
Manual to Automated Testing: An Effort-Based
Approach for Determining the Priority of Software

Test Automation
Peter Sabev, Katalina Grigorova

Abstract—Test automation allows performing difficult and time
consuming manual software testing tasks efficiently, quickly and
repeatedly. However, development and maintenance of automated
tests is expensive, so it needs a proper prioritization what to automate
first. This paper describes a simple yet efficient approach for such
prioritization of test cases based on the effort needed for both manual
execution and software test automation. The suggested approach is
very flexible because it allows working with a variety of assessment
methods, and adding or removing new candidates at any time. The
theoretical ideas presented in this article have been successfully
applied in real world situations in several software companies by the
authors and their colleagues including testing of real estate websites,
cryptographic and authentication solutions, OSGi-based middleware
framework that has been applied in various systems for smart homes,
connected cars, production plants, sensors, home appliances, car head
units and engine control units (ECU), vending machines, medical
devices, industry equipment and other devices that either contain or
are connected to an embedded service gateway.

Keywords—Automated Testing, Manual Testing, Test Automation,
Software testing, Test Prioritization.

I. INTRODUCTION

TEST automation can provide a tremendous boost to most
teams and organizations in regard of driving testing cycle

times down and test coverage up. Furthermore, automated
tests produce much faster results, perform precisely the same
operations each time they run (thereby eliminating human
error), and it is easy to test how the software reacts under
repeated execution of the same operations.

However, one has neither the infinite resources, nor the time
to automate everything. If one tries to “automate everything”,
and picks a set of “low-hanging fruit” automation candidates
just to initiate the automatic testing, one will gain a false
sense of security that the tool will take care of all the
details surrounding automation or will dive into automation
development without a clear strategy which test cases to
automate, and therefore the automation can easily turn into
disaster [8].

Reality shows that automating everything is rarely possible.
A research from 2002 found that on average 60% of the
overall project tests are automated [6]. However, software has
become much more complex in recent years, and this has a
negative effect on the automated tests percentage. Industry
surveys from 2010 indicated that 75% of all functional testing

Peter Sabev and Prof. Katalina Grigorova are with the Department of
Informatics and Information Technologies, Faculty of Natural Sciences and
Education, “Angel Kanchev” University of Ruse (e-mail: psabev@gmail.com,
kgrigorova@uni-ruse.bg).

is still performed manually [3]. But even if it was possible
to automate 100% of the tests, this would not happen at
once. Development and maintenance of automated tests is 3
to 15 times more expensive compared to manual tests [6],
so organizations and teams who want to take advantage of
what automation has to offer, need to be cost-effective and
time-efficient. Thus, they would need proper prioritization
which test cases to automate first.

II. SCOPE

A number of different approaches have been studied to
aid the manual regression testing process. The three major
branches include test suite minimization, test case selection
and test case prioritization. Test suite minimization is a process
that seeks to identify and then eliminate the obsolete or
redundant test cases from the test suite. Test case selection
deals with the problem of selecting a subset of test cases that
will be used to test the changed parts of the software. Finally,
test case prioritization concerns the identification of the "ideal"
ordering of test cases that maximizes desirable properties [4].
This paper focuses entirely on the test case prioritization for
minimizing the manual test effort while quickly achieving
a good level of automation, respecting business priorities,
cost-effectiveness and early fault detection.

Before considering the prioritization itself, one should know
that there are tests which can be executed either manually or
automatically. For example, load testing often requires creating
heavy user workloads. Even if it was possible to arrange
for hundreds of manual testers to test simultaneously, this
would have been surely impractical and not cost-effective.
Load and performance tests need to be automated as there
is no viable manual alternative [7]. Another example when
manual execution is impossible is using specific API or
other “hidden” properties of the software, which are not
available to the end user. On the other hand, there are tests
that non-human testing could easily miss. Manual testing
may be the only option when specific project features must
be validated subjectively by humans such as usability, user
experience or look-and-feel, as well as tests with unpredictable
(for a machine) results. Creating automated scripts may be a
waste of time for new application functions that are still in
development; and which are evolving or changing frequently
[3]. There are many other factors that could leave one without
the option to choose between manual and automated test cases.
The list begins with human resources and hardware costs,

