out to assess pore dimensions; tensile, compression and adhesion tests have been carried out to determine the mechanical behavior. The results indicate that EBM process allows the creation of regular and repeatable porous scaffolds. Mechanical properties greatly depend on pore dimension and on bulk-pore ratio. Adhesion resistance meets the normative requirements, and the overall performance of the produced structures is compatible with potential orthopaedic applications.
Keywords: Additive manufacturing, orthopaedic implants, osteointegration, trabecular structures
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2316313 Analysis of Surface Hardness, Surface Roughness, and Near Surface Microstructure of AISI 4140 Steel Worked with Turn-Assisted Deep Cold Rolling Process
Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma, K. Jagannath, Achutha Kini U.
Abstract:
In the present study, response surface methodology has been used to optimize turn-assisted deep cold rolling process of AISI 4140 steel. A regression model is developed to predict surface hardness and surface roughness using response surface methodology and central composite design. In the development of predictive model, deep cold rolling force, ball diameter, initial roughness of the workpiece, and number of tool passes are considered as model variables. The rolling force and the ball diameter are the significant factors on the surface hardness and ball diameter and numbers of tool passes are found to be significant for surface roughness. The predicted surface hardness and surface roughness values and the subsequent verification experiments under the optimal operating conditions confirmed the validity of the predicted model. The absolute average error between the experimental and predicted values at the optimal combination of parameter settings for surface hardness and surface roughness is calculated as 0.16% and 1.58% respectively. Using the optimal processing parameters, the surface hardness is improved from 225 to 306 HV, which resulted in an increase in the near surface hardness by about 36% and the surface roughness is improved from 4.84µm to 0.252 µm, which resulted in decrease in the surface roughness by about 95%. The depth of compression is found to be more than 300µm from the microstructure analysis and this is in correlation with the results obtained from the microhardness measurements. Taylor hobson talysurf tester, micro vickers hardness tester, optical microscopy and X-ray diffractometer are used to characterize the modified surface layer.
Keywords: Surface hardness, response surface methodology, microstructure, central composite design, deep cold rolling, surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805312 A Strategy for a Robust Design of Cracked Stiffened Panels
Authors: Francesco Caputo, Giuseppe Lamanna, Alessandro Soprano
Abstract:
This work is focused on the numerical prediction of the fracture resistance of a flat stiffened panel made of the aluminium alloy 2024 T3 under a monotonic traction condition. The performed numerical simulations have been based on the micromechanical Gurson-Tvergaard (GT) model for ductile damage. The applicability of the GT model to this kind of structural problems has been studied and assessed by comparing numerical results, obtained by using the WARP 3D finite element code, with experimental data available in literature. In the sequel a home-made procedure is presented, which aims to increase the residual strength of a cracked stiffened aluminum panel and which is based on the stochastic design improvement (SDI) technique; a whole application example is then given to illustrate the said technique.
Keywords: Residual strength, R-Curve, Gurson model, SDI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541311 Temperature Effect on the Mechanical Properties of Pd3Rh and PdRh3 Ordered Alloys
Authors: J. Davoodi , J. Moradi
Abstract:
The aim of this research was to calculate the mechanical properties of Pd3Rh and PdRh3 ordered alloys. The molecular dynamics (MD) simulation technique was used to obtain temperature dependence of the energy, the Yong modulus, the shear modulus, the bulk modulus, Poisson-s ratio and the elastic stiffness constants at the isobaric-isothermal (NPT) ensemble in the range of 100-325 K. The interatomic potential energy and force on atoms were calculated by Quantum Sutton-Chen (Q-SC) many body potential. Our MD simulation results show the effect of temperature on the cohesive energy and mechanical properties of Pd3Rh as well as PdRh3 alloys. Our computed results show good agreement with the experimental results where they have been available.Keywords: Pd-Rh alloy; Mechanical properties; Moleculardynamics simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601310 Research on the Micro Pattern forming of Spiral Grooves in a Dynamic Thrust Bearing
Authors: Sol-Kil Oh, Hye-Jin Lee, Jung-Han Song, Kyoung-Tae Kim, Nak-Kyu Lee, Jong-Ho Kim
Abstract:
