Search results for: medical imaging
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 833

Search results for: medical imaging

143 Imputing Missing Data in Electronic Health Records: A Comparison of Linear and Non-Linear Imputation Models

Authors: Alireza Vafaei Sadr, Vida Abedi, Jiang Li, Ramin Zand

Abstract:

Missing data is a common challenge in medical research and can lead to biased or incomplete results. When the data bias leaks into models, it further exacerbates health disparities; biased algorithms can lead to misclassification and reduced resource allocation and monitoring as part of prevention strategies for certain minorities and vulnerable segments of patient populations, which in turn further reduce data footprint from the same population – thus, a vicious cycle. This study compares the performance of six imputation techniques grouped into Linear and Non-Linear models, on two different real-world electronic health records (EHRs) datasets, representing 17864 patient records. The mean absolute percentage error (MAPE) and root mean squared error (RMSE) are used as performance metrics, and the results show that the Linear models outperformed the Non-Linear models in terms of both metrics. These results suggest that sometimes Linear models might be an optimal choice for imputation in laboratory variables in terms of imputation efficiency and uncertainty of predicted values.

Keywords: EHR, Machine Learning, imputation, laboratory variables, algorithmic bias.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169
142 Structural and Optical Properties of Ce3+ Doped YPO4: Nanophosphors Synthesis by Sol Gel Method

Authors: B. Kahouadji, L. Guerbous, L. Lamiri, A. Mendoud

Abstract:

Recently, nanomaterials are developed in the form of nano-films, nano-crystals and nano-pores. Lanthanide phosphates as a material find extensive application as laser, ceramic, sensor, phosphor, and also in optoelectronics, medical and biological labels, solar cells and light sources. Among the different kinds of rare-earth orthophosphates, yttrium orthophosphate has been shown to be an efficient host lattice for rare earth activator ions, which have become a research focus because of their important role in the field of light display systems, lasers, and optoelectronic devices. It is in this context that the 4fn- « 4fn-1 5d transitions of rare earth in insulating materials, lying in the UV and VUV, are the aim of large number of studies .Though there has been a few reports on Eu3+, Nd3+, Pr3+,Er3+, Ce3+, Tm3+ doped YPO4. The 4fn- « 4fn-1 5d transitions of the rare earth dependent to the host-matrix, several matrices ions were used to study these transitions, in this work we are suggesting to study on a very specific class of inorganic material that are orthophosphate doped with rare earth ions. This study focused on the effect of Ce3+ concentration on the structural and optical properties of Ce3+ doped YPO4 yttrium orthophosphate with powder form prepared by the Sol Gel method.

Keywords: YPO4, Ce3+, 4fn- <->4fn-1 5d transitions, scintillator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2731
141 Study of Chest Pain and its Risk Factors in Over 30 Year-Old Individuals

Authors: S. Dabiran

Abstract:

Chest pain is one of the most prevalent complaints among adults that cause the people to attend to medical centers. The aim was to determine the prevalence and risk factors of chest pain among over 30 years old people in Tehran. In this cross-sectional study, 787 adults took part from Apr 2005 until Apr 2006. The sampling method was random cluster sampling and there were 25 clusters. In each cluster, interviews were performed with 32 over 30 years old, people lived in those houses. In cases with chest pain, extra questions asked. The prevalence of CP was 9% (71 cases). Of them 21 cases (6.5%) were in 41-60 year age ranges and the remainders were over 61 year old. 19 cases (26.8%) mentioned CP in resting state and all of the cases had exertion onset CP. The CP duration was 10 minutes or less in all of the cases and in most of them (84.5%), the location of pain mentioned left anterior part of chest, left anterior part of sternum and or left arm. There was positive history of myocardial infarction in 12 cases (17%). There was significant relation between CP and age, sex and between history of myocardial infarction and marital state of study people. Our results are similar to other studies- results in most parts, however it is necessary to perform supplementary tests and follow up studies to differentiate between cardiac and non-cardiac CP exactly.

Keywords: Chest pain, myocardial infarction, risk factor, prevalence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464
140 Experiment and Simulation of Laser Effect on Thermal Field of Porcine Liver

Authors: K.Ting, K. T. Chen, Y. L. Su, C. J. Chang

Abstract:

In medical therapy, laser has been widely used to conduct cosmetic, tumor and other treatments. During the process of laser irradiation, there may be thermal damage caused by excessive laser exposure. Thus, the establishment of a complete thermal analysis model is clinically helpful to physicians in reference data. In this study, porcine liver in place of tissue was subjected to laser irradiation to set up the experimental data considering the explored impact on surface thermal field and thermal damage region under different conditions of power, laser irradiation time, and distance between laser and porcine liver. In the experimental process, the surface temperature distribution of the porcine lever was measured by the infrared thermal imager. In the part of simulation, the bio heat transfer Pennes-s equation was solved by software SYSWELD applying in welding process. The double ellipsoid function as a laser source term is firstly considered in the prediction for surface thermal field and internal tissue damage. The simulation results are compared with the experimental data to validate the mathematical model established here in.

