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Abstract—Missing data is a common challenge in medical research
and can lead to biased or incomplete results. When the data bias leaks
into models, it further exacerbates health disparities; biased algorithms
can lead to misclassification and reduced resource allocation and
monitoring as part of prevention strategies for certain minorities and
vulnerable segments of patient populations, which in turn further
reduce data footprint from the same population – thus, a vicious cycle.
This study compares the performance of six imputation techniques
grouped into Linear and Non-Linear models, on two different
real-world electronic health records (EHRs) datasets, representing
17864 patient records. The mean absolute percentage error (MAPE)
and root mean squared error (RMSE) are used as performance
metrics, and the results show that the Linear models outperformed the
Non-Linear models in terms of both metrics. These results suggest that
sometimes Linear models might be an optimal choice for imputation in
laboratory variables in terms of imputation efficiency and uncertainty
of predicted values.

Keywords—EHR, Machine Learning, imputation, laboratory
variables, algorithmic bias.

I. INTRODUCTION

HEALTHCARE relies heavily on data for improvements

and optimizations. A primary data source is Electronic

Health Records (EHRs), which are comprehensive repositories

of patient information. When effectively utilized, this

information can significantly enhance healthcare delivery,

resource optimization, and patient outcomes. EHRs can be used

for improving healthcare delivery, resource optimization, health

disparity, and access [1]–[6]. Clinical data, extracted from

EHRs can be analyzed to identify patterns, predict outcomes,

and develop treatment plans [7]–[13]. However, EHRs are

often noisy and suffer from missing. EHR imputation is the

process of using statistical techniques to fill in missing data

since the accuracy and completeness of EHRs are crucial for

their effective utility. The EHR data may be incomplete due

to various reasons, such as missing data points, inconsistent

coding, patients moving to different regions/health systems,

or simply poor documentation [14]. This lack of information

can make it challenging to derive meaningful and unbiased

insights. EHR imputation plays a crucial role in clinical research

and healthcare delivery [15]. More reliable and higher density
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EHR data can help to better identify high-risk patient groups

for specific conditions, enabling early diagnosis, improved

prognosis, development of more personalized treatment plans,

and enhancing model-driven resource optimization. Given

the importance and utility of EHR in improving healthcare

efficiency, there is growing interest in developing novel

machine learning-based methodologies in the field of EHR

data imputation. Yet, often the newly developed methods are

still based on the assumption of random missing patterns which

leads one to assume that the missing values can be predicted

based on the available data [16]–[18]. Mean imputation, mode

imputation, and regression imputation are some of the most

commonly used simple imputation techniques [19], [20].

Recent studies in EHR imputation have shown promising

results with the use of machine learning techniques such as

deep learning and graph models to predict missing values.

These methods are capable of modeling complex relationships

between variables and can handle high-dimensional data,

making them ideal for a broad range of applications, especially

when dealing with the challenges of handling big data. For

instance, recent studies proposed various frameworks that

use deep learning to address missing EHR data, achieving

state-of-the-art performance compared to traditional imputation

methods on the evaluated datasets [21]–[27]. These studies

highlight the potential of deep learning-based imputation

methods for improving the accuracy of EHR data imputation.

In our study, we strive to highlight the effectiveness of both

Linear and Non-Linear machine learning models for iterative

imputation models. Given the dataset’s size and the potential

risk of overfitting with more intricate models, it is crucial

to acknowledge that more complexity does not necessarily

guarantee superior performance compared to simpler models.

Therefore, it is necessary to explore the performance of various

models in different scenarios. By comparing the performance

of Linear models, such as linear regression, with Non-Linear

models, such as tree-based and deep learning models, on two

real-world datasets, we aim to provide researchers with valuable

insights that highlight the importance of considering both

Non-Linear and Linear models, as Non-Linear models are

not always the superior choice for complex medical datasets.

This paper is structured to present the data, imputation

methodology and evaluation metrics, results, and discussion.