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:9, No:12, 2015 

2497International Scholarly and Scientific Research & Innovation 9(12) 2015 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

12
, 2

01
5 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
03

25
0.

pd
f



Fig. 1 Prioritization of manual test case candidates suitable for automation

preliminary setup of the test environment, dependency between
the test cases, company processes and standards, project
schedules, continuous integration and delivery restrictions, law
and standard restrictions, etc. However, in the vast majority of
projects there will be a set of manual tests that are possible
candidates for test automation. These could be executed by
both human and automation agents with equal or at least
comparable effectiveness. The approach proposed in this paper
focuses exactly on those candidates and on the way to
prioritize them in order to build effective test automation with
good return of investment (ROI).

III. APPROACH OVERVIEW

Fig. 1 illustrates the main idea of the approach. It represents
a Cartesian coordinate system where the vertical axis shows
the manual testing effort and the horizontal axis shows
the effort to automate the test. All test case candidates
should be assessed and put as points in that coordinate
system. As the figure shows, prioritization starts from the top
left (highest priority) and ends at the bottom right (lowest
priority). In the example, the order of automation should be
B-A-E-C-F-G-H-D-I-J. Note that A and B could be considered
as having the same priority, as they lay on the same diagonal.
This is the same for C and E, and for D and H. If the effort
estimations are correct, this approach will produce maximum
ROI, because it will save lot of manual testing effort by
exercising minimal automation effort. On the other hand, the
approach moreover clearly indicates the not-so-suitable for
automation candidates, such as I and J.

Many test cases have dependencies on other test cases
and common parts that could result automating several test
cases at once with minor changes. These should be taken into
consideration as shown in the real project example later in

this paper. Last but not least, it is also possible to add new
candidates to the coordinate system, and to remove existing
candidates at any time, while keeping the prioritization list
up-to-date. This aspect of the approach could prove to be a
significant benefit for organizations using agile development
processes, where specific requirements can be volatile and
evolving, which will directly influence the test execution.
It can also be applied to heavyweight projects such as
safety-critical systems testing where new test cases are often
added to the scope. In short, each test case i can be assigned
an automation efficiency quotient

ηi =
mi

ai
(1)

where mi is the estimated manual effort for test execution
and ai is the estimated effort for automating the manual test.
The bigger ηi, the better candidate test case i is for automation
which explains the order shown on Fig. 1. The only perplexing
point in this approach is how to estimate the manual and
automation effort required for a specific test case.

IV. GENERIC EFFORT ESTIMATION

Experienced professionals could eventually give their
subjective estimations in a manner similar to the planning
poker described in [2]. Since the automation effort is
in its essence a development work, plenty of widely
known estimation methods could be used, e.g. analogy-based
estimation, parametric models, size-based estimation models,
group estimations, mechanical, or judgmental combination.
It is possible to apply some of these methods to manual
testing effort as well, but the latter can also be assessed
by a measure proposed in [1] called Execution Points (EP),
which reflects the amount of work required to execute tests
manually. Basically, this measure is based on the amount of

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:9, No:12, 2015 

2498International Scholarly and Scientific Research & Innovation 9(12) 2015 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

12
, 2

01
5 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
03

25
0.

pd
f



TABLE I
CONSIDERABLE FACTORS WHEN ASSESSING MANUAL TEST EXECUTION

EFFORT

Factor %

M1. Time needed for single manual test execution 20%
M2. Number of testing cycles and repeated executions per year 15%
M3. Repeating lots of actions to check simple difference on the
final one 15%
M4. Multiple platforms, OS, browsers, etc. 15%
M5. Lots of different inputs 10%
M6. Large data inputs 10%
M7. Monotone repeatable actions that are easy to cause a human
error or omission 5%
M8. Long preliminary setup or cleanup that could be avoided with
automation 5%
M9. Lots of documenting and reporting that could be avoided with
automation 5%

test actions (user actions and observed results) found in a
test specification, and takes into consideration the functional
data, screen navigations, etc., and non-functional (use of
network, etc.) characteristics of the applications and system
environments exercised by the test actions. Whatever the
selected method, assessing the accuracy of estimates is an
important measure, so it is advisable to re-estimate test case
candidates regularly.