This paper deals with a novel technique for the fabrication of Spiral grooves in a dynamic thrust bearing. The main scheme proposed in this paper is to fabricate the microgrooves using desktop forming system. This process has advantages compared to the conventional electro-chemical machining in the viewpoint of a higher productivity. For this reason, a new testing apparatus is designed and built for press forming microgrooves on a surface of the thrust bearing. The material used in this study is sintered Cu-Fe alloy. The effects of the forming load on the performance of micro press forming are experimentally investigated. From the experimental results, formed depths are closed to the target ones with increasing the forming load.Keywords: Desktop forming system, Fluid dynamic bearing, Thrust bearing, Microgroove.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465309 Performance of InGaN/GaN Laser Diode Based on Quaternary Alloys Stopper and Superlattice Layers
Authors: S. M. Thahab, H. Abu Hassan, Z. Hassan
Abstract:
The optical properties of InGaN/GaN laser diode based on quaternary alloys stopper and superlattice layers are numerically studied using ISE TCAD (Integrated System Engineering) simulation program. Improvements in laser optical performance have been achieved using quaternary alloy as superlattice layers in InGaN/GaN laser diodes. Lower threshold current of 18 mA and higher output power and slope efficiency of 22 mW and 1.6 W/A, respectively, at room temperature have been obtained. The laser structure with InAlGaN quaternary alloys as an electron blocking layer was found to provide better laser performance compared with the ternary AlxGa1-xN blocking layer.
Keywords: Nitride semiconductors, InAlGaN quaternary, laserdiode, superlattice.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049308 Wetting Behavior of Reactive and Non–Reactive Wetting of Liquids on Metallic Substrates
Authors: Pradeep Bhagawath, K.N. Prabhu, Satyanarayan
Abstract:
Wetting characteristics of reactive (Sn–0.7Cu solder) and non– reactive (castor oil) wetting of liquids on Cu and Ag plated Al substrates have been investigated. Solder spreading exhibited capillary, gravity and viscous regimes. Oils did not exhibit noticeable spreading regimes. Solder alloy showed better wettability on Ag coated Al substrate compared to Cu plating. In the case of castor oil, Cu coated Al substrate exhibited good wettability as compared to Ag coated Al substrates. The difference in wettability during reactive wetting of solder and non–reactive wetting of oils is attributed to the change in the surface energies of Al substrates brought about by the formation of intermetallic compounds (IMCs).Keywords: Wettability, contact angle, solder, castor oil, IMCs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2496307 Effect of Austenitization Temperature on Wear Behavior of Carbidic Austempered Ductile Iron (CADI)
Authors: Ajay Likhite, Prashant Parhad, D. R. Peshwe, S. U. Pathak
Abstract:
Chromium bearing Austempered Ductile Iron (ADI) has been recently in the news for its improved wear performance over the ADI. The work presented below was taken up to study the effect of different austenitisation temperatures on the microstructure and wear performance of the Carbidic Austempered Ductile Iron (CADI). In this investigation Cr bearing ductile iron was subjected to austempering treatment to obtain an ausferritic microstructure. Two different austenitisation temperatures were selected whereas, the austempering temperature and time was kept unchanged. Microstructure and wear performance of this alloy, austenitized at two different temperatures was studied.
Keywords: Austempered Ductile Iron, Carbidic Austempered Ductile Iron.Austenitization temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067306 Influence of Technology Parameters on Properties of AA6061/SiC Composites Produced By Kobo Method
Authors: J. Wozniak, M. Kostecki, K. Broniszewski, W. Bochniak, A. Olszyna
Abstract:
The influence of extrusion parameters on surface quality and properties of AA6061+x% vol. SiC (x = 0; 2,5; 5; 7,5;10) composites was discussed in this paper. The averages size of AA6061 and SiC particles were 10.6 μm and 0.42 μm, respectively. Two series of composites (I - compacts were preheated at extrusion temperature through 0.5 h and cooled by water directly after process; II - compacts were preheated through 3 hours and were not cooled) were consolidated via powder metallurgy processing and extruded by KoBo method. High values of density for both series of composites were achieved. Better surface quality was observed for II series of composites. Moreover, for these composites lower (compared to I series) but more uniform strength properties over the cross-section of the bar were noticed. Microstructure and Young-s modulus investigations were made.Keywords: aluminum alloy, extrusion, metal matrix composites, microstructure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749305 Laser Welded Ni-Cr Dental Alloys Inspection
Authors: Porojan S., Sandu L., Topală F.