The second section of this paper will introduce the data,

imputation algorithms, and evaluation metrics. The third

section will present the results of our experiments. The last

section provides a summary and conclusion. Overall, our study
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aims to provide insights into the performance of Linear and

Non-Linear machine learning models for imputing laboratory

variables extracted from EHR. Selecting the most appropriate

imputation technique for a given set of variables can lead to

the development of more accurate and less biased datasets for

EHR-based model development.

II. METHODOLOGY: DATASET, IMPUTATION ALGORITHMS,

AND EVALUATION METRICS

Dataset: We utilized two real-world clinical datasets to

evaluate the performance of Linear versus Non-Linear machine

learning-based models for iterative imputation. In this study, our

focus was on laboratory variables due to their significant impact

on disease diagnosis and prognosis. Imputation or lack thereof

can introduce algorithmic bias, emphasizing the importance

of careful design to mitigate bias stemming from the training

dataset.

The first dataset is an EHR-based cohort of 9037 ischemic

stroke patients from a large integrated healthcare system with

multiple hospitals in the United States. The stroke dataset

includes 45 most common variables with missingness less

than 75 percent. Table IV provides a detailed summary of

the laboratory variables used, their percentage missing, and

the summary statistics of the observed values. The pattern of

missing in these 45 variables varies, depending on the level

of missingness. For instance, the most common laboratory

variables with the lowest missing rate exhibit a more random

missing pattern, while the variables with a higher missing

pattern show a not completely random missing pattern.

The second dataset is a subset of the Medical Information

Mart for Intensive Care (MIMIC) database version 1.4 [28],

from which laboratory findings are extracted. More specifically,

we selected the subset of the MIMIC dataset without missing for

the 45 laboratories used in the stroke database; we simulated a

missing pattern similar to the ischemic stroke dataset, to be able

to assess model performance. The complete MIMIC dataset

contains clinical data for over 38,000 ICU patients, including

demographic information, vital signs, laboratory results, and

medication orders. Our subset of the MIMIC dataset included

8827 patient records. Table V provides a detailed summary of

the laboratory variables used, their percentage missing, and the

summary statistics of the observed values. The MIMIC data

missingness pattern is similar to the stroke data.

Additionally, we used the stroke patients’ observed

missingness pattern to also simulate missingness on the

MIMIC laboratory values. Using this strategy, we avoided the

assumption of missing at random and used observed missing

patterns to generate the holdout values for model evaluation

(the ground truth values are therefore available for comparison

with the imputed values); for additional details please refer to

the model evaluation section below.

Imputation algorithms: We compared Linear and Non-Linear

imputation techniques. In total, we used three imputation

algorithms for Linear and three imputation algorithms for

Non-Linear-based models. For the Linear models, we used

linear regression (LR) [29], ridge regression (Ridge) [30], and

Lasso regression (Lasso) [31]. For the Non-linear models, we

used random forest (RF) [32], extreme gradient boosting (XGB)

[33], and multi-layer perceptron (MLP) [34].

Model evaluation: We used Python to implement and

evaluate the performance of Linear and Non-Linear machine

learning models employing an iterative imputation strategy on

the two real-world datasets. To ensure the robustness of the

results, we ran all the experiments 50 times and reported

the mean and 68% confidence intervals. To evaluate the

performance of our imputation models, we used two commonly

used regression metrics, Root Mean Squared Error (RMSE)

and Mean Absolute Percentage Error (MAPE). The following

two equations describe RMSE and MAPE.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (1)

where n is the number of observations, yi is the actual value

of the ith observation, and ŷi is the predicted value of the ith

observation.

MAPE =
1

n

n∑
i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣× 100 (2)

where n is the number of observations, yi is the actual

value of the ith observation, and ŷi is the predicted value

of the ith observation. The absolute value of the difference

between the actual and predicted values is divided by the

actual value and multiplied by 100% to obtain the percentage

difference, which is then averaged across all observations.

