Search results for: wind energy system.
9873 Decomposing the Impact Factors of Energy Consumption of Hotel through LMDI
Authors: Zongjie Du, Shulin Sui, Panpan Xu
Abstract:
Energy consumption of a hotel can be a hot topic in smart city; it is difficult to evaluate the contribution of impact factors to energy consumption of a hotel. Therefore, grasping the key impact factors has great effect on the energy saving management of a hotel. Based on the SPIRTPAT model, we establish the identity with the impact factors of occupancy rate, unit area of revenue, temperature factor, unit revenue of energy consumption. In this paper, we use the LMDI (Logarithmic Mean Divisia Index) to decompose the impact factors of energy consumption of hotel from Jan. to Dec. in 2001. The results indicate that the occupancy rate and unit area of revenue are the main factors that can increase unit area of energy consumption, and the unit revenue of energy consumption is the main factor to restrain the growth of unit area of energy consumption. When the energy consumption of hotel can appear abnormal, the hotel manager can carry out energy saving management and control according to the contribution value of impact factors.Keywords: Smart city, SPIRTPAT model, LMDI, saving management and control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14069872 Impact of Egypt’s Energy Demand on Oil and Gas Power Systems Environment
Authors: Moustafa Osman Mohamed
Abstract:
This paper will explore the influence of energy sector in Arab Republic of Egypt which has shared its responsibilities of many environmental challenges as the second largest economy in the Middle East (after Iran). Air and water pollution, desertification, inadequate disposal of solid waste and damage to coral reefs are serious problems that influence environmental management in Egypt. The intensive reliance of high population density and strong industrial growth are wearing Egypt's resources, and the rapidly-growing population has forced Egypt to breakdown agricultural land to residential and relevant use of commercial ingestion. The depletion effects of natural resources impose the government to apply innovation techniques in emission control and focus on sustainability. The cogeneration will be presented to control thermal losses and increase efficiency of energy power system.
Keywords: Cogeneration, energy indicators, power plant, electricity, environmental loads, environmental impact assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14949871 The Traffic Prediction Multi-path Energy-aware Source Routing (TP-MESR)in Ad hoc Networks
Authors: Su Jin Kim, Ji Yeon Cho, Bong Gyou Lee
Abstract:
The purpose of this study is to suggest energy efficient routing for ad hoc networks which are composed of nodes with limited energy. There are diverse problems including limitation of energy supply of node, and the node energy management problem has been presented. And a number of protocols have been proposed for energy conservation and energy efficiency. In this study, the critical point of the EA-MPDSR, that is the type of energy efficient routing using only two paths, is improved and developed. The proposed TP-MESR uses multi-path routing technique and traffic prediction function to increase number of path more than 2. It also verifies its efficiency compared to EA-MPDSR using network simulator (NS-2). Also, To give a academic value and explain protocol systematically, research guidelines which the Hevner(2004) suggests are applied. This proposed TP-MESR solved the existing multi-path routing problem related to overhead, radio interference, packet reassembly and it confirmed its contribution to effective use of energy in ad hoc networks.Keywords: Ad hoc, energy-aware, multi-path, routing protocol, traffic prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15589870 Seismic Behaviour of Steel Frames Investigation with Knee Brace Based on Pushover Analysis
Authors: Mahmoud Miri, Abdolreza Zare, Hossein Abbas zadeh
Abstract:
The knee bracing steel frame (KBF) is a new kind of energy dissipating frame, which combines excellent ductility and lateral stiffness. In this framing system, a special form of diagonal brace connected to a knee element instead of beam-column joint, is investigated. Recently, a similar system was proposed and named as chevron knee bracing system (CKB) which in comparison with the former system has a better energy absorption characteristic and at the same time retains the elastic nature of the structures. Knee bracing can provide a stiffer bracing system but reduces the ductility of the steel frame. Chevron knee bracing can be employed to provide the desired ductility level for a design. In this article, relation between seismic performance and structural parameters of the two above mentioned systems are investigated and compared. Frames with similar dimensions but various heights in both systems are designed according to Iranian code of practice for seismic resistant design of building, and then based on a non-linear push over static analysis; the seismic parameters such as behavior factor and performance levels are compared.