Keywords: laser infrared thermal imager, bio-heat transfer, double ellipsoid function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057
139 Territorial Availability of Social and Economic Infrastructure in Kazakhstan: Comparative Analysis of Urban and Rural Households

Authors: Nazym Shedenova, Aigul Beimisheva

Abstract:

The market transformation in Kazakhstan during the last two decades has essentially strengthened a gap between development of urban and rural areas. Implementation of market institutes, transition from public financing to paid rendering of social services, change of forms of financing of social and economic infrastructure have led to strengthening of an economic inequality of social groups, including growth of stratification of the city and the village. Sociological survey of urban and rural households in Almaty city and villages of Almaty region has been carried out within the international research project “Livelihoods Strategies of Private Households in Central Asia: A Rural–Urban Comparison in Kazakhstan and Kyrgyzstan" (Germany, Kazakhstan, Kyrgyzstan). The analysis of statistical data and results of sociological research of urban and rural households allows us to reveal issues of territorial development, to investigate an availability of medical, educational and other services in the city and the village, to reveal an evaluation urban and rural dwellers of living conditions, to compare economic strategies of households in the city and the village.

Keywords: Urban and rural households, social and economic infrastructure, territorial availability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2168
138 Impact of Process Parameters on Tensile Strength of Fused Deposition Modeling Printed Crisscross Poylactic Acid

Authors: Shilpesh R. Rajpurohit, Harshit K. Dave

Abstract:

Additive manufacturing gains the popularity in recent times, due to its capability to create prototype as well functional as end use product directly from CAD data without any specific requirement of tooling. Fused deposition modeling (FDM) is one of the widely used additive manufacturing techniques that are used to create functional end use part of polymer that is comparable with the injection-molded parts. FDM printed part has an application in various fields such as automobile, aerospace, medical, electronic, etc. However, application of FDM part is greatly affected by poor mechanical properties. Proper selection of the process parameter could enhance the mechanical performance of the printed part. In the present study, experimental investigation has been carried out to study the behavior of the mechanical performance of the printed part with respect to process variables. Three process variables viz. raster angle, raster width and layer height have been varied to understand its effect on tensile strength. Further, effect of process variables on fractured surface has been also investigated.

Keywords: 3D printing, fused deposition modeling, layer height, raster angle, raster width, tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1658
137 Adopting Flocks of Birds Approach to Predator for Anomalies Detection on Industrial Control Systems

Authors: M. Okeke, A. Blyth

Abstract:

Industrial Control Systems (ICS) such as Supervisory Control And Data Acquisition (SCADA) can be seen in many different critical infrastructures, from nuclear management to utility, medical equipment, power, waste and engine management on ships and planes. The role SCADA plays in critical infrastructure has resulted in a call to secure them. Many lives depend on it for daily activities and the attack vectors are becoming more sophisticated. Hence, the security of ICS is vital as malfunction of it might result in huge risk. This paper describes how the application of Prey Predator (PP) approach in flocks of birds could enhance the detection of malicious activities on ICS. The PP approach explains how these animals in groups or flocks detect predators by following some simple rules. They are not necessarily very intelligent animals but their approach in solving complex issues such as detection through corporation, coordination and communication worth emulating. This paper will emulate flocking behavior seen in birds in detecting predators. The PP approach will adopt six nearest bird approach in detecting any predator. Their local and global bests are based on the individual detection as well as group detection. The PP algorithm was designed following MapReduce methodology that follows a Split Detection Convergence (SDC) approach.

Keywords: Industrial control systems, prey predator, SCADA, SDC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1173
136 Manual to Automated Testing: An Effort-Based Approach for Determining the Priority of Software Test Automation

Authors: Peter Sabev, Katalina Grigorova

Abstract:

Test automation allows performing difficult and time consuming manual software testing tasks efficiently, quickly and repeatedly. However, development and maintenance of automated tests is expensive, so it needs a proper prioritization what to automate first. This paper describes a simple yet efficient approach for such prioritization of test cases based on the effort needed for both manual execution and software test automation. The suggested approach is very flexible because it allows working with a variety of assessment methods, and adding or removing new candidates at any time. The theoretical ideas presented in this article have been successfully applied in real world situations in several software companies by the authors and their colleagues including testing of real estate websites, cryptographic and authentication solutions, OSGi-based middleware framework that has been applied in various systems for smart homes, connected cars, production plants, sensors, home appliances, car head units and engine control units (ECU), vending machines, medical devices, industry equipment and other devices that either contain or are connected to an embedded service gateway.

