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Abstract—There is a dramatic surge in the adoption of Machine
Learning (ML) techniques in many areas, including the nuclear
industry (such as fault diagnosis and fuel management in nuclear
power plants), autonomous systems (including self-driving vehicles),
space systems (space debris recovery, for example), medical surgery,
network intrusion detection, malware detection, to name a few.
Artificial Intelligence (AI) has become a part of everyday modern
human life. To date, the predominant focus has been developing
underpinning ML algorithms that can improve accuracy, while factors
such as resiliency and robustness of algorithms have been largely
overlooked. If an adversarial attack is able to compromise the learning
method or data, the consequences can be fatal, especially but not
exclusively in safety-critical applications. In this paper, we present
an in-depth analysis of five adversarial attacks and two defence
methods on a crack detection ML model. Our analysis shows that
it can be dangerous to adopt ML techniques without rigorous testing,
since they may be vulnerable to adversarial attacks, especially in
security-critical areas such as the nuclear industry. We observed
that while the adopted defence methods can effectively defend
against different attacks, none of them could protect against all five
adversarial attacks entirely.

Keywords—Resilient Machine Learning, attacks, defences, nuclear
industry, crack detection.

I. INTRODUCTION

THE nuclear industry consists of complex infrastructures

and processes. Since the beginning, the industry has been

regulated by its comprehensive security and safety policies.

The stringent security policies highlight the extreme and

challenging environment of the industry and the reason behind

the slow adaptation to new technological advancements.

For example, nuclear facilities still use analogue systems

that were first built in the 1950s [1]. However, in the

meantime the other sectors have had major developments

such that the potential benefits can no longer be avoided.

For example, with the progress of AI and ML techniques,

several tedious and time-consuming jobs can be handed

over to intelligent machines from human operators including

smart record-keeping, video surveillance, data processing,

and automation. However, the consequences of attacks (e.g.,

targeted or indirect) in the industry can be fatal and can result

in the loss of human lives and also finance. Although the

diverse adversarial attacks on ML models may be unavoidable,

however, with the adoption of resilient-by-design principle

while building any system can defend from such attacks.

The nuclear industry comprises of different structures

including, nuclear power plants, reactors, fuel facilities,
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uranium enrichment plants, spent fuel storage facilities, and

power grid. With such multifaceted structures, the attack

surface can also be diverse. This can provide opportunities

to attackers to exploit vulnerabilities and weaknesses. For

example, if the physical security is disabled, commando-like

ground-based attacks on equipment could lead to a reactor

core meltdown or widespread dispersal of radioactivity, and

external attacks such as crash into a reactor, or cyber-attacks

[2].
We analysed different methods proposed over the years

to generate adversarial attacks and defence mechanisms

against those attacks. As an exemplar, we focus on crack

detection on concrete walls. In general, an inspection of

any structure involves a visual examination by an inspector

if the structure is accessible and small scale. However, for

the large and sensitive infrastructures like nuclear facilities,

automatic video inspection of the structure can help monitor

the walls continuously. For this, a mechanical robot carries

out a video recording of the structure, and after the video

shooting, a human inspector will investigate the damages or

anomalies by rigorous inspection of the captured video [3].

This process can be tediously filled with human errors because

of monotonous and lengthy work patterns. It is reported that

about 60% of major failures in the Nuclear Power Plant

(NPP) are caused by human errors [4]. There has been an

effort on eliminating human errors by focusing on automation

in the industry. With the help of ML techniques, such

tedious works can be automated and efficiently performed.

However, the industry’s strict policy and regulation have led

to slow progress in maturing security requirements governing

automated operations in these environments.
Since nuclear facilities are security and safety prone due to

the involvement of high-risk factors like nuclear bombs and

nuclear weapons. Thorough checks and rigorous evaluation of

any automation systems should be carried out before entirely

relying on them.
By analysing several adversarial and defensive ML

techniques, our contributions are following:

• We conduct a comprehensive study of Resilient Machine

Learning (rML) in the nuclear industry with a case study

of detecting cracks on the concrete walls.

• We compare different ML techniques to generate

adversarial examples for detecting cracks on the concrete

walls.

• We analysed various defensive strategies to make the

learning methods resilient against the adversarial attacks.