RMSE measures the average difference between the predicted

and observed laboratory values, while MAPE measures the

average percentage difference between the predicted and

observed values. Since our data consists of continuous

laboratory values, we selected these regression metrics to

evaluate and compare the models.

To test the performance of the models, we randomly held out

50 values from each dataset as a test set and used the remaining

data to train and validate our models. Overall, applying the

regression metrics on these datasets allowed us to compare the

performance of the Linear and Non-Linear machine learning

models for iterative imputation and identification of the optimal

approach for imputing missing laboratory variables from

real-world clinical data. It has been previously shown that

a hold-out strategy of 50 values can provide robust results

[11].

III. RESULTS

Fig. 1 and Table I present the results of evaluating six

different models (three Non-Linear and three Linear) on the

MIMIC dataset using MAPE and RMSE as performance

metrics. The Non-Linear model achieved the highest MAPE

value of 2.53 [2.05, 3.07] while the Linear model achieved a

slightly lower value of 2.3 [1.81, 2.84]. In terms of RMSE, the

Linear model had a lower value of 0.0027 [0.00136, 0.00396]

in comparison with the Non-Linear model with a value of

0.00313 [0.00165, 0.00431].

We conducted an independent t-test to assess the statistical

significance of performance differences among the models.
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TABLE I
MEAN AND 68%-CI FOR METRICS ON MIMIC

MAPE RMSE
Model

Non-Linear 2.533.072.05 0.003130.004310.00165
Linear 2.302.841.81 0.00270.003960.00136

Specifically, the p-value for comparing the RMSE values of

Non-Linear versus the Linear models is lower than 0.05,

indicating that the differences in RMSE are statistically

significant. However, the p-value for comparing the MAPE

values of Non-Linear versus the Linear models is 0.105,

indicating that the difference in MAPE between these two

models is not statistically significant. Overall, these results

suggest that the Linear models can outperform the Non-linear

models in terms of RMSE, when tested on 45 different

laboratory variables from the MIMIC dataset.

Fig. 1 Compared predicted and actual values for missing lab data in MIMIC
dataset using linear and non-linear models; error bars show standard deviation

Fig. 2 and Table II show the mean MAPE and RMSE

values for the Linear and Non-Linear imputation models on

the holdout values in the MIMIC dataset. The reported values

are the mean and the confidence interval.

The reported p-values indicate that the difference in RMSE

between the Non-Linear and Linear models is insignificant,

with a p-value of 0.2283. Similarly, the results for MAPE show

no significant difference in the imputation method for missing

data in the laboratory variables from the MIMIC dataset.

Fig. 2 Performance of Linear, Non-linear models on 50 holdout values from
MIMIC dataset compared; X-axis: model category, Y-axis: RMSE, mean

MAPE

Fig. 3 and Table IV present the mean MAPE and RMSE for

Linear and Non-Linear imputation models on the EHR-based

cohort of stroke patients. The Linear models outperformed

the Non-Linear models in terms of both metrics. The MAPE

for the Non-Linear and Linear models were 19.03% and

18.04%, respectively. And the RMSE for Non-Linear and Linear

TABLE II
MEAN AND 68%-CI FOR METRICS ON holdout-MIMIC

MAPEh RMSEh

model

Non-Linear 2.563.062.19 0.003170.003600.00275
Linear 2.422.812.17 0.003100.003610.00259

TABLE III
MEAN AND 68%-CI FOR METRICS ON Ischemic Stroke COHORT

MAPEh RMSEh

model

Non-Linear 19.0320.417.91 0.012320.013220.01125
Linear 18.0419.8916.11 0.011850.012690.01105

models were 0.01232 and 0.01185, respectively. The p-values

suggest that the differences between the models are statistically

significant. These results corroborate that Linear models are

preferred for imputing missing values of the laboratory variables

from the stroke cohort, extracted from real-world EHRs.