In practice, only a relative effort estimation is required
to prioritize test case candidates. Based on considerations in
[1], [3], [5] and [8], as well as on the authors’ experience,
two tables containing important factors for effort estimation
assessment were created, one for manual (Table I), and one
for automated (Table II) testing.

Each table row contains an approximate percentage that
gives basic idea about the impact of the relevant factor on
the total effort for generic testing. However, this should serve
only as an expectation-based and initial reference point, as it
is based entirely on the authors’ practical experience and will
be very individual among different projects.

A. Assessing Manual Test Execution Effort

As Tables I and II show, time required is the most crucial
factor for both manual execution and automation development
(M1 and A1).

When estimating manual effort, one should devote a lot
of attention on how often the test execution will be repeated
(M2); on how many environments (M4); and how specific the
test is (M3). The input data is also a very important factor
in terms of size (M6), quantity and repetitiveness (M2, M3,
M5, M7), especially when the test contains large data sets that
utilize the same workflow but different data has to be input
for each test run (e.g. data-driven and boundary tests with
search, login or form submission). Time for setup, cleanup
(M8), documentation and reporting (M9) could also be saved
by simple automation script (e.g. creating or deleting lots of
data entries or instances, maintaining action log, etc.)

TABLE II
CONSIDERABLE FACTORS WHEN ASSESSING EFFORT FOR AUTOMATING

MANUAL TEST CASES

Factor %

A1. Time needed to implement automated testing 20%
A2. Complexity, including packaging, data and environmental
challenges 15%
A3. Maintenance effort and code changes 15%
A4. Unstable requirements 10%
A5. Unstable application feature 10%
A6. Small code coverage increase 5%
A7. Test results bring little value to business 5%
A8. Unpredictable results when different output data is returned
after each execution 5%
A9. Additional support from the development team 5%
A10. Test data generation or automated recovery needed 5%

B. Assessing Automated Test Execution Effort

With regard to test automation, complexity (A2) and
maintenance costs (A3) play the second most important role in
the estimation (after time needed for automation – A1). Their
significance is complemented by the requirements stability
(A4), i.e. whether the requirements are subject to significant
changes. This can be calculated using requirements stability
index (RSI). According to the Standish Group’s 1995 Chaos
Report, 73% of projects were either canceled or failed to
meet expectations due to insufficient requirements definition
and analysis. A 1997 study by Sequent Computer Systems
reported that 76% of the 500 IT managers surveyed had been
involved with failed projects at some point in their careers, and
most failures were attributed to changing user requirements
[9]. Another important factor is the application stability (A5)
– frequent errors, crashes and failures are indicator of low
stability. Put simply, the fewer changes are made to the
software and the test environment, the less time will be
spent on maintenance and code refactoring. This is further
leveraged by code coverage increase from the relevant test case
(A6). Automating specific software features helps businesses
align their processes effectively with customer expectations
and save time for manual work in other departments as the
production of accurate information about the test results on
time may have dramatic impact on business (A7). There are
also fewer factors that affect business importance – mostly
security, reliability, fast and easy obtaining of the test results
and, if possible, generating the relevant test reports and
documentation automatically.

In the end, one must consider some “tricky” parts of the
automation: whether the test data is already generated or the
automation will need to do that additionally (A10); whether
there are different data outputs (e.g. search on constantly
changing database, approximation algorithms, etc.), and is
it easy to determine whether the output is plausible (A8);
whether additional support from the development team will
be needed (e.g. for setting unique names for controls and
fields) (A9); whether recovery will be needed (A10) after
the automation test (e.g. tests with big data freeze the server
and restart is needed to continue the rest of the testing). All

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:9, No:12, 2015 

2499International Scholarly and Scientific Research & Innovation 9(12) 2015 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

12
, 2

01
5 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
03

25
0.

pd
f



these factors could reflect the positioning of a specific test
case candidate in the coordinate system and that is why good
assessment is very important. If applied properly, the approach
suggested in this paper (referred as M/A Effort Approach from
now on) can improve quality and response times, both the
automation effectiveness and efficiency, and reduce the testing
costs.

TABLE III
TEST CASES FOR ASSESSMENT

No. Description Dep.
T1 All buttons are visible when the app is started -

T2 About button shows screen with current version and
build. T1

T3 Add Identity button is available and can be clicked. T1

T4 Identity name is limited to 100 characters and
displayed correctly. T3

T5 Identity email is limited to 100 characters and
displayed correctly. T3

T6 Identity is inactive until a PIN is set. T3

T7 Cannot enter PIN with less or more than 4 digits
while adding identity. T3

T8 After adding identity, user is able to login. T6

T9 Cannot enter PIN with less or more than 4 digits
while logging in. T8

T10 Can login with the PIN entered from first attempt. T8
T11 Can login with the PIN entered from second attempt. T8
T12 Can login with the PIN entered from last(3rd) attempt. T8

T13 Cannot login with the wrong PIN entered more than
3 times (identity blocked). T8

T14 Can change PIN. T6
T15 After adding 2 or more identities, a list is shown. T3
T16 Screen starts scrolling after registering 5 identities. T3

T17 Identity with invalid email address cannot be added
(50 email addresses). T3

T18 Identity with valid email address can be added
(10 email addresses). T3

T19 Identity with an already existing email address cannot
be added. T3

T20 Active identity is changed on click and shown on top. T15
T21 Added identities can be deleted. T3
T22 Identity remains in the list if the deletion is canceled. T21

V. EMPIRICAL EVALUATION

It is not a common practice among the managers and team
leaders to make prioritization based on manual and automation
test effort. If any test prioritization is done, it is based mainly
on priority of the test cases set by product owners. Many
books about software quality assurance state exactly that
automated tests should tackle the high-priority tasks first [10]
[11] [12]. However, when properly applied, the M/A Effort
Approach may overcome the "high-priority tests automated
first" approach (HPTAF). To prove that, a comparison between
those two approaches needs to be done.

As one of the authors works as software QA manager in a
company developing authentication product, this product was
used for empirical evaluation of the approaches. The product
mainly consists of identity management and login using given
identity with a PIN. Two different teams in the company
developed identical mobile demo applications – one of the
teams developed an Android application and one of the teams
developed an iPhone application.

TABLE IV
TEST CASES ASSESSED WITH MANUAL EXECUTION FACTORS

No. M1 M2 M3 M4 M5 M6 M7 M8 M9
T1 10 15 0 15 0 0 2 0 0
T2 5 5 0 5 0 0 0 1 0
T3 7 15 0 15 1 0 0 1 0
T4 15 5 12 5 5 5 2 3 0
T5 15 5 12 5 5 5 2 3 0
T6 12 10 3 5 2 0 1 2 0
T7 13 10 9 5 6 1 1 2 1
T8 2 15 3 15 2 0 1 3 0
T9 10 10 9 5 6 1 1 5 1
T10 2 15 3 15 2 0 0 5 0
T11 5 10 6 5 4 1 1 5 0
T12 9 10 9 5 6 2 2 5 0
T13 9 10 9 5 7 2 2 5 0
T14 15 10 3 5 4 1 1 4 0
T15 15 10 6 5 6 3 2 2 0
T16 18 5 12 5 9 5 3 2 1
T17 20 10 15 10 10 10 5 2 5
T18 19 15 12 10 8 7 4 2 1
T19 5 10 6 8 2 1 1 2 0
T20 10 10 3 5 1 0 1 4 0
T21 13 10 6 5 3 0 1 5 0
T22 3 5 6 5 1 0 0 4 0

TABLE V
TEST CASES ASSESSED WITH AUTOMATION FACTORS

No. A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
T1 15 5 10 8 5 1 1 0 5 0
T2 3 12 10 5 1 4 5 0 3 0
T3 3 1 5 1 2 3 1 0 0 0
T4 1 5 5 2 3 4 4 1 0 3
T5 1 5 5 3 3 4 4 1 0 3
T6 7 1 5 1 3 3 2 0 0 2
T7 3 1 10 10 5 5 4 1 0 2
T8 20 10 10 1 7 2 1 1 0 0
T9 3 1 10 10 5 5 4 1 0 1
T10 1 5 10 1 7 2 1 1 0 0
T11 1 5 10 1 7 3 2 1 0 0
T12 1 5 10 2 7 4 2 1 0 0
T13 5 10 15 3 7 2 2 1 0 5
T14 3 5 10 2 7 3 3 1 0 1
T15 10 5 5 5 5 2 3 2 0 5
T16 3 5 10 3 10 2 4 3 0 5
T17 1 10 10 3 3 4 4 3 0 5
T18 3 10 10 1 3 4 1 3 0 5
T19 2 10 5 1 3 4 2 1 0 2
T20 5 10 5 3 5 2 3 2 0 1
T21 3 5 5 3 1 3 4 3 0 4
T22 1 1 5 1 1 3 4 2 0 0

To test the mobile demo applications, a suite of 22 test cases
(marked from T1 to T22) was created as shown in Table III. In
the beginning, all of the tests were performed manually by two
QA teams, each consisting of 7 experienced manual testers
and 1 automation test developer. The software development
process was Scrum and the automation framework used was
Calaba.sh.

T1, T3, T8, T10, T18 were given high priority by the
product owner. T2, T4, T5, T16 and T22 were given low
priority. All the rest were given medium priority. High priority
tests had to be executed 3 times a week, medium priority tests
- 2 times a week and low priority tests - 1 time a week.

Each of the test cases was assessed with manual execution

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:9, No:12, 2015 

2500International Scholarly and Scientific Research & Innovation 9(12) 2015 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

12
, 2

01
5 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
03

25
0.

pd
f



factors (Table IV) and automation factors (Table V). Factor
M1 assessment was based on average manual execution during
previous test sessions. Factor M2 was calculated based on the
priority given. Factors M3-M9 and all automation factors were
based on team’s expert knowledge and previous experience
using technique similar to Scrum Planning Poker.

TABLE VI
TEST CASES WITH MANUAL EFFORT (mi), AUTOMATION EFFORT (ai)

AND AUTOMATION EFFICIENCY QUOTIENTS (ηi) CALCULATED

No. mi ai Quotient
T1 42 50 0.840
T2 16 43 0.372
T3 39 16 2.438
T4 52 28 1.857
T5 52 29 1.793
T6 35 24 1.458
T7 48 41 1.171
T8 41 52 0.788
T9 48 40 1.200
T10 42 28 1.500
T11 37 30 1.233
T12 48 32 1.500
T13 49 50 0.980
T14 43 35 1.229
T15 49 42 1.167
T16 60 45 1.333
T17 87 43 2.023
T18 78 40 1.950
T19 35 30 1.167
T20 34 36 0.944
T21 43 31 1.387
T22 24 18 1.333

Based on Tables IV and V, another table with the
automation efficiency quotients was created (Table VI).
Although the approach is based mainly on those quotients,
dependencies between the test cases should also be considered.
This is shown on Fig. 2.

Fig. 2 Test cases with their dependencies and quotients

To compare both approaches, all the time spent on different
projects, bug-fix retesting and meetings was excluded. Each
working day was considered to have 6 productive working
hours for manual testing which results 30 hours per week. All

the time spent on automation by both team was averaged (e.g.
if iOS team has spent 4 hours and the Android team has spent
6 hours in automation of the same test case, 5 hours were
considered for each team in order to have better comparison
of the approaches). The order of the tests’ automation was
preserved.

Table VII shows a week-by-week comparison of the both
approaches in terms of hours spent in manual testing while
showing the order of the test cases automated.

TABLE VII
COMPARISON

Week Approach in this paper HPTAF Approach
Man.(h) Automated tests Man.(h) Automated tests

1 210 Preparation 210 Preparation
2 210 T1 (50%) 210 T1 (55%)
3 196 T1, T3 (65%) 196 T1, T3 (70%)
4 184 T3, T17 (45%) 184 T3, T6 (15%)
5 142 T17, T18 184 T6 (65%)
6 131 T4, T5 176 T6, T8 (15%)
7 123 T6, T21 (20%) 176 T8 (80%)
8 114 T21,T16(65%) 166 T8, T10 (60%)
9 108 T16,T22(65%) 155 T10, T18 (45%)
10 105 T22, T7 (75%) 113 T17,T18,T7(35%)
11 95 T7, T15 (40%) 93 T7, T9
12 84 T15 93 T11 (90%)
13 84 T19 (65%) 66 T11, T12, T13
14 77 T19, T20 (35%) 56 T14
15 70 T20, T8 (10%) 56 T15 (65%)
16 70 T8 (65%) 45 T15, T19 (45%)
17 60 T8, T10 (65%) 38 T19, T20(60%)
18 49 T10,T12(30%) 31 T20, T21(60%)
19 22 T11, T12, T13 22 T21, T2 (35%)
20 10 T14 20 T2, T4 (5%)
21 2 T9, T2 (35%) 9 T4, T5
22 2 T2 (90%) 9 T16 (65%)
23 0 T2 0 T16, T22

2148 2308 total hours

Week 1 was spent in preparation of the test environment
and full manual regression test session was performed (210
hours). Due to the dependencies shown on 2, Week 2 started
with T1 automated for both teams. As the The M/A Effort
Approach requires estimating, filling and updating Tables IV,
V and VI, 4 hours for initial estimation and 1 additional hour
per week were considered for that. Thus, HPTAF approach
took small advantage during Week 2.

During Week 3 and Week 4, the advantage of HPTAF
remained as both teams chose T3 (higher priority and higher
ηi = 2.023 compared to T2). However, both The M/A Effort
Approach and HPTAF finished with 184 hours manual effort
per week after T1 and T3 were automated.

During Week 4 different tests were chosen for automation.
T6 was chosen by HPTAF as next high priority test case in
the role, while the M/A Effort Approach continued with T17
with ηi = 2.023. As T18 was very similar to T17 it was done
during the same week (same was applied to HPTAF in Week
10).

As a result of the different automated test cases, the time
spent for manual regression tests in Week 5 were different
(142h for M/A Effort Approach vs. 184h for HPTAF). T4 and
T5 were automated together (same was applied to HPTAF in
Week 21 as these are low priority test cases).

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:9, No:12, 2015 

2501International Scholarly and Scientific Research & Innovation 9(12) 2015 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

12
, 2

01
5 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
03

25
0.

pd
f



Fig. 3 Comparison between both approaches in cumulative man hours spent in manual regression tests

During Week 6 to Week 9, the difference between the
both approach in time spent for manual regression tests
become even bigger (108h for M/A Effort Approach vs.
155h for HPTAF) which means only 4 manual QA engineers
were needed when using M/A Effort Approach while 6 QA
engineers were needed when using HPTAF.

During Week 10, T17 and T18 were automated together,
later during Week 13, T11, T12 and T13 were automated
together again which resulted HPTAF to take just 56h
compared to 70h for M/A Effort Approach.

The results were draw again in Week 19, after T11, T12
and T13 were automated together.

Up to Week 23, M/A Effort Approach took advantage over
HPTAF again and the final result was 2308 cumulative hours
for HPTAF approach compared to just 2148 cumulative hours
for M/A Effort Approach as shown on Fig. 3.

The 160h saved represent more than five weeks of single
person’s manual work. This however is not the only benefit
of the M/A Effort Approach. During the first weeks, more
test cases were automated and more manual QA resource was
freed.

Authors think that combining this approach with efficient
methods for test case selection and minimization will result
effective software testing that will contribute for better fault
detection rate, and respectively – better software quality.

VI. CONCLUSION

This paper presents a simple approach to prioritize manual
software test cases that are suitable for automation. It differs
from existing approaches in that it gives an easy to follow
method based on effort assessment. Factors that affect this

assessment highly depend on the system itself and may be
given different weights.

The suggested approach is very flexible because it allows
working with a variety of assessment methods, and adding
or removing new candidates at any time. The theoretical
ideas presented in this article have been successfully applied
in real world situations in several software companies by
the authors and their colleagues including testing of real
estate websites, cryptographic and authentication solutions,
OSGi-based middleware framework that has been applied in
various systems for smart homes, connected cars, production
plants, sensors, home appliances, car head units and engine
control units (ECU), vending machines, medical devices,
industry equipment and other devices that either contain or
are connected to an embedded service gateway.

Although the factors, percentages and quotient values
provided in this paper’s table can be changed, improved
and modified as more teams use the approach in their test
prioritization and more usage data is collected, the main idea
of the approach remains unchanged.

ACKNOWLEDGMENTS

This work is supported by the National Scientific Research
Fund under the contract ���� � ����	
.

REFERENCES

[1] E. Aranha, "Estimating test execution effort based on test specifications",
Centro de Informática, Universidade Federal de Pernambuco, Recife,
Brazil, pp. 29-42, January 2009.

[2] M. Cohn, "Agile estimating and planning", Pearson Education, Prentice
Hall, New York, USA, 2005.

[3] J. Fernandes and A. Di Fonzo, "When to automate your testing (and when
not to)", July 2010.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:9, No:12, 2015 

2502International Scholarly and Scientific Research & Innovation 9(12) 2015 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

12
, 2

01
5 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
03

25
0.

pd
f



[4] S. Yoo and M. Harman, "Regression testing minimization, selection and
prioritization: A survey", King’s College London, London, England, March
2012.

[5] B. Marick, "When should a test be automated", California, USA, 1998
[11th International Software Quality Week QualWeek 98 San Francisco,
1998].

[6] D. Mosley and B. Posey, "Just enough software test automation", Yourdon
Press, Prentice Hall Professional, Englewood Cliffs, NJ, USA, 2002.

[7] V. Motwani, "The when and how of test automation", Bangalore, India
(2001). [Annual International Software Testing Conference in India, 2001].

[8] G. Robert, "Automation selection criteria – picking the "right" candidates,
LogiGear Magazine, 2014.

[9] M. Rouse, "What is requirements stability index (RSI)?", TechTarget,
2005.

[10] E. Dustin, J. Rashka and J. Paul, "Automated software testing". Reading,
Addison-Wesley, 1999.

[11] S. Desikan and G. Ramesh, Software testing. Bangalore, India, Dorling
Kindersley, India, 2006.

[12] S. Covey, A. Merrill and R. Merrill, First things first. Simon & Schuster,
New York, USA, 1994.

Peter Sabev Peter Sabev is PhD student with strong
interest in software test automation frameworks.
Bronze medallist on Balkan Olympiad in Informatics
as high school student, Peter has been a software
developer, a documentation writer, a technical
support specialist, and a project manager but his
true passion lies in software testing and quality
assurance. With over ten years of technologically
focused experience in IT, Peter currently works as a
QA manager for a cryptography company.

Katalina Grigorova Professor Katalina Grigorova
is Head of Department of Informatics and
Information Technologies at University of Ruse,
Bulgaria. She received MSc degree in Applied
Mathematics from Moscow Power Engineering
Institute and PhD degree in Computer Aided
Manufacturing from University of Ruse. Her
research interests include Business and Software
Architectures Modeling, Business Process Modeling,
Automated Software Engineering, Databases, Data
Structures and Algorithms Design, Programming.

Prof. Grigorova is a member of Association of Information Systems (AIS)
and its Bulgarian chapter BulAIS. She is a winner of IBM Faculty Award.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:9, No:12, 2015 

2503International Scholarly and Scientific Research & Innovation 9(12) 2015 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

12
, 2

01
5 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
03

25
0.

pd
f