Abstract:
Minor problems arising from optimizations by welding of fixed prostheses frameworks can be identified by macroscopic and microscopic visual inspection. The purpose of this study was to highlight the visible discontinuities present in the laser welds of dental Ni-Cr alloys. Ni-Cr base metal alloys designated for fixed prostheses manufacture were selected for the experiments. Using cast plates, preliminary tests were conducted by laser welding. Macroscopic visual inspection was done carefully to assess the defects of the welding rib. Electron microscopy images allowed visualization of small discontinuities, which escapes visual inspection. Making comparison to Ni-Cr alloys taken in the experiment and laser welded, after visual analysis, the best welds appear for Heraenium NA alloy.Keywords: macroscopic visual inspection, electron microscopyimages, Ni-Cr dental alloys, laser welding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557304 Three-Phase High Frequency AC Conversion Circuit with Dual Mode PWM/PDM Control Strategy for High Power IH Applications
Authors: Nabil A. Ahmed
Abstract:
This paper presents a novel three-phase utility frequency to high frequency soft switching power conversion circuit with dual mode pulse width modulation and pulse density modulation for high power induction heating applications as melting of steel and non ferrous metals, annealing of metals, surface hardening of steel and cast iron work pieces and hot water producers, steamers and super heated steamers. This high frequency power conversion circuit can operate from three-phase systems to produce high current for high power induction heating applications under the principles of ZVS and it can regulate its ac output power from the rated value to a low power level. A dual mode modulation control scheme based on high frequency PWM in synchronization with the utility frequency positive and negative half cycles for the proposed high frequency conversion circuit and utility frequency pulse density modulation is produced to extend its soft switching operating range for wide ac output power regulation. A dual packs heat exchanger assembly is designed to be used in consumer and industrial fluid pipeline systems and it is proved to be suitable for the hot water, steam and super heated steam producers. Experiment and simulation results are given in this paper to verify the operation principles of the proposed ac conversion circuit and to evaluate its power regulation and conversion efficiency. Also, the paper presents a mutual coupling model of the induction heating load instead of equivalent transformer circuit model.Keywords: Induction heating, three-phase, conversion circuit, pulse width modulation, pulse density modulation, high frequency, soft switching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2179303 Temperature-Based Detection of Initial Yielding Point in Loading of Tensile Specimens Made of Structural Steel
Authors: Aqsa Jamil, Hiroshi Tamura, Hiroshi Katsuchi, Jiaqi Wang
Abstract:
Yield point represents the upper limit of forces which can be applied on a specimen without causing any permanent deformation. After yielding, the behavior of specimen suddenly changes including the possibility of cracking or buckling. So, the accumulation of damage or type of fracture changes depending on this condition. As it is difficult to accurately detect yield points of the several stress concentration points in structural steel specimens, an effort has been made in this research work to develop a convenient technique using thermography (temperature-based detection) during tensile tests for the precise detection of yield point initiation. To verify the applicability of thermography camera, tests were conducted under different loading conditions and measuring the deformation by installing various strain gauges and monitoring the surface temperature with the help of thermography camera. The yield point of specimens was estimated by the help of temperature dip which occurs due to the thermoelastic effect during the plastic deformation. The scattering of the data has been checked by performing repeatability analysis. The effect of temperature imperfection and light source has been checked by carrying out the tests at daytime as well as midnight and by calculating the signal to noise ratio (SNR) of the noised data from the infrared thermography camera, it can be concluded that the camera is independent of testing time and the presence of a visible light source. Furthermore, a fully coupled thermal-stress analysis has been performed by using Abaqus/Standard exact implementation technique to validate the temperature profiles obtained from the thermography camera and to check the feasibility of numerical simulation for the prediction of results extracted with the help of thermographic technique.