Fig. 3 Performance of Linear and Non-Linear models on 50 holdout values,
from the ischemic stroke cohort; the x-axis is the category of models, and

the y-axis shows RMSE and MAPE

IV. DISCUSSION

In this study, we compared the performance of six machine

learning-based models used in iterative imputation in terms of

Linear and Non-Linear groups. We employed laboratory-based

variables from two real-world clinical datasets. The results are

aggregated for three Linear and three Non-Linear imputation

models for a more robust comparison. Our results are based on

45 different laboratory variables from two datasets representing

a total of 8827 ICU patients and 9037 ischemic stroke

patients. Our findings demonstrated that the Linear models

can outperform the Non-Linear models in terms of MAPE and

RMSE.

The improved performance exhibited by Linear models can

be attributed to their lower susceptibility to overfitting and

their ability to effectively capture linear relationships among

variables. Moreover, it is important to acknowledge that these

findings align with the principles of the "no free lunch" theorem

[35], which states that there is no universally superior model

for all tasks, reinforcing the validity of our results. On the

other hand, Non-Linear models may have difficulty capturing

relevant features in the tabular datasets, leading to overfitting

and less optimal performance. Further investigation is needed

to compare deep learning models such as GAIN [36] and
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decipher when and where more complex imputation techniques

can be valuable for laboratory-based variables. Moreover,

the absence of a standardized implementation for recently

developed methods poses challenges in terms of reproducibility

and robustness of findings, despite some indications of their

superior performance. The datasets tested in this study are based

on laboratory variables from EHRs; however, even common

laboratory variables can have high levels of missingness and the

missingness may not be completely at random. The mechanism,

pattern, and level of missingness are some of the important

factors when selecting the optimal imputation techniques.

The results of this study have practical implications for data

scientists and practitioners who are interested in using EHR

data for understanding care utilization, improving the quality of

care, and resource optimization, all of which require the highest

quality of real-world data. Our findings suggest that, in certain

circumstances, Linear models are a reliable and efficient option

for imputing missing data in laboratory variables extracted

from clinical datasets. However, it is important to note that the

choice of imputation method should depend on the mechanism

and pattern of missingness in target datasets and the research

question at hand. It is also crucial to assess the mechanism

of missing or the reason behind the missingness, which may

aid in determining how to design the imputation procedure. In

some instances, the inclusion of auxiliary variables has been

shown to improve imputation for laboratory-based variables

with a high level of missingness [3], [11].

In conclusion, this study contributes to the expanding body

of literature on imputation methods for handling missing

data. By focusing specifically on laboratory variables derived

from two independent and distinct real-world EHR datasets,

valuable insights have been gained regarding the performance

of Linear and Non-Linear models. The Non-Linear models

may prioritize "local complexity," leading to overfitting.

This overemphasis on capturing intricate patterns within the

data can hinder the generalizability of the model, thereby

impacting its performance. Furthermore, the training process

of Non-Linear models may be time-consuming, potentially

limiting their practicality in large-scale applications. Moreover,

when imputing missing values for prediction variables that

exhibit a higher linear association with the response variable,

the utilization of Linear models can be more efficient. Linear

models exhibit greater resilience to the presence of outliers

within the data. By demonstrating less sensitivity to outliers,

Linear models can avoid unnecessary complexity introduced

by Non-Linear models. The latter models, in their attempt

to account for outliers, may introduce additional intricacies

into the imputation process, resulting in increased uncertainty

of imputed values. The findings underscore the need to

consider the nature of the variables, the potential for overfitting,

computational efficiency, and sensitivity to outliers when

selecting an appropriate imputation method. These insights

contribute to the existing knowledge and understanding of

imputation techniques, further enhancing the applicability and

effectiveness of missing data handling in various domains.

As a future direction, we are assessing the performance of

other imputation methods, such as multiple imputation and

Bayesian imputation, and exploring how imputation techniques

are impacted by different missing patterns - e.g., missing

not at random (MNAR), missing at random (MAR) - and

missing level. We are also working towards the creation of

synthetic datasets that can more accurately mimic real-world

datasets with higher diversity and broader synthetic patient

representation for a more comprehensive model evaluation and

systematic assessment of imputation techniques.