Keywords: Automated Testing, Manual Testing, Test Automation, Software testing, Test Prioritization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3384
135 A Decision Support System Based on Leprosy Scales

Authors: Dennys Robson Girardi, Hugo Bulegon, Claudia Maria Moro Barra

Abstract:

Leprosy is an infectious disease caused by Mycobacterium Leprae, this disease, generally, compromises the neural fibers, leading to the development of disability. Disabilities are changes that limit daily activities or social life of a normal individual. When comes to leprosy, the study of disability considered the functional limitation (physical disabilities), the limitation of activity and social participation, which are measured respectively by the scales: EHF, SALSA and PARTICIPATION SCALE. The objective of this work is to propose an on-line monitoring of leprosy patients, which is based on information scales EHF, SALSA and PARTICIPATION SCALE. It is expected that the proposed system is applied in monitoring the patient during treatment and after healing therapy of the disease. The correlations that the system is between the scales create a variety of information, presented the state of the patient and full of changes or reductions in disability. The system provides reports with information from each of the scales and the relationships that exist between them. This way, health professionals, with access to patient information, can intervene with techniques for the Prevention of Disability. Through the automated scale, the system shows the level of the patient and allows the patient, or the responsible, to take a preventive measure. With an online system, it is possible take the assessments and monitor patients from anywhere.

Keywords: Leprosy, Medical Informatics, Decision SupportSystem, Disability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047
134 Enhanced Clustering Analysis and Visualization Using Kohonen's Self-Organizing Feature Map Networks

Authors: Kasthurirangan Gopalakrishnan, Siddhartha Khaitan, Anshu Manik

Abstract:

Cluster analysis is the name given to a diverse collection of techniques that can be used to classify objects (e.g. individuals, quadrats, species etc). While Kohonen's Self-Organizing Feature Map (SOFM) or Self-Organizing Map (SOM) networks have been successfully applied as a classification tool to various problem domains, including speech recognition, image data compression, image or character recognition, robot control and medical diagnosis, its potential as a robust substitute for clustering analysis remains relatively unresearched. SOM networks combine competitive learning with dimensionality reduction by smoothing the clusters with respect to an a priori grid and provide a powerful tool for data visualization. In this paper, SOM is used for creating a toroidal mapping of two-dimensional lattice to perform cluster analysis on results of a chemical analysis of wines produced in the same region in Italy but derived from three different cultivators, referred to as the “wine recognition data" located in the University of California-Irvine database. The results are encouraging and it is believed that SOM would make an appealing and powerful decision-support system tool for clustering tasks and for data visualization.

Keywords: Artificial neural networks, cluster analysis, Kohonen maps, wine recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121
133 Parkinsons Disease Classification using Neural Network and Feature Selection

Authors: Anchana Khemphila, Veera Boonjing

Abstract:

In this study, the Multi-Layer Perceptron (MLP)with Back-Propagation learning algorithm are used to classify to effective diagnosis Parkinsons disease(PD).It-s a challenging problem for medical community.Typically characterized by tremor, PD occurs due to the loss of dopamine in the brains thalamic region that results in involuntary or oscillatory movement in the body. A feature selection algorithm along with biomedical test values to diagnose Parkinson disease.Clinical diagnosis is done mostly by doctor-s expertise and experience.But still cases are reported of wrong diagnosis and treatment. Patients are asked to take number of tests for diagnosis.In many cases,not all the tests contribute towards effective diagnosis of a disease.Our work is to classify the presence of Parkinson disease with reduced number of attributes.Original,22 attributes are involved in classify.We use Information Gain to determine the attributes which reduced the number of attributes which is need to be taken from patients.The Artificial neural networks is used to classify the diagnosis of patients.Twenty-Two attributes are reduced to sixteen attributes.The accuracy is in training data set is 82.051% and in the validation data set is 83.333%.

Keywords: Data mining, classification, Parkinson disease, artificial neural networks, feature selection, information gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3777
132 A General Framework for Knowledge Discovery Using High Performance Machine Learning Algorithms

Authors: S. Nandagopalan, N. Pradeep

Abstract:

The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.