Keywords: Signal to noise ratio, thermoelastic effect, thermography, yield point.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 371302 Friction Behavior of Wood-Plastic Composites against Uncoated Cemented Carbide
Authors: A. Vilutis, V. Jankauskas
Abstract:
The paper presents the results of the investigation of the dry sliding friction of wood-plastic composites (WPCs) against tungsten carbide-cobalt (WC-Co) hard alloy. The dependence of the dynamic coefficient of friction on the main influencing factors (vertical load, temperature, and sliding distance) was investigated by evaluating their mutual interaction. Multiple regression analysis showed a high polynomial dependence (adjusted R2 > 0.98). The resistance of the composite to thermo-mechanical effects determines how temperature and force factors affect the magnitude of the coefficient of friction. WPC-B composite has the lowest friction and highest resistance compared to WPC-A, while composite and cemented carbide materials wear the least. Energy Dispersive Spectroscopy (EDS), based on elemental composition, provided important insights into the friction process.
Keywords: Friction, composite, carbide, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 76301 Prediction Study of a Corroded Pressure Vessel Using Evaluation Measurements and Finite Element Analysis
Authors: Ganbat Danaa, Chuluundorj Puntsag
Abstract:
The steel structures of the Oyu-Tolgoi mining Concentrator plant are corroded during operation, which raises doubts about the continued use of some important structures of the plant, which is one of the problems facing the plant's regular operation. As a part of the main operation of the plant, the bottom part of the pressure vessel, which plays an important role in the reliable operation of the concentrate filter-drying unit, was heavily corroded, so it was necessary to study by engineering calculations, modeling, and simulation using modern advanced engineering programs and methods. The purpose of this research is to investigate whether the corroded part of the pressure vessel can be used normally in the future using advanced engineering software and to predetermine the remaining life of the time of the pressure vessel based on engineering calculations. When the thickness of the bottom part of the pressure vessel was thinned by 0.5 mm due to corrosion detected by non-destructive testing, finite element analysis using ANSYS WorkBench software was used to determine the mechanical stress, strain and safety factor in the wall and bottom of the pressure vessel operating under 2.2 MPa working pressure, made conclusions on whether it can be used in the future. According to the recommendations, by using sand-blast cleaning and anti-corrosion paint, the normal, continuous and reliable operation of the Concentrator plant can be ensured, such as ordering new pressure vessels and reducing the installation period. By completing this research work, it will be used as a benchmark for assessing the corrosion condition of steel parts of pressure vessels and other metallic and non-metallic structures operating under severe conditions of corrosion, static and dynamic loads, and other deformed steels to make analysis of the structures and make it possible to evaluate and control the integrity and reliable operation of the structures.
Keywords: Corrosion, non-destructive testing, finite element analysis, safety factor, structural reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7300 Simulation of Soil-Pile Interaction of Steel Batter Piles Penetrated in Sandy Soil Subjected to Pull-Out Loads
Authors: Ameer A. Jebur, William Atherton, Rafid M. Alkhaddar, Edward Loffill
Abstract:
Superstructures like offshore platforms, tall buildings, transition towers, skyscrapers and bridges are normally designed to resist compression, uplift and lateral forces from wind waves, negative skin friction, ship impact and other applied loads. Better understanding and the precise simulation of the response of batter piles under the action of independent uplift loads is a vital topic and an area of active research in the field of geotechnical engineering. This paper investigates the use of finite element code (FEC) to examine the behaviour of model batter piles penetrated in dense sand, subjected to pull-out pressure by means of numerical modelling. The concept of the Winkler Model (beam on elastic foundation) has been used in which the interaction between the pile embedded depth and adjacent soil in the bearing zone is simulated by nonlinear p-y curves. The analysis was conducted on different pile slenderness ratios (lc⁄d) ranging from 7.5, 15.22 and 30 respectively. In addition, the optimum batter angle for a model steel pile penetrated in dense sand has been chosen to be 20° as this is the best angle for this simulation as demonstrated by other researcher published in literature. In this numerical analysis, the soil response is idealized as elasto-plastic and the model piles are described as elastic materials for the purpose of simulation. The results revealed that the applied loads affect the pullout pile capacity as well as the lateral pile response for dense sand together with varying shear strength parameters linked to the pile critical depth. Furthermore, the pile pull-out capacity increases with increasing the pile aspect ratios.Keywords: Slenderness ratio, soil-pile interaction, winkler model (beam on elastic foundation), pull-out capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622299 The Effectiveness of Bismuth Addition to Retard the Intermetallic Compound Formation