Keywords: Seismic behaviour, ordinary knee bracing frame, Chevron knee brace, behaviour factor, performance level.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42579869 Prediction of Location of High Energy Shower Cores using Artificial Neural Networks
Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta
Abstract:
Artificial Neural Network (ANN)s can be modeled for High Energy Particle analysis with special emphasis on shower core location. The work describes the use of an ANN based system which has been configured to predict locations of cores of showers in the range 1010.5 to 1020.5 eV. The system receives density values as inputs and generates coordinates of shower events recorded for values captured by 20 core positions and 80 detectors in an area of 100 meters. Twenty ANNs are trained for the purpose and the positions of shower events optimized by using cooperative ANN learning. The results derived with variations of input upto 50% show success rates in the range of 90s.Keywords: EAS, Shower, Core, ANN, Location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13069868 Integrated Modeling Approach for Energy Planning and Climate Change Mitigation Assessment in the State of Florida
Authors: Kuntal Thakkar, Chaouki Ghenai, Ahmed Hachicha
Abstract:
An integrated modeling approach was used in this study for energy planning and climate change mitigation assessment. The main objective of this study was to develop various green-house gas (GHG) mitigations scenarios in the energy demand and supply sectors for the state of Florida. The Long range energy alternative planning (LEAP) model was used in this study to examine the energy alternative and GHG emissions reduction scenarios for short and long term (2010-2050). One of the energy analysis and GHG mitigation scenarios was developed by taking into account the available renewable energy resources potential for power generation in the state of Florida. This will help to compare and analyze the GHG reduction measure against “Business As Usual” and ‘State of Florida Policy” scenarios. Two master scenarios: “Electrification” and “Energy efficiency and Lifestyle” were developed through combination of various mitigation scenarios: technological changes and energy efficiency and conservation. The results show a net reduction of the energy demand and GHG emissions by adopting these two energy scenarios compared to the business as usual.
Keywords: Integrated modeling, energy planning, climate change mitigation assessment, greenhouse gas emissions, renewable energy, energy efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17839867 Tracking Control of a Linear Parabolic PDE with In-domain Point Actuators
Authors: Amir Badkoubeh, Guchuan Zhu
Abstract:
This paper addresses the problem of asymptotic tracking control of a linear parabolic partial differential equation with indomain point actuation. As the considered model is a non-standard partial differential equation, we firstly developed a map that allows transforming this problem into a standard boundary control problem to which existing infinite-dimensional system control methods can be applied. Then, a combination of energy multiplier and differential flatness methods is used to design an asymptotic tracking controller. This control scheme consists of stabilizing state-feedback derived from the energy multiplier method and feed-forward control based on the flatness property of the system. This approach represents a systematic procedure to design tracking control laws for a class of partial differential equations with in-domain point actuation. The applicability and system performance are assessed by simulation studies.Keywords: Tracking Control, In-domain point actuation, PartialDifferential Equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20599866 Nearly Zero-Energy Regulation and Buildings Built with Prefabricated Technology: The Case of Hungary
Authors: András Horkai, Attila Talamon, Viktória Sugár
Abstract:
There is an urgent need nowadays to reduce energy demand and the current level of greenhouse gas emission and use renewable energy sources increase in energy efficiency. On the other hand, the European Union (EU) countries are largely dependent on energy imports and are vulnerable to disruption in energy supply, which may, in turn, threaten the functioning of their current economic structure. Residential buildings represent a significant part of the energy consumption of the building stock. Only a small part of the building stock is exchanged every year, thus it is essential to increase the energy efficiency of the existing buildings. Present paper focuses on the buildings built with industrialized technology only, and their opportunities in the boundaries of nearly zero-energy regulation. Current paper shows the emergence of panel construction method, and past and present of the ‘panel’ problem in Hungary with a short outlook to Europe. The study shows as well as the possibilities for meeting the nearly zero and cost optimized requirements for residential buildings by analyzing the renovation scenarios of an existing residential typology.