Keywords: Active Contour, Bayesian, Echocardiographic image, Feature vector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712
131 Riemannian Manifolds for Brain Extraction on Multi-modal Resonance Magnetic Images

Authors: Mohamed Gouskir, Belaid Bouikhalene, Hicham Aissaoui, Benachir Elhadadi

Abstract:

In this paper, we present an application of Riemannian geometry for processing non-Euclidean image data. We consider the image as residing in a Riemannian manifold, for developing a new method to brain edge detection and brain extraction. Automating this process is a challenge due to the high diversity in appearance brain tissue, among different patients and sequences. The main contribution, in this paper, is the use of an edge-based anisotropic diffusion tensor for the segmentation task by integrating both image edge geometry and Riemannian manifold (geodesic, metric tensor) to regularize the convergence contour and extract complex anatomical structures. We check the accuracy of the segmentation results on simulated brain MRI scans of single T1-weighted, T2-weighted and Proton Density sequences. We validate our approach using two different databases: BrainWeb database, and MRI Multiple sclerosis Database (MRI MS DB). We have compared, qualitatively and quantitatively, our approach with the well-known brain extraction algorithms. We show that using a Riemannian manifolds to medical image analysis improves the efficient results to brain extraction, in real time, outperforming the results of the standard techniques.

Keywords: Riemannian manifolds, Riemannian Tensor, Brain Segmentation, Non-Euclidean data, Brain Extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
130 Awareness about HIV-Infection among HIV-Infected Individuals Attending Medical Moscow Center, Russia

Authors: Marina Nosik, Irina Rymanova, Sergei Sevostyanihin, Natalya Sergeeva, Alexander Sobkin

Abstract:

This paper presents results of the survey regarding the awareness about HIV/AIDS among HIV-infected individuals. A questionnaire covering various aspects of HIV-infection was conducted among 110 HIV-infected individuals who attended the G.A. Zaharyan Moscow Tuberculosis Clinic, Department for treatment of TB patients with HIV. The questionnaire included questions about modes of HIV transmission and preventive measures against HIV/AIDS, as well as questions about age, gender, education and employment status. The survey revealed that the respondents in the whole had a good knowledge regarding modes of HIV transmission and preventive measures against HIV/AIDS: about 83,6% male respondents and 85,7% female respondents gave an accurate answers regarding the HIV-infection. However, the overwhelming majority of the study participants, that is, 88,5% men and 98% women, was quite ignorant about the risk of acquiring HIV through saliva and toothbrush of HIV-infected individual. Though that risk is rather insignificant, it is still biologically possible. And this gap in knowledge needs to be filled. As the study showed another point of concern was the fact, that despite the knowledge of HIV transmission risk through unprotected sex about 40% percent of HIVpositive men and 25% of HIV-positive women did not insist on using condoms with their sexual partners. These findings indicate that there are still some aspects about HIV-infection which needed to be clarified and explained through more detailed and specific educational programs.

Keywords: AIDS, HIV transmission risks, HIV misconceptions, risk behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
129 Improved Blood Glucose-Insulin Monitoring with Dual-Layer Predictive Control Design

Authors: Vahid Nademi

Abstract:

In response to widely used wearable medical devices equipped with a continuous glucose monitor (CGM) and insulin pump, the advanced control methods are still demanding to get the full benefit of these devices. Unlike costly clinical trials, implementing effective insulin-glucose control strategies can provide significant contributions to the patients suffering from chronic diseases such as diabetes. This study deals with a key role of two-layer insulin-glucose regulator based on model-predictive-control (MPC) scheme so that the patient’s predicted glucose profile is in compliance with the insulin level injected through insulin pump automatically. It is achieved by iterative optimization algorithm which is called an integrated perturbation analysis and sequential quadratic programming (IPA-SQP) solver for handling uncertainties due to unexpected variations in glucose-insulin values and body’s characteristics. The feasibility evaluation of the discussed control approach is also studied by means of numerical simulations of two case scenarios via measured data. The obtained results are presented to verify the superior and reliable performance of the proposed control scheme with no negative impact on patient safety.

Keywords: Blood glucose monitoring, insulin pump, optimization, predictive control, diabetes disease.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 749
128 The Relation between Body Mass Index and Menstrual Cycle Disorders in Medical Students of University Pelita Harapan, Indonesia

Authors: Gabriella Tjondro, Julita Dortua Laurentina Nainggolan

Abstract:

Introduction: There are several things affecting menstrual cycle, namely, nutritional status, diet, financial status of one’s household and exercises. The most commonly used parameter to calculate the fat in a human body is body mass index. Therefore, it is necessary to do research to prevent complications caused by menstrual disorder in the future. Design Study: This research is an observational analytical study with the cross-sectional-case control approach. Participants (n = 124; median age = 19.5 years ± SD 3.5) were classified into 2 groups: normal, NM (n = 62; BMI = 18-23 kg/m2) and obese, OB (n = 62; BMI = > 25 kg/m2). BMI was calculated from the equation; BMI = weight, kg/height, m2. Results: There were 79.10% from obese group who experienced menstrual cycle disorders (n=53, 79.10%; p value 0.00; OR 5.25) and 20.90% from normal BMI group with menstrual cycle disorders. There were several factors in this research that also influence the menstrual cycle disorders such as stress (44.78%; p value 0.00; OR 1.85), sleep disorders (25.37%; p value 0.00; OR 1.01), physical activities (25.37%; p value 0.00; OR 1.24) and diet (10.45%; p value 0.00; OR 1.07). Conclusion: There is a significant relation between body mass index (obese) and menstrual cycle disorders. However, BMI is not the only factor that affects the menstrual cycle disorders. There are several factors that also can affect menstrual cycle disorders, in this study we use stress, sleep disorders, physical activities and diet, in which none of them are dominant.