Authors: I. Siti Rabiatull Aisha, A. Ourdjini, O. Saliza Azlina
Abstract:
The aim of this paper is to study the effectiveness of bismuth addition in the solder alloy to retard the intermetallic compound formation and growth. In this study, three categories of solders such as Sn-4Ag-xCu (x = 0.5, 0.7, 1.0) and Sn-4Ag-0.5Cu-xBi (x = 0.1, 0.2, 0.4) were used. Ni/Au surface finish substrates were dipped into the molten solder at a temperature of 180-190 oC and allowed to cool at room temperature. The intermetallic compound (IMCs) were subjected to the characterization in terms of composition and morphology. The IMC phases were identified by energy dispersive x-ray (EDX), whereas the optical microscope and scanning electron microscopy (SEM) were used to observe microstructure evolution of the solder joint. The results clearly showed that copper concentration dependency was high during the reflow stage. Besides, only Ni3Sn4 and Ni3Sn2 were detected for all copper concentrations. The addition of Bi was found to have no significant effect on the type of IMCs formed, but yet the grain became further refined.
Keywords: Bismuth addition, intermetallic compound, composition, morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1312298 Effects of Operating Conditions on Calcium Carbonate Fouling in a Plate Heat Exchanger
Authors: K. Pana-Suppamassadu, P. Jeimrittiwong, P. Narataruksa, S. Tungkamani
Abstract:
The aim of this work is to investigate on the internalflow patterns in a plate heat exchanger channel, which affect the rate of sedimentation fouling on the heat transfer surface of the plate heat exchanger. The research methodologies were the computer simulation using Computational Fluid Dynamics (CFD) and the experimental works. COMSOL MULTIPHYSICS™ Version 3.3 was used to simulate the velocity flow fields to verify the low and high flow regions. The results from the CFD technique were then compared with the images obtained from the experiments in which the fouling test rig was set up with a singlechannel plate heat exchanger to monitor the fouling of calcium carbonate. Two parameters were varied i.e., the crossing angle of the two plate: 55/55, 10/10, and 55/10 degree, and the fluid flow rate at the inlet: 0.0566, 0.1132 and 0.1698 m/s. The type of plate “GX-12" (the surface area 0.12 m2, the depth 2.9 mm, the width of fluid flow 215 mm and the thickness of stainless plate of 0.5 mm) was used in this study. The results indicated that the velocity distribution for the case of 55/55 degree seems to be very well organized when compared with the others. Also, an increase in the inlet velocity resulted in the reduction of fouling rate on the surface of plate heat exchangers.Keywords: Computational fluid dynamics, crossing angles, finite element method, plate heat exchanger.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2524297 Fracture Location Characterizations of Dissimilar Friction Stir Welds
Authors: Esther T. Akinlabi, Stephen A. Akinlabi
Abstract:
This paper reports the tensile fracture location characterizations of dissimilar friction stir welds between 5754 aluminium alloy and C11000 copper. The welds were produced using three shoulder diameter tools; namely, 15, 18 and 25 mm by varying the process parameters. The rotational speeds considered were 600, 950 and 1200 rpm while the feed rates employed were 50, 150 and 300 mm/min to represent the low, medium and high settings respectively. The tensile fracture locations were evaluated using the optical microscope to identify the fracture locations and were characterized. It was observed that 70% of the tensile samples failed in the Thermo Mechanically Affected Zone (TMAZ) of copper at the weld joints. Further evaluation of the fracture surfaces of the pulled tensile samples revealed that welds with low Ultimate Tensile Strength either have defects or intermetallics present at their joint interfaces.Keywords: fracture location, friction stir welding, intermetallics, metallography,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970296 Effects of Arcing in Air on the Microstructure, Morphology and Photoelectric Work Function of Ag- Ni (60/40) Contact Materials
Authors: Mohamed Akbi
Abstract:
The present work aims to throw light on the effects of arcing in air on the surface state of contact pastilles made of silvernickel Ag-Ni (60/40). Also, the photoelectric emission from these electrical contacts has been investigated in the spectral range of 196- 256 nm. In order to study the effects of arcing on the EWF, the metallic samples were subjected to electrical arcs in air, at atmospheric pressure and room temperature, after that, they have been introduced into the vacuum chamber of an experimental UHV set-up for EWF measurements. Both Fowler method of isothermal curves and linearized Fowler plots were used for the measurement of the EWF by the photoelectric effect. It has been found that the EWF varies with the number of applied arcs. Thus, after 500 arcs in air, the observed EWF increasing is probably due to progressive inclusion of oxide on alloy surface. Microscopic examination is necessary to get better understandings on EWF of silver alloys, for both virgin and arced electrical contacts.