The paper is structured as follows. We present related work

on detecting cracks on the walls and Adversarial Machine
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Learning (aML) in crack detection models in Section II. In

Section III, we present an overview of aML which comprises

a threat model in machine learning and different types of

adversarial attacks and finally methods to generate and assess

adversarial examples. Section III-B describes how to defence

the adversarial attacks. We present the utilised dataset in

Section IV-A and experimental results in Section IV-C. Finally,

we discuss the results and conclude the work in Section V.

II. DETECTING CRACKS ON THE WALLS

There have been many works on adversarial attacks and

defences on the ML models. However, the research on

investigating aML in the nuclear industry is still in the infancy

stage. The progression of application of ML methods have

moved towards security sensitive areas, including autonomous

driving, nuclear facilities and medical procedures where

human lives can be at stake if something goes wrong.

Therefore, the initiatives of research towards resilient ML have

also been slowly emerging in such areas.

Even though there is a lack of research on injecting

adversaries for crack detection on the walls of nuclear

facilities, several works that have studied ML methods

for crack detection for roads, building and also applying

adversaries on them. Cracks in any infrastructure are

dangerous, and in nuclear power plants, they can be

catastrophic due to the involvement of hazardous elements

like uranium and plutonium. If cracks are not spotted early,

the consequences can be expensive. For instance, in 1996,

a leaking valve caused an accident in the Millstone Nuclear

Power Station in Waterford, CT, USA, which cost $254 million

[5]. In 2008 Fukushima province, Japan, A 7.2 magnitude

earthquake cracked reactor cooling towers and spent fuel

storage facilities, spilling 19 litres of radioactive wastewater,

and damaging the Tokyo Electric Power Company’s No.

2 Kurihara Power Plant, which was worth $45 million

damages. Likewise, in 2010, leaked radioactive tritium from

deteriorating underground pipes cost $700 million at the

Vermont Yankee Nuclear Power Plant in Vernon, VT, USA [5].

Therefore, regular inspections of components of the nuclear

facilities are needed to ensure the safety and securities of

the operations. However, due to the complex infrastructure of

nuclear power plants, a direct inspection of every corner of

the facilities is not feasible. A failure to detect cracks well in

advance is one of the major causes of accidents [6].

Due to the lack of autonomous inspection, existing systems

rely on human inspectors to detect cracks on the walls of

nuclear facilities. However, the environment is hazardous and

a direct inspection is not feasible and most NPP depend on

remote video recordings. A typical system includes a robotic

arm that manoeuvres a camera to record videos, followed by

human operators inspecting these recordings to detect cracks

[7]. This human-involved task is subjective, time-consuming,

and tedious and sometimes error-prone [3]. Chen et al. [3]

developed a ML technique to detect crack patches in each

frame of the recorded video by combining naive Bayes and

neural network based approach. Fig. 1 shows the schematic of

their crack detection ML model.

Detecting cracks on the NPP’s walls is a challenging

task as these cracks can be small, or noisy patterns exist

on the components’ surfaces [8]. Any false positives can

be catastrophic and it is estimated that 60% of nuclear

facilities accidents were caused by human errors [4]. In

recent years, research on applying ML techniques to inspect

and detect cracks has been on a rising trend. Some works

utilised conventional heuristic ML based methods for crack

detection [9], [10]. While others have focused on deep

learning-based methods [11]–[17]. The studies of detecting

cracks are extended from concrete surface [13], [14], [17], [18]

to metallic surface on NPP [3], [8] and road surfaces [12].

While the works on detecting cracks autonomously without

interference from the human operator are progressing rapidly,

the concern over safety and security over automation is also

growing exponentially. As the infrastructures containing such

cracks are vulnerable ones, the wrong diagnosis can have

severely damaging consequences. It has been established that

detecting damages, cracks on the surface of nuclear facilities

is a crucial task. Any failure on such tasks can be expensive,

economically and can also be risk to human lives. As shown

in Fig. 2, when an adversary attacks the ML based systems

that detect cracks on the wall of the NPP, the output could

be compromised. For example, when there are cracks on the

wall and the corrupted model can output a ’no cracks’ label.

Then the NPP will be carried out its work as normal and the

consequence can be fatal. However, if there are not any cracks

on the wall and the output result from the compromised model

is ’cracks’ then the NPP could be shut down and this can lead

to economic loss.