Keywords: Menstrual disorders, menstrual cycle, obesity, body mass index, stress, sleep disorders, physical activities, diet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1259
127 Tool Wear Analysis in 3D Manufactured Ti6Al4V

Authors: David Downey

Abstract:

With the introduction of additive manufacturing (3D printing) to produce titanium (Ti6Al4V) components in the medical, aerospace and automotive industries, intricate geometries can be produced with virtually complete design freedom. However, the consideration of microstructural anisotropy resulting from the additive manufacturing process becomes necessary due to this design flexibility and the need to print a geometric shape that can consist of numerous angles, radii, and swept surfaces. A femoral knee implant serves as an example of a 3D-printed near-net-shaped product. The mechanical properties of the printed components, and consequently, their machinability, are affected by microstructural anisotropy. Currently, finish-machining operations performed on titanium printed parts using selective laser melting (SLM) utilize the same cutting tools employed for processing wrought titanium components. Cutting forces for components manufactured through SLM can be up to 70% higher than those for their wrought counterparts made of Ti6Al4V. Moreover, temperatures at the cutting interface of 3D printed material can surpass those of wrought titanium, leading to significant tool wear. Although the criteria for tool wear may be similar for both 3D printed and wrought materials, the rate of wear during the machining process may differ. The impact of these issues on the choice of cutting tool material and tool lifetimes will be discussed.

Keywords: Additive manufacturing, build orientation, microstructural anisotropy, printed titanium Ti6Al4V, tool wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 147
126 Image Clustering Framework for BAVM Segmentation in 3DRA Images: Performance Analysis

Authors: FH. Sarieddeen, R. El Berbari, S. Imad, J. Abdel Baki, M. Hamad, R. Blanc, A. Nakib, Y.Chenoune

Abstract:

Brain ArterioVenous Malformation (BAVM) is an abnormal tangle of brain blood vessels where arteries shunt directly into veins with no intervening capillary bed which causes high pressure and hemorrhage risk. The success of treatment by embolization in interventional neuroradiology is highly dependent on the accuracy of the vessels visualization. In this paper the performance of clustering techniques on vessel segmentation from 3- D rotational angiography (3DRA) images is investigated and a new technique of segmentation is proposed. This method consists in: preprocessing step of image enhancement, then K-Means (KM), Fuzzy C-Means (FCM) and Expectation Maximization (EM) clustering are used to separate vessel pixels from background and artery pixels from vein pixels when possible. A post processing step of removing false-alarm components is applied before constructing a three-dimensional volume of the vessels. The proposed method was tested on six datasets along with a medical assessment of an expert. Obtained results showed encouraging segmentations.

Keywords: Brain arteriovenous malformation (BAVM), 3-D rotational angiography (3DRA), K-Means (KM) clustering, Fuzzy CMeans (FCM) clustering, Expectation Maximization (EM) clustering, volume rendering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
125 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study

Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple

Abstract:

There is a dramatic surge in the adoption of Machine Learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. Artificial Intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and two defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt ML techniques without rigorous testing, since they may be vulnerable to adversarial attacks, especially in security-critical areas such as the nuclear industry. We observed that while the adopted defence methods can effectively defend against different attacks, none of them could protect against all five adversarial attacks entirely.

Keywords: Resilient Machine Learning, attacks, defences, nuclear industry, crack detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 499
124 Sociodemographic Risk Factors of Cervical Cancer in Imphal, Manipur

Authors: Arundhati Devi Maibam, K. Ingocha Singh

Abstract:

Cervical cancer is preventable if detected early. Determination of risk factors is essential to plan screening programmes to prevent the disease. To study the demographic risk factors of cervical cancer among Manipuri women, information on age, marital status, educational level, monthly family income and socioeconomic status were collected through a pre-tested interview schedule. In this study, 64 incident cases registered at the RT Dept, RIMS (Regional Institute of Medical Sciences), Imphal, Manipur, India during 2008-09 participated. Data were entered in Microsoft Excel and the results were expressed in percentages. Among the 64 patients with cervical cancer, 56 (88.9%) were in the age group of 40+ years. The majority of the patients were from rural areas (68.75%) and 31.25% were from urban areas. The majority of the patients were Hindus (73%), 55(85.9%) were of low educational level, 43(67.2%) were married, and 36 (56.25%) belonged to Class IV socioeconomic status. In conclusion, if detected early, cervical cancer is preventable and curable. The potential risk factors need to be identified and women in the risk group need to be motivated for screening. Affordable screening programmes and health care resources will help in lessening the burden of the disease.