Keywords: Ag-Ni contact materials, arcing effects, electron work function, Fowler methods, photoemission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2375295 Microstructural and Magnetic Properties of Ni50Mn39Sn11 and Ni50Mn36Sn14 Heusler Alloys
Authors: M. Nazmunnahar, J. J. Del Val, A. Vimmrova, J. González
Abstract:
We report the microstructural and magnetic properties of Ni50Mn39Sn11 and Ni50Mn36Sn14 ribbon Heusler alloys. Experimental results were obtained by differential scanning calorymetry, X-ray diffraction and vibrating sample magnetometry techniques. The Ni-Mn-Sn system undergoes a martensitic structural transformation in a wide temperature range. For example, for Ni50Mn39Sn11 the start and finish temperatures of the martensitic and austenite phase transformation for ribbon alloy were Ms=336K, Mf=328K, As=335K and Af=343K whereas no structural transformation is observed for Ni50Mn36Sn14 alloys. Magnetic measurements show the typical ferromagnetic behavior with Curie temperature 207 K at low applied field of 50 Oe. The complex behavior exhibited by these Heusler alloys should be ascribed to the strong coupling between magnetism and structure, being their magnetic behavior determined by the distance between Mn atoms.Keywords: Structural transformation, as-cast ribbon, Heusler alloys, Magnetic properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2606294 Effect of Scanning Speed on Material Efficiency of Laser Metal Deposited Ti6Al4V
Authors: Esther T. Akinlabi, Rasheedat M. Mahamood, Mukul Shukla, Sisa. Pityana
Abstract:
The study of effect of laser scanning speed on material efficiency in Ti6Al4V application is very important because unspent powder is not reusable because of high temperature oxygen pick-up and contamination. This study carried out an extensive study on the effect of scanning speed on material efficiency by varying the speed between 0.01 to 0.1m/sec. The samples are wire brushed and cleaned with acetone after each deposition to remove un-melted particles from the surface of the deposit. The substrate is weighed before and after deposition. A formula was developed to calculate the material efficiency and the scanning speed was compared with the powder efficiency obtained. The results are presented and discussed. The study revealed that the optimum scanning speed exists for this study at 0.01m/sec, above and below which the powder efficiency will dropKeywords: Additive Manufacturing, Laser Metal Deposition Process, Material efficiency, Processing Parameter, Titanium alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2348293 Multi-Objective Optimization in End Milling of Al-6061 Using Taguchi Based G-PCA
Authors: M. K. Pradhan, Mayank Meena, Shubham Sen, Arvind Singh
Abstract:
In this study, a multi objective optimization for end milling of Al 6061 alloy has been presented to provide better surface quality and higher Material Removal Rate (MRR). The input parameters considered for the analysis are spindle speed, depth of cut and feed. The experiments were planned as per Taguchis design of experiment, with L27 orthogonal array. The Grey Relational Analysis (GRA) has been used for transforming multiple quality responses into a single response and the weights of the each performance characteristics are determined by employing the Principal Component Analysis (PCA), so that their relative importance can be properly and objectively described. The results reveal that Taguchi based G-PCA can effectively acquire the optimal combination of cutting parameters.Keywords: Material Removal Rate, Surface Roughness, Taguchi Method, Grey Relational Analysis, Principal Component Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2227292 Residual Stress in Ground WC-Co Coatings
Authors: M. Jalali Azizpour, H. Mohammadi Majd
Abstract:
High velocity oxygen fuel (HVOF) spray technique is one of the leading technologies that have been proposed as an alternative to the replacement of electrolytic hard chromium plating in a number of engineering applications. In this study, WC-Co powder was coated on AISI1045 steel using high velocity oxy fuel (HVOF) method. The sin2ψ method was used to evaluate the through thickness residual stress by means of XRD after mechanical layer removal process (only grinding). The average of through thickness residual stress using X-Ray diffraction was -400 MPa.