The surge of application of ML techniques and

implementation of autonomous behaviour on the nuclear

facilities is increasing to achieve effective operations. The

study of adversarial attacks on such learning techniques is

needed because of the nature of the nuclear industry. The

industry being security-sensitive and comprised of highly

complex infrastructure, various types of adversarial attacks

on the ML models need to be studied thoroughly before

completely relying on that computational intelligence. It

is equally imperative to find a defensive strategy on those

adversarial attacks as well. Therefore, we investigate some of

the current state-of-the-art attacks, and defensive mechanisms

against those attacks are analysed, focusing on a case study

of crack detection on the concrete surface.

III. METHODOLOGY

This section presents the methodology for attacking and

defending against such attacks on a crack detection ML model

following different methods in aML and rML that are adopted

for our case study.

A. Adversarial Machine Learning (aML) Techniques

The adoption of ML techniques is widespread and in diverse

areas including computer vision, speech recognition, natural

language understanding. While the adoption of applying the

ML technique has risen exponentially, the concerns over the

security and safety of the applications where they have been
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Fig. 1 ML-based crack detection model in the nuclear power plant [3]

Fig. 2 ML attack surface on a crack detection model: Depending on the probability of detecting cracks, the action of shutting down of nuclear facility’s
infrastructure (e.g., NPP). This example is influenced by [19]

applied have also risen in the community. Since Szegedy et al.

[20] showed that the deep neural networks could be tricked,

the attention towards the aML has increased. This has led to

the awareness of the security in ML techniques. For instance,

different types of adversarial attack strategies exists affecting

both data and model architecture to study their vulnerabilities.

White-box attacks and black-box attacks are two types

of adversarial attacks that are widely studied. In white-box

attacks, the adversary has full knowledge about the model and

the data. This includes information about all the parameters

such as features, model type, model architecture, values of

all parameters, and trainable weights. On the other hand, the

attackers do not have knowledge relating to models and data,

except the input and output in black-box attacks.

Papernot et al. [21] explored black box attacks by training

a deep neural network by crafting human imperceptible

inputs. Biggio et al. [22] studied security on Support Vector

Machine (SVM) learning methods by aiming to maximise

the classification error from SVM by injecting well-crafted,

adversarial label noise attacks . They flip the labels in the

training data. Most of the adversaries in the classification tasks

are providing wrong output, flipping the labels. [23], [24]

presented that the cross-model transferability of adversarial

data points between Deep neural networks (DNN)s. This

implies launching an efficient attack through the use of

surrogate models even though their training or neural network

architectures are different.

The vulnerability of neural networks to adversarial

examples were initially studied by [20]. According to

Szegedy et al. [20], imperceptible adversarial perturbations are

introduced to data to mislead ML classifiers. They influenced

their work based on the well-known Limited Memory

Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS) to

solve the optimisation problem by detecting the smallest

possible adversarial perturbation. The problem can be

formalised as in (1):

argmin
x′

f(x+ x′) = l subject to (x+ x′) ∈ D, (1)

where x is the input example, which is correctly classified

by f , is perturbed with x′ to obtain the resulting adversarial

example x∗ = x + x′ . The perturbed sample remains in the

input domain D, however, it is assigned the target label l.
Following this optimisation based method, several methods

were developed to generate adversarial attacks in the ML

models. We now briefly discuss some notable aML methods

that we have investigated to inject adversaries in our use case

in the following section.

• Fast Gradient Simple Method (FGSM): Goodfellow

et al. [23] introduced the FGSM method to test the idea
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that adversarial examples can be found using only a linear

approximation of the target model. The loss function is

linearised in the infinity norm L∞ neighbourhood of an

input object and finds the exact maximum of linearised

function for generating adversarial samples, for which the

following closed-form Equation (2) is used.

X∗ = X + ε ∗ sign(∇xJ(X, y)) (2)

where ε is the magnitude of the perturbation.

• Basic Iterative Method (BIM): This is an extension

of the FGSM method, proposed by Kurakin et al. [25].

It is proposed to improve the performance of FGSM

by running a small step size iterative optimiser multiple

times, and clipping the intermediate adversarial samples

after each step ensuring to be in the range of an original

input. The formulation in the ith iteration becomes:

X ′
t+1 = Clip(X ′

t + α · sign(∇xJ(θ, x′
t, y))) (3)

where α is the constant for controlling the magnitude

of the perturbation, and clip function keeps the generated

adversarial examples within the range of an original input.

• Projected Gradient Descent (PGD): Madry et al. [26]

proposed the Projected Gradient Descent (PGD) attack

where they have explored the loss function by restarting

the attack at different points with the vector norm of

infinity L∞ around the input examples. It is similar to

BIM but with the loss function.