Keywords: Cervical cancer, Manipuri women, RIIMS, Socio-demographic risk factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1137
123 Age, Body Composition, Body Mass Index and Chronic Venous Diseases in Postmenopausal Women

Authors: Grygorii Kostromin, Vladyslav Povoroznyuk

Abstract:

Chronic venous diseases (CVD) are one of the common, though controversial problems in medicine. It is generally accepted that this pathology predominantly occurs in women. The issue of excessive weight as a risk factor for CVD is still considered debatable. To the author's best knowledge, today in Ukraine, there are barely any studies that describe the relationship between CVD and obesity. Our study aims to determine the association between age, body composition, obesity and CVD in postmenopausal women. The study was conducted in D. F. Chebotarev Institute of Gerontology, National Academy of Medical Sciences of Ukraine. We have examined 96 postmenopausal women aged 46-85 years (mean age – 66.19 ± 0.96 years), who were divided into two groups depending on the presence of CVD. The women were examined by vascular surgeons. For the diagnosis of CVD, we used clinical, anatomic and pathophysiologic classifications. We also performed clinical, ultrasound and densitometry examinations. We found that the CVD frequency in postmenopausal women increased with age (from 72% in those aged 45-59 years to 84% in those aged 75-89 years). A significant correlation between the total fat mass and age was determined in postmenopausal women with CVD. We also observed a significant correlation between the lower extremities’ fat mass and age in both examined groups. A significant correlation between body mass index and age was determined only in postmenopausal women without CVD.

Keywords: Chronic venous disease, risk factors, age, obesity, postmenopausal women.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 729
122 3-D Reconstruction of Objects Using Digital Fringe Projection: Survey and Experimental Study

Authors: R. Talebi, A. Abdel-Dayem, J. Johnson

Abstract:

Three-dimensional reconstruction of small objects has been one of the most challenging problems over the last decade. Computer graphics researchers and photography professionals have been working on improving 3D reconstruction algorithms to fit the high demands of various real life applications. Medical sciences, animation industry, virtual reality, pattern recognition, tourism industry, and reverse engineering are common fields where 3D reconstruction of objects plays a vital role. Both lack of accuracy and high computational cost are the major challenges facing successful 3D reconstruction. Fringe projection has emerged as a promising 3D reconstruction direction that combines low computational cost to both high precision and high resolution. It employs digital projection, structured light systems and phase analysis on fringed pictures. Research studies have shown that the system has acceptable performance, and moreover it is insensitive to ambient light. This paper presents an overview of fringe projection approaches. It also presents an experimental study and implementation of a simple fringe projection system. We tested our system using two objects with different materials and levels of details. Experimental results have shown that, while our system is simple, it produces acceptable results.

Keywords: Digital fringe projection, 3D reconstruction, phase unwrapping, phase shifting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5219
121 Hybrid Structure Learning Approach for Assessing the Phosphate Laundries Impact

Authors: Emna Benmohamed, Hela Ltifi, Mounir Ben Ayed

Abstract:

Bayesian Network (BN) is one of the most efficient classification methods. It is widely used in several fields (i.e., medical diagnostics, risk analysis, bioinformatics research). The BN is defined as a probabilistic graphical model that represents a formalism for reasoning under uncertainty. This classification method has a high-performance rate in the extraction of new knowledge from data. The construction of this model consists of two phases for structure learning and parameter learning. For solving this problem, the K2 algorithm is one of the representative data-driven algorithms, which is based on score and search approach. In addition, the integration of the expert's knowledge in the structure learning process allows the obtainment of the highest accuracy. In this paper, we propose a hybrid approach combining the improvement of the K2 algorithm called K2 algorithm for Parents and Children search (K2PC) and the expert-driven method for learning the structure of BN. The evaluation of the experimental results, using the well-known benchmarks, proves that our K2PC algorithm has better performance in terms of correct structure detection. The real application of our model shows its efficiency in the analysis of the phosphate laundry effluents' impact on the watershed in the Gafsa area (southwestern Tunisia).