This study had also some limitations, including using only a

selected number of imputation algorithms and using only two

distinct cohorts. One of the cohorts was from the ICU, which

represents a very specific type of patients, and one was from

ischemic stroke patients, which may not be a representative

cohort for other chronic conditions or for younger patients as

stroke affects primary the aging population with an average age

of 65-75 years old. Finally, this study highlights the importance

of careful consideration and evaluation of imputation methods

for healthcare applications as this data processing step can lead

to biased data for model training.

APPENDIX A

DESCRIPTION OF THE STROKE COHORT

Table IV presents a summary of variables for the stroke

cohort data. Each row corresponds to a specific laboratory

measurement, identified by a unique Lab code. The variables

include count, mean, standard deviation (std), minimum (min),

maximum (max), and the percentage of missing values for

each laboratory measurement.

The Lab column provides the names of the laboratory tests,

such as sodium (NA+), potassium (K+), chloride (CL-), total

carbon dioxide (TCO2), calcium (CA), blood urea nitrogen

(BUN), glucose (GLU), creatinine, hemoglobin, hematocrit,

and various other clinical markers.

The count column indicates the number of observations

available for each laboratory test, while the mean column

represents the average value of the measurements. The std

column shows the standard deviation, providing a measure of

the dispersion of the data. The min and max columns indicate

the minimum and maximum values observed, respectively.

Lastly, the Missing (%) column displays the percentage of

missing values for each laboratory test.

This table provides a comprehensive overview of the

variables in the stroke cohort data, enabling researchers and

practitioners to understand the distribution and characteristics

of the laboratory measurements.

APPENDIX B

VARIABLES FOR MIMIC DATA - LABORATORY

MEASUREMENTS

Table V provides an overview of various laboratory

measurements obtained from the MIMIC dataset. MIMIC is a

publicly available database that contains de-identified health

records of patients admitted to intensive care units (ICUs).

These measurements play a crucial role in assessing patients’

health status and monitoring their progress during ICU stays.

The table includes essential information for each laboratory

variable, such as the variable code, the name of the

measurement (e.g., Potassium, Chloride, Albumin), the count of
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TABLE IV
SUMMARY OF LABORATORY VARIABLES FOR THE STROKE COHORT

LOINC Laboratory name count mean value std min value max value Missing (%)