Keywords: Grinding, HVOF, Thermal spray, WC-Co.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2723291 Single Spectrum End Point Predict of BOF with SVM
Authors: Ling-fei Xu, Qi Zhao, Yan-ru Chen, Mu-chun Zhou, Meng Zhang, Shi-xue Xu
Abstract:
SVM ( Support Vector Machine ) is a new method in the artificial neural network ( ANN ). In the steel making, how to use computer to predict the end point of BOF accuracy is a great problem. A lot of method and theory have been claimed, but most of the results is not satisfied. Now the hot topic in the BOF end point predicting is to use optical way the predict the end point in the BOF. And we found that there exist some regular in the characteristic curve of the flame from the mouse of pudding. And we can use SVM to predict end point of the BOF, just single spectrum intensity should be required as the input parameter. Moreover, its compatibility for the input space is better than the BP network.
Keywords: SVM, predict, BOF, single spectrum intensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1361290 Design of a Mould System for Horizontal Continuous Casting of Bilayer Aluminium Strips
Authors: Ch. Nerl, M. Wimmer, P. Hofer, E. Kaschnitz
Abstract:
The present article deals with a composite casting process that allows to produce bilayer AlSn6-Al strips based on the technique of horizontal continuous casting. In the first part experimental investigations on the production of a single layer AlSn6 strip are described. Afterwards essential results of basic compound casting trials using simple test specimen are presented to define the thermal conditions required for a metallurgical compound between the alloy AlSn6 and pure aluminium. Subsequently, numerical analyses are described. A finite element model was used to examine a continuous composite casting process. As a result of the simulations the main influencing parameters concerning the thermal conditions within the composite casting region could be pointed out. Finally, basic guidance is given for the design of an appropriate composite mould system.
Keywords: Aluminium alloys, composite casting, compound casting, continuous casting, numerical simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3160289 Symmetrical In-Plane Resonant Gyroscope with Decoupled Modes
Authors: Shady Sayed, Samer Wagdy, Ahmed Badawy, Moutaz M. Hegaze
Abstract:
A symmetrical single mass resonant gyroscope is discussed in this paper. The symmetrical design allows matched resonant frequencies for driving and sensing vibration modes, which leads to amplifying the sensitivity of the gyroscope by the mechanical quality factor of the sense mode. It also achieves decoupled vibration modes for getting a low zero-rate output shift and more stable operation environment. A new suspension beams design is developed to get a symmetrical gyroscope with matched and decoupled modes at the same time. Finite element simulations are performed using ANSYS software package to verify the theoretical calculations. The gyroscope is fabricated from aluminum alloy 2024 substrate, the measured drive and sense resonant frequencies of the fabricated model are matched and equal 81.4 Hz with 5.7% error from the simulation results.Keywords: Decoupled mode shapes, resonant sensor, symmetrical gyroscope, finite element simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1135288 Homogeneity of Microstructure and Mechanical Properties in Horizontal Continuous Cast Billet
Authors: V. Arbabi , I. Ebrahimzadeh, H. Ghanbari, M.M. Kaykha
Abstract:
Horizontal continuous casting is widely used to produce semi-finished non-Ferrous products. Homogeneity in the metallurgical characteristics and mechanical properties for this product is vital for industrial application. In the present work, the microstructure and mechanical properties of a horizontal continuous cast two-phase brass billet have been studied. Impact strength and hardness variations were examined and the phase composition and porosity studied with image analysis software. Distinct differences in mechanical properties were observed between the upper, middle and lower parts of the billet, which are explained in terms of the morphology and size of the phase in the microstructure. Hardness variation in the length of billet is higher in upper area but impact strength is higher in lower areas.Keywords: Horizontal Continuous Casting, Two-phase brasses, CuZn40Al1 alloy, Microstructure, Impact Strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2182