Keywords: Budapest, energy consumption, industrialized technology, nearly zero-energy buildings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9229865 Phenomenological and Theoretical Analysis of Relativistic Temperature Transformation and Relativistic Entropy
Authors: Marko Popovic
Abstract:
There are three possible effects of Special Theory of Relativity (STR) on a thermodynamic system. Planck and Einstein looked upon this process as isobaric; on the other hand Ott saw it as an adiabatic process. However plenty of logical reasons show that the process is isotherm. Our phenomenological consideration demonstrates that the temperature is invariant with Lorenz transformation. In that case process is isotherm, so volume and pressure are Lorentz covariant. If the process is isotherm the Boyles law is Lorentz invariant. Also equilibrium constant and Gibbs energy, activation energy, enthalpy entropy and extent of the reaction became Lorentz invariant.Keywords: STR, relativistic temperature transformation, Boyle'slaw, equilibrium constant, Gibbs energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22919864 A Review on the Development and Challenges of Green Roof Systems in Malaysia
Authors: M. F. Chow, M. F. Abu Bakar
Abstract:
Green roof system is considered a relatively new concept in Malaysia even though it has been implemented widely in the developed countries. Generally, green roofs provide many benefits such as enhancing aesthetical quality of the built environment, reduce urban heat island effect, reduce energy consumption, improve stormwater attenuation, and reduce noise pollution. A better understanding on the implementation of green roof system in Malaysia is crucial, as Malaysia’s climate is different if compared with the climate in temperate countries where most of the green roof studies have been conducted. This study has concentrated on the technical aspect of green roof system which focuses on i) types of plants and method of planting; ii) engineering design for green roof system; iii) its hydrological performance on reducing stormwater runoff; and iv) benefits of green roofs with respect to energy. Literature review has been conducted to identify the development and obstacles associated with green roofs systems in Malaysia. The study had identified the challenges and potentials of green roofs development in Malaysia. This study also provided the recommendations on standard design and strategies on the implementation of green roofs in Malaysia in the near future.Keywords: Engineering design, green roof, sustainable development, tropical countries.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46599863 Performance Prediction of a 5MW Wind Turbine Blade Considering Aeroelastic Effect
Authors: Dong-Hyun Kim, Yoo-Han Kim
Abstract:
In this study, aeroelastic response and performance analyses have been conducted for a 5MW-Class composite wind turbine blade model. Advanced coupled numerical method based on computational fluid dynamics (CFD) and computational flexible multi-body dynamics (CFMBD) has been developed in order to investigate aeroelastic responses and performance characteristics of the rotating composite blade. Reynolds-Averaged Navier-Stokes (RANS) equations with k-ω SST turbulence model were solved for unsteady flow problems on the rotating turbine blade model. Also, structural analyses considering rotating effect have been conducted using the general nonlinear finite element method. A fully implicit time marching scheme based on the Newmark direct integration method is applied to solve the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems. Detailed dynamic responses and instantaneous velocity contour on the blade surfaces which considering flow-separation effects were presented to show the multi-physical phenomenon of the huge rotating wind- turbine blade model.Keywords: Computational Fluid Dynamics (CFD), Computational Multi-Body Dynamics (CMBD), Reynolds-averageNavier-Stokes (RANS), Fluid Structure Interaction (FSI), FiniteElement Method (FEM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29209862 Remarks on Energy Based Control of a Nonlinear, Underactuated, MIMO and Unstable Benchmark
Authors: Guangyu Liu
Abstract:
In the last decade, energy based control theory has undergone a significant breakthrough in dealing with underactated mechanical systems with two successful and similar tools, controlled Lagrangians and controlled Hamiltanians (IDA-PBC). However, because of the complexity of these tools, successful case studies are lacking, in particular, MIMO cases. The seminal theoretical paper of controlled Lagrangians proposed by Bloch and his colleagues presented a benchmark example–a 4 d.o.f underactuated pendulum on a cart but a detailed and completed design is neglected. To compensate this ignorance, the note revisit their design idea by addressing explicit control functions for a similar device motivated by a vector thrust body hovering in the air. To the best of our knowledge, this system is the first MIMO, underactuated example that is stabilized by using energy based tools at the courtesy of the original design idea. Some observations are given based on computer simulation.
Keywords: Controlled Lagrangian, Energy Shaping, Spherical Inverted Pendulum, Controlled Hamiltonian.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13749861 Evaluation of Coupling Factor in RF Inductively Coupled Systems
Authors: Rômulo Volpato, Filipe Ramos, Paulo Crepaldi, Michel Santana, Tales C Pimenta
Abstract:
This work presents an approach for the measurement of mutual inductance on near field inductive coupling. The mutual inductance between inductive circuits allows the simulation of energy transfer from reader to tag, that can be used in RFID and powerless implantable devices. It also allows one to predict the maximum voltage in the tag of the radio-frequency system.Keywords: RFID, Inductive Coupling, Energy Transfer, Implantable Device
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23279860 Structural Performance Evaluation of Segmented Wind Turbine Blade through Finite Element Simulation
Authors: Chandrashekhar Bhat, Dilifa J. Noronha, Faber A. Saldanha
Abstract:
Transportation of long turbine blades from one place to another is a difficult process. Hence a feasibility study of modularization of wind turbine blade was taken from structural standpoint through finite element analysis. Initially, a non-segmented blade is modeled and its structural behavior is evaluated to serve as reference. The resonant, static bending and fatigue tests are simulated in accordance with IEC61400-23 standard for comparison purpose. The non-segmented test blade is separated at suitable location based on trade off studies and the segments are joined with an innovative double strap bonded joint configuration. The adhesive joint is modeled by adopting cohesive zone modeling approach in ANSYS. The developed blade model is analyzed for its structural response through simulation. Performances of both the blades are found to be similar, which indicates that, efficient segmentation of the long blade is possible which facilitates easy transportation of the blades and on site reassembling. The location selected for segmentation and adopted joint configuration has resulted in an efficient segmented blade model which proves the methodology adopted for segmentation was quite effective. The developed segmented blade appears to be the viable alternative considering its structural response specifically in fatigue within considered assumptions.Keywords: Cohesive zone modeling, fatigue, segmentation, wind turbine blade.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32969859 Optimization of Solar Rankine Cycle by Exergy Analysis and Genetic Algorithm
Authors: R. Akbari, M. A. Ehyaei, R. Shahi Shavvon
Abstract:
Nowadays, solar energy is used for energy purposes such as the use of thermal energy for domestic, industrial and power applications, as well as the conversion of the sunlight into electricity by photovoltaic cells. In this study, the thermodynamic simulation of the solar Rankin cycle with phase change material (paraffin) was first studied. Then energy and exergy analyses were performed. For optimization, a single and multi-objective genetic optimization algorithm to maximize thermal and exergy efficiency was used. The parameters discussed in this paper included the effects of input pressure on turbines, input mass flow to turbines, the surface of converters and collector angles on thermal and exergy efficiency. In the organic Rankin cycle, where solar energy is used as input energy, the fluid selection is considered as a necessary factor to achieve reliable and efficient operation. Therefore, silicon oil is selected for a high-temperature cycle and water for a low-temperature cycle as an operating fluid. The results showed that increasing the mass flow to turbines 1 and 2 would increase thermal efficiency, while it reduces and increases the exergy efficiency in turbines 1 and 2, respectively. Increasing the inlet pressure to the turbine 1 decreases the thermal and exergy efficiency, and increasing the inlet pressure to the turbine 2 increases the thermal efficiency and exergy efficiency. Also, increasing the angle of the collector increased thermal efficiency and exergy. The thermal efficiency of the system was 22.3% which improves to 33.2 and 27.2% in single-objective and multi-objective optimization, respectively. Also, the exergy efficiency of the system was 1.33% which has been improved to 1.719 and 1.529% in single-objective and multi-objective optimization, respectively. These results showed that the thermal and exergy efficiency in a single-objective optimization is greater than the multi-objective optimization.
Keywords: Exergy analysis, Genetic algorithm, Rankine cycle, Single and Multi-objective function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6309858 Techno-Economic Analysis Framework for Wave Energy Conversion Schemes under South African Conditions: Modeling and Simulations
Authors: Siyanda S. Biyela, Willie A. Cronje
Abstract:
This paper presents a desktop study of comparing two different wave energy to electricity technologies (WECs) using a techno-economic approach. This techno-economic approach forms basis of a framework for rapid comparison of current and future technologies. The approach also seeks to assist in investment and strategic decision making expediting future deployment of wave energy harvesting in South Africa.Keywords: Cost of energy, tool, wave energy converter, WEC-Sim.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12119857 Perspectives of Renewable Energy in 21st Century in India: Statistics and Estimation
Authors: Manoj Kumar, Rajesh Kumar
Abstract:
With the favourable geographical conditions at Indian-subcontinent, it is suitable for flourishing renewable energy. Increasing amount of dependence on coal and other conventional sources is driving the world into pollution and depletion of resources. This paper presents the statistics of energy consumption and energy generation in Indian Sub-continent, which notifies us with the increasing energy demands surpassing energy generation. With the aggrandizement in demand for energy, usage of coal has increased, since the major portion of energy production in India is from thermal power plants. The increase in usage of thermal power plants causes pollution and depletion of reserves; hence, a paradigm shift to renewable sources is inevitable. In this work, the capacity and potential of renewable sources in India are analyzed. Based on the analysis of this work, future potential of these sources is estimated.Keywords: Energy consumption and generation, depletion of reserves, pollution, estimation, renewable sources.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8199856 A New Model to Perform Preliminary Evaluations of Complex Systems for the Production of Energy for Buildings: Case Study
Authors: Roberto de Lieto Vollaro, Emanuele de Lieto Vollaro, Gianluca Coltrinari
Abstract:
The building sector is responsible, in many industrialized countries, for about 40% of the total energy requirements, so it seems necessary to devote some efforts in this area in order to achieve a significant reduction of energy consumption and of greenhouse gases emissions. The paper presents a study aiming at providing a design methodology able to identify the best configuration of the system building/plant, from a technical, economic and environmentally point of view. Normally, the classical approach involves a building's energy loads analysis under steady state conditions, and subsequent selection of measures aimed at improving the energy performance, based on previous experience made by architects and engineers in the design team. Instead, the proposed approach uses a sequence of two wellknown scientifically validated calculation methods (TRNSYS and RETScreen), that allow quite a detailed feasibility analysis. To assess the validity of the calculation model, an existing, historical building in Central Italy, that will be the object of restoration and preservative redevelopment, was selected as a casestudy. The building is made of a basement and three floors, with a total floor area of about 3,000 square meters. The first step has been the determination of the heating and cooling energy loads of the building in a dynamic regime by means, which allows simulating the real energy needs of the building in function of its use. Traditional methodologies, based as they are on steady-state conditions, cannot faithfully reproduce the effects of varying climatic conditions and of inertial properties of the structure. With this model is possible to obtain quite accurate and reliable results that allow identifying effective combinations building-HVAC system. The second step has consisted of using output data obtained as input to the calculation model, which enables to compare different system configurations from the energy, environmental and financial point of view, with an analysis of investment, and operation and maintenance costs, so allowing determining the economic benefit of possible interventions. The classical methodology often leads to the choice of conventional plant systems, while our calculation model provides a financial-economic assessment for innovative energy systems and low environmental impact. Computational analysis can help in the design phase, particularly in the case of complex structures with centralized plant systems, by comparing the data returned by the calculation model for different design options.
Keywords: Energy, Buildings, Systems, Evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20299855 Embodiment Design of an Azimuth-Altitude Solar Tracker
Authors: M. Culman, O. Lengerke
Abstract:
To provide an efficient solar generation system, the embodiment design of a two axis solar tracker for an array of photovoltaic