• Carlini-Wagner Attack: Carlini et al. [27] proposed

adversarial examples generating algorithm which made

the perturbation quasi-imperceptible by restricting their

vector norms (l2, l∞, l0). Their investigation focused on

minimising the loss function that has smaller values on

adversarial examples and higher on clean examples. With

the exploration of several varieties of loss functions,

they achieved the strongest L2 norm attack, which is

formulated as:

min
δ

D(x, x+δ)+c·f(x+δ) subject to x+δε[0, 1] (4)

where δ denotes the adversarial perturbation, the distance

metric with a vector norm states a success function f ,

that is, f(x+ δ) ≤ 0 if the neural network prediction is

the attack target and minimise the sum with a trade-off

constant ‘c’. The constant ‘c’ is chosen by modified

binary search [28]. It has shown that the Carlini-Wagner

(C&W) attack to be powerful but is expensive in terms

of computation.

• DeepFool: Moosavi-Dezfooli et al. [29] proposed

DeepFool to generate adversaries on the ML model.

This method is designed to apply in the non-targeted

case where the attacker can only ensure that the model

classifies the adversarial example in a class different from

the original ones. DeepFool is inspired by the fact that

the separating hyperplanes in linear classifiers indicate

the decision boundaries of each class; it aims to find the

least distortion (in terms of euclidean distance) leading to

misclassification by projecting the input example to the

closest separating hyperplane.

• Others: There are other adversarial attacks that exist

including Jacobian-based Saliency Map Attack (JSMA),

Gaussian noise. For more details, we point the readers to

the latest survey papers [30]–[32].

B. Resilient Machine Learning Techniques (rML)

The widespread continuous exploration and adoption of ML

techniques have shown the importance of machine intelligence

in human lives. However, with the rise of comfort using the

technology, the concern of attacks on them also increases,

such as cyber-attacks. As mentioned earlier, even with a small

amount of perturbation in one of the advanced ML techniques,

DNN, the algorithm is easily fooled. To tackle adversarial

attacks, several defence techniques have been proposed. These

include feature squeezing [33], novel model architecture using

regularisation [34], adversarial training [35], the use of JPEG

compression for pre-processing the input [36], [37], and neural

fingerprinting [38]. These methods have exhibited success in

mitigating aML attacks. In this section, we provide a brief

description and discussion of some of the notable works.

• Brute-Force adversarial training: Adversarial training

is a standard brute force approach in which a method

generates adversarial examples and augments these

perturbed data into the training set while training the

targeted model [32]. The augmentation can be performed

by feeding the model with both the original data and

the adversary crafted data [25]. The primary objective

of the adversarial training method is to increase model

robustness by injecting adversarial examples into the

training set [20], [23], [39], [40]. Some of the adversarial

training techniques are FGSM adversarial training [23],

BIM adversarial training, adversarial training ensemble,

Adversarial logit pairing, and Generative Adversarial

Network (GAN) [41].

• GAN-based defence: Lee et al. [42] used a GAN [41]

to train an ML model that is robust against FGSM [23]

like attacks. GAN automatically discovers and learns

the regularities or patterns in the input data in such

a way that the model can be used to generate new

examples that plausibly could have been drawn from the

original dataset [41]. [42] proposed to directly train the

network along with a generator network that attempts

to generate perturbation for that network. During its

training, the classifier keeps trying to classify both the

clean and perturbed data correctly. On the other hand,

Shen et al. [43] used GAN and utilised the generator

part of the network to rectify a perturbation and proposed

Adversarial Perturbation Elimination GAN (APEGAN).

The method eliminates the perturbation of the adversarial

examples first and then feed it into the target model to

increase the robustness.

• Other strategies: There are other defensive methods that

have been proposed over the years, including deepcloak

[44], Magnet [45]. For more information, we refer the

reader to the works [30]–[32].
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IV. EXPERIMENTS

This section discusses our experimental study for adversarial

attacks and defences in the network for detecting cracks on the

concrete walls. Here, we introduce the used dataset for our

experiment followed by the explanation of the proposed ML

model and parameter settings. Then we present and discuss

the results.

A. Dataset

Due to the safety and security policies regulation, nuclear

industry is considered to be a closed industry. Most of the

nuclear-related data are not readily available. Therefore, we

utilised a dataset containing crack images of concrete walls,

pavements, and roads. The dataset comprises of forty thousand

cracked and uncracked images of concrete blocks and is

available online [46]. For our purpose, we separated the dataset

into three sets, training set, validation set and test set. While

80% of 40k total data is used to form the training set, of which

25% is used as the validation set. Finally, 20% of the entire

data is used to evaluate the performance of the methods.