X2951.2 NA+ 5748 139.210000 3.390000 122.000000 152.000000 36
X2823.3 K+ 5798 4.260000 0.480000 2.500000 6.600000 36
X2075.0 CL- 5770 101.970000 3.940000 85.000000 118.000000 36
X2028.9 TCO2 5774 26.840000 3.030000 14.000000 40.000000 36
X17861.6 CA 5776 9.270000 0.550000 7.000000 11.600000 36
X3094.0 BUN 5725 19.500000 8.550000 3.000000 54.000000 37
X2345.7 GLU 5569 120.700000 39.970000 46.000000 275.000000 38
X2160.0 CREATININE 5566 1.010000 0.330000 0.100000 2.300000 38
X718.7 HEMOGLOBIN 5489 13.080000 1.940000 6.300000 20.300000 39
X4544.3 HEMATOCRIT 5445 39.050000 5.380000 19.300000 58.800000 40
X786.4 MCHC 5429 33.420000 1.240000 27.600000 37.900000 40
X785.6 MCH 5407 30.290000 2.110000 21.600000 38.800000 40
X6690.2 WBC 5392 8.070000 2.640000 0.650000 18.750000 40
X32623.1 PLATELET MEAN VOL 5413 9.850000 1.400000 5.800000 14.600000 40
X789.8 RBC 5432 4.330000 0.640000 1.910000 6.690000 40
X787.2 MCV 5410 90.560000 5.430000 67.800000 113.500000 40
X777.3 PLATELET COUNT 5371 233.880000 77.080000 5.000000 553.000000 41
X788.0 RDW 5304 13.950000 1.320000 11.000000 19.100000 41
X10466.1 ANION GAP 5364 10.520000 3.220000 0.000000 25.000000 41
X61151.7 ALBUMIN 4798 3.950000 0.490000 2.000000 5.300000 47
X1743.4 ALT 4822 21.580000 10.620000 4.000000 66.000000 47
X2885.2 TP 4728 6.880000 0.640000 4.200000 9.500000 48
X5905.5 MONOCYTE% 4729 8.490000 2.840000 0.500000 19.000000 48
X742.7 MONOTYPE ABS 4691 0.680000 0.270000 0.010000 1.810000 48
X731.0 LYMPHOCYTE ABS 4688 1.720000 0.780000 0.090000 5.140000 48
X706.2 BASEPHIL% 4656 -7.680000 10.010000 -21.000000 0.850000 48
X736.9 LYMPHOCYTE% 4743 22.230000 9.590000 1.000000 69.000000 48
X1975.2 TBIL 4614 0.530000 0.290000 0.100000 1.900000 49
X6768.6 AP 4636 81.780000 27.660000 20.000000 198.000000 49
X30239.8 AST 4650 24.330000 8.540000 6.000000 59.000000 49
X770.8 NEUTRPHIL% 4631 65.690000 11.450000 12.000000 97.000000 49
X711.2 EOSINOPHILS ABS 4401 -0.830000 0.390000 -2.000000 0.750000 51
X713.8 EOSINOPHILS% 4397 0.320000 0.350000 -1.000000 1.530000 51
X704.7 BASEPHILS ABS 4239 -1.450000 0.300000 -2.000000 -0.210000 53
X2093.3 CHOLESTEROL 4191 178.580000 46.360000 58.000000 376.000000 54
X2085.9 HDL 4160 48.090000 14.870000 6.000000 110.000000 54
X2571.8 TRIGLYCERIDES 4068 144.880000 74.670000 24.000000 460.000000 55
X13457.7 LDL 4054 99.850000 38.610000 1.000000 261.000000 55
X751.8 NEUTROPHIL ABS 3938 5.410000 2.350000 0.210000 15.020000 56
X9830.1 CHOLESTEROL:HDL RATIO 4021 3.950000 1.380000 1.400000 9.800000 56
X50560.2 URINE PH 3468 6.010000 0.790000 5.000000 9.000000 62
X3016.3 Thyrotropin 3363 2.240000 1.470000 0.010000 8.590000 63
X5902.2 PT 3002 14.490000 2.300000 9.400000 23.200000 67
X6301.6 INR 2965 1.140000 0.230000 0.740000 2.050000 67
X17856.6 HgA1C 2633 7.070000 1.720000 3.900000 14.200000 71

recorded values, the mean value, standard deviation, minimum

and maximum values observed, and the percentage of missing

values using the simulated missing pattern. The count represents

the number of data points available for each variable, giving

an indication of the data’s completeness.

The dataset encompasses a wide range of laboratory

measurements, covering important aspects of patients’ blood

chemistry, such as electrolytes (e.g., Potassium, Chloride,

Sodium), liver function markers (e.g., Albumin, Bilirubin),

renal function markers (e.g., Creatinine, Urea Nitrogen), blood

cell counts (e.g., Red Blood Cells, White Blood Cells, Platelet

Count), and other parameters relevant to patient health.