Keywords: Classification, Bayesian network; structure learning, K2 algorithm, expert knowledge, surface water analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 510
120 Blood Glucose Level Measurement from Breath Analysis

Authors: Tayyab Hassan, Talha Rehman, Qasim Abdul Aziz, Ahmad Salman

Abstract:

The constant monitoring of blood glucose level is necessary for maintaining health of patients and to alert medical specialists to take preemptive measures before the onset of any complication as a result of diabetes. The current clinical monitoring of blood glucose uses invasive methods repeatedly which are uncomfortable and may result in infections in diabetic patients. Several attempts have been made to develop non-invasive techniques for blood glucose measurement. In this regard, the existing methods are not reliable and are less accurate. Other approaches claiming high accuracy have not been tested on extended dataset, and thus, results are not statistically significant. It is a well-known fact that acetone concentration in breath has a direct relation with blood glucose level. In this paper, we have developed the first of its kind, reliable and high accuracy breath analyzer for non-invasive blood glucose measurement. The acetone concentration in breath was measured using MQ 138 sensor in the samples collected from local hospitals in Pakistan involving one hundred patients. The blood glucose levels of these patients are determined using conventional invasive clinical method. We propose a linear regression classifier that is trained to map breath acetone level to the collected blood glucose level achieving high accuracy.

Keywords: Blood glucose level, breath acetone concentration, diabetes, linear regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
119 Automatic Segmentation of Lung Areas in Magnetic Resonance Images

Authors: Alireza Osareh, Bita Shadgar

Abstract:

Segmenting the lungs in medical images is a challenging and important task for many applications. In particular, automatic segmentation of lung cavities from multiple magnetic resonance (MR) images is very useful for oncological applications such as radiotherapy treatment planning. However, distinguishing of the lung areas is not trivial due to largely changing lung shapes, low contrast and poorly defined boundaries. In this paper, we address lung segmentation problem from pulmonary magnetic resonance images and propose an automated method based on a robust regionaided geometric snake with a modified diffused region force into the standard geometric model definition. The extra region force gives the snake a global complementary view of the lung boundary information within the image which along with the local gradient flow, helps detect fuzzy boundaries. The proposed method has been successful in segmenting the lungs in every slice of 30 magnetic resonance images with 80 consecutive slices in each image. We present results by comparing our automatic method to manually segmented lung cavities provided by an expert radiologist and with those of previous works, showing encouraging results and high robustness of our approach.

Keywords: Active contours, breast cancer, fuzzy c-means segmentation, treatment planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056
118 Antimicrobial, Antioxidant and Free Radical Scavenging Activities of Essential Oils Extracted from Six Eucalyptus Species

Authors: Sanaa K. Bardaweel, Mohammad M. Hudaib, Khaled A. Tawaha, Rasha M. Bashatwah

Abstract:

Eucalyptus species are well reputed for their traditional use in Asia as well as in other parts of the world; therefore, the present study was designed to investigate the antimicrobial and antioxidant activities associated with essential oils from different Eucalyptus species. Essential oils from the leaves of six Eucalyptus species, including: Eucalyptus woodwardi, Eucalyptus stricklandii, Eucalyptus salubris, Eucalyptus sargentii, Eucalyptus torquata and Eucalyptus wandoo were separated by hydrodistillation and dried over anhydrous sodium sulphate. DPPH, ferric reducing antioxidant power, and hydroxyl radical scavenging activity assays were carried out to evaluate the antioxidant potential of the oils. The results indicate that examined oils exhibit substantial antioxidant activities relative to ascorbic acid. Previously, these oils were evaluated for their antimicrobial activities, against wide range of bacterial and fungal strains, and they were shown to possess significant antimicrobial activities. In this study, further investigation into the growth kinetics of oil-treated microbial cultures was conducted. The results clearly demonstrate that the microbial growth was markedly inhibited when treated with sub-MIC concentrations of the oils. Taken together, the results obtained indicate a high potential of the examined essential oils as bioactive oils, for nutraceutical and medical applications, possessing significant antioxidant and anti microbial activities.

Keywords: Antimicrobial, antioxidants, essential (volatile) oil, Eucalyptus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2300
117 Vietnamese Indigenous Healing’s Implication for Vietnamese Women Counseling in Korea

Authors: Youngsub Oh, Youngsoon Kim

Abstract:

As the second largest group among international marriages in Korea, Vietnamese married immigrant women have been exposed to psychological crisis like divorce and family violence. The purpose of this study is to understand how to counsel those women from the perspective of indigenous healing as their own psychological problem-solving way. To this end, this study reviewed Vietnamese cultural literatures on their mentality as well as Vietnamese medical literatures on indigenous healing. The research results are as follows: First, cultural foundations that have formed Vietnamese mentality are Confucian value system, reserved communication, and religious pluralism. These cultural backgrounds play an important role in understanding their own therapeutic tradition. Second, Vietnamese indigenous healing considers cause of mental disease as a collapse of balance between mind and body and environment. Thus, indigenous treatment deals with psychological problems through a recovery of the balance from the holistic perspective. In fact, indigenous healing has been actively practiced in everyday place as well as hospital until today. The implications of Vietnamese indigenous healing for multicultural counseling in Korea are as follows: First, Korean counselors need to interactively understand their own assumptions on indigenous healing as well as counselees’ own assumptions. Second, a variety of psychological intervention strategies can be drawn from Vietnamese indigenous healing. Third, indigenous healing needs to be integrated with modern techniques of counseling and psychotherapy, as both treatments are not mutually exclusive but complementary.

Keywords: Indigenous healing, Vietnamese married immigrant women in Korea, multicultural counseling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1147
116 Building a Performance Outline for Health Care Workers at Teaching Hospitals, Nigeria: The Role of Different Leadership Styles

Authors: Osuagwu Justine Ugochukwu, Sazali Abd Wahab, Sunday Sunday Akpan

Abstract:

Investigating the effects of transformational and transactional leadership styles on the performance of healthcare employees at the University Teaching Hospital (UNTH) in Enugu, Nigeria, was the goal of the research. The respondents were asked to fill out a structured questionnaire. The respondents were chosen using a straightforward random sampling technique and consisted of 370 health workers at the hospital. The result of the analysis revealed that transactional and transformational leadership style has a positive while ambidextrous leadership has a negative effect on healthcare workers' performance in UNTH, Enugu. Therefore, the management of public hospitals that have the capacity to change their top management approach to leadership styles will gain substantial support from their employees’ thereby increasing organizational commitment and performance among health workers. This will have remarkable social implications, one of which is a change in the work culture and attitude of medical personnel from the seemingly anti-community of patients to friendly engagement and treatment of patients leading to a harmonious coexistence among these individuals in society. Investigating ambidextrous leadership and the use of nonparametric analysis is unique and has brought knowledge to leadership literature.

Keywords: Workers’ performance, transformational leadership, transactional leadership, governance quality, ambidextrous leadership.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 70
115 Characterization Study of Aluminium 6061 Hybrid Composite

Authors: U. Achutha Kini, S. S. Sharma, K. Jagannath, P. R. Prabhu, Gowri Shankar M. C.

Abstract:

Aluminium matrix composites with alumina reinforcements give superior mechanical & physical properties. Their applications in several fields like automobile, aerospace, defense, sports, electronics, bio-medical and other industrial purposes are becoming essential for the last several decades. In the present work, fabrication of hybrid composite was done by Stir casting technique using Al 6061 as a matrix with alumina and silicon carbide (SiC) as reinforcement materials. The weight percentage of alumina is varied from 2 to 4% and the silicon carbide weight percentage is maintained constant at 2%. Hardness and wear tests are performed in the as cast and heat treated conditions. Age hardening treatment was performed on the specimen with solutionizing at 550°C, aging at two temperatures (150 and 200°C) for different time durations. Hardness distribution curves are drawn and peak hardness values are recorded. Hardness increase was very sensitive with respect to the decrease in aging temperature. There was an improvement in wear resistance of the peak aged material when aged at lower temperature. Also increase in weight percent of alumina, increases wear resistance at lower temperature but opposite behavior was seen when aged at higher temperature.

Keywords: Hybrid composite, hardness test, wear test, heat treatment, pin on disc wear testing machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2933
114 Design and Fabrication of a Programmable Stiffness-Sensitive Gripper for Object Handling

Authors: Mehdi Modabberifar, Sanaz Jabary, Mojtaba Ghodsi

Abstract:

Stiffness sensing is an important issue in medical diagnostic, robotics surgery, safe handling, and safe grasping of objects in production lines. Detecting and obtaining the characteristics in dwelling lumps embedded in a soft tissue and safe removing and handling of detected lumps is needed in surgery. Also in industry, grasping and handling an object without damaging in a place where it is not possible to access a human operator is very important. In this paper, a method for object handling is presented. It is based on the use of an intelligent gripper to detect the object stiffness and then setting a programmable force for grasping the object to move it. The main components of this system includes sensors (sensors for measuring force and displacement), electrical (electrical and electronic circuits, tactile data processing and force control system), mechanical (gripper mechanism and driving system for the gripper) and the display unit. The system uses a rotary potentiometer for measuring gripper displacement. A microcontroller using the feedback received by the load cell, mounted on the finger of the gripper, calculates the amount of stiffness, and then commands the gripper motor to apply a certain force on the object. Results of Experiments on some samples with different stiffness show that the gripper works successfully. The gripper can be used in haptic interfaces or robotic systems used for object handling.

Keywords: Gripper, haptic, stiffness, robotic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1153