B. Crack Detection Model

We adopted a Convolution Neural Network (CNN) model by

[47] to build a crack detection ML model. The structure of the

model comprises of three convolution layers, the first with 16

filters and the subsequent other two containing 32 layers. Max

pooling and dropout layers are added to all three layers. The

model then has a flatten layer followed by a fully connected

64 nodes layers. The output layer follows the flattened layer.

In addition, rectified linear unit (ReLu) and sigmoid functions

are used as activation functions. ReLu was chosen for all the

layers except the output layer where the sigmoid function was

used.

C. Experimental Results

We analysed various methods for the adversarial attack on

a ML model and how to defend those attacks by following

various defence strategies. Once the ML model is created

as mentioned in Section IV-B, we chose five adversarial

attack generating techniques to perturb our crack detecting

model, they are i) FGSM, ii) PGD, iii) BIM, iv) DeepFool

v) Carlini-Wagner. In terms of making ML methods resilient

against such attacks, we have chosen to investigate two

defence mechanisms; they are: i) Adversarial training, and

APEGAN. They are presented in Table I. For the experiment,

we used 0.1 epsilon value to add noise in the model. Table I

shows the accuracy results obtained from adversarial methods

and also defensive methods.

The CNN model generated 98.99% of accurate result on

detecting cracks on the concrete block. When adversarial

attacks are inserted on the CNN model, the classifying

accuracy of the model is reduced nearly by half. The most

successful attack was generated by the DeepFool method

which resulted in less than 20% of accurate classification

by the crack detection model whereas the least successful

attack are BIM and C&W which allowed more than 51%

TABLE I Mean Accuracy of the CNN Model for Different Adversarial
Methods

Accuracy (%)
Attack Method Defensive Method

Adv. Training APEGAN
FGSM 50.55 93.5 93.8

PGD 43.1 90.55 86.05
CW 51.85 98.31 93.05

DeepFool 17.9 48.75 44.7
BIM 51.9 94.26 94.65

The base accuracy is 98.99%.

accurate classification. We believe the success of deepfool lies

in the way it perturbs the object. It works on only needed

minimal perturbation to fool the model, for which it efficiently

approximates the decision space of the target classifier to

identify such perturbation.

In terms of defensive mechanisms, both adversarial training

and APEGAN methods managed to boost the resiliency

of the system towards adversarial attacks which is evident

with increment of the accuracy from 17.9% (– DeepFool

attack) to 48.75% (–Adversarial training defence) and 44.70%
(APEGAN defence) respectively. For other attacks, such as

C&W, the accuracy of adversarial training has increased from

51.85% to 98.31% which shows promising result. More details

on the other attacks and their subsequent defences are provided

in Table I. While the result of adversarial training is slightly

better than APEGAN overall, the defensive methods could not

protect the model entirely.

V. DISCUSSION AND CONCLUSION

ML has been widely used in many complex applications

including security risks such as autonomous driving, remote

inspections in nuclear power plants. While they are widely

used they are equally in danger of getting fooled as well.

Therefore, there is an increasing interest in the research

community to study the adversarial attacks and their ability

to impact the ML models which can corrupt the decision

processes. At the same time, protecting the models against

such attacks has also been studying widely. In this paper, we

study various adversarial attacks and analysed different attacks

generating methods. We also investigate defensive mechanisms

to protect the model against such attacks. We focus on five

attacks and two defences. As an exemplar, we selected a

safety-critical task in the nuclear industry of detecting cracks

on the concrete walls. However, the methods presented in this

work are equally applicable to other ML based systems for

classification tasks.

We observed that there are several strong adversarial

attacking methods proposed in the literature. Some attacks

facilitate an adversary to query a trained ML model to

predict whether or not a particular example was contained in

the model’s training dataset. Whereas some can corrupt the

ML decision process by simply guessing the parameters and

features based on the input and output data.

On the other hand, it is shown that none of the defensive

methods can protect the ML model entirely. Although we

only analysed two defensive strategies we noticed that both
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adversarial training and APEGAN were able to defend against

all five attacking methods.

In the future, we plan to extend the list of defensive

methods and investigate novel defensive methods to protect

the ML model entirely. We will also expand the use case from

detecting cracks on concrete to metal, and bricks.
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