Researchers and healthcare professionals can utilize this

table to gain insights into the distribution and characteristics

of the laboratory measurements in the MIMIC dataset.
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TABLE V
SUMMARY OF LABORATORY VARIABLES FOUND IN THE MIMIC DATASET

LOINC Laboratory name count mean value std min value max value Missing (%)

50822 Potassium, Whole Blood 5628 4.190000 0.630000 1.200000 20.400000 36
50902 Chloride 5650 103.860000 4.280000 81.000000 127.500000 36
50862 Albumin 5627 3.140000 0.630000 1.370000 5.400000 36
50863 Alkaline Phosphatase 5624 124.560000 108.570000 18.670000 2040.750000 36
50971 Potassium 5578 4.160000 0.330000 2.870000 6.330000 37
50912 Creatinine 5601 1.520000 1.270000 0.120000 15.240000 37
50885 Bilirubin, Total 5429 1.460000 3.130000 0.090000 53.680000 38
50882 Bicarbonate 5430 25.240000 3.650000 8.200000 46.900000 38
51250 MCV 5349 89.900000 5.720000 62.800000 124.190000 39
51301 White Blood Cells 5290 11.350000 9.010000 0.400000 404.200000 40
51279 Red Blood Cells 5267 3.500000 0.450000 1.970000 5.860000 40
50983 Sodium 5274 138.750000 3.250000 118.730000 157.780000 40
51491 pH 5270 5.870000 0.700000 5.000000 9.000000 40
51006 Urea Nitrogen 5305 30.050000 18.320000 3.420000 142.880000 40
51248 MCH 5252 30.050000 2.160000 18.940000 41.170000 41
51498 Specific Gravity 5167 1.020000 0.010000 1.000000 1.050000 41
50813 Lactate 5228 2.360000 1.720000 0.500000 24.800000 41
51277 RDW 5232 15.670000 1.870000 11.830000 27.560000 41
50820 pH 4692 7.380000 0.060000 6.900000 7.580000 47
51237 INR(PT) 4676 1.510000 0.570000 0.870000 8.060000 47
51256 Neutrophils 4626 75.560000 11.080000 0.230000 98.000000 48
50910 Creatine Kinase (CK) 4608 584.960000 2686.640000 7.000000 68132.000000 48
51265 Platelet Count 4575 248.960000 111.620000 15.720000 1142.370000 48
51254 Monocytes 4571 5.010000 2.190000 0.000000 43.950000 48
51222 Hemoglobin 4612 10.460000 1.250000 5.560000 17.570000 48
51249 MCHC 4517 33.470000 1.170000 27.170000 37.820000 49
51275 PTT 4518 40.250000 13.480000 18.800000 150.000000 49
50970 Phosphate 4529 3.630000 0.860000 1.400000 10.770000 49
50861 Alanine Aminotransferase (ALT) 4498 100.700000 337.930000 1.000000 7181.330000 49
50804 Calculated Total CO2 4540 25.360000 4.670000 4.000000 57.130000 49
50808 Free Calcium 4292 1.130000 0.080000 0.530000 2.300000 51
50809 Glucose 4289 146.770000 59.010000 23.000000 858.500000 51
50802 Base Excess 4132 -0.480000 4.070000 -25.000000 22.710000 53
50878 Asparate Aminotransferase (AST) 4066 145.270000 607.780000 6.000000 14929.500000 54
50868 Anion Gap 4036 13.920000 2.820000 6.600000 48.000000 54
50893 Calcium, Total 3945 8.450000 0.570000 5.920000 12.350000 55
50818 pCO2 3930 41.400000 8.380000 14.000000 121.000000 55
51274 PT 3843 15.960000 4.420000 9.800000 76.880000 56
51200 Eosinophils 3375 1.760000 1.740000 0.000000 23.910000 62
50960 Magnesium 3270 2.050000 0.220000 1.320000 4.490000 63
50931 Glucose 3217 133.890000 31.790000 51.000000 456.380000 64
51244 Lymphocytes 2881 14.690000 8.610000 0.000000 90.750000 67
51221 Hematocrit 2918 31.040000 3.470000 17.150000 50.930000 67
50821 pO2 2556 145.340000 57.300000 25.000000 529.000000 71
51146 Basophils 2264 0.350000 0.260000 0.000000 2.590000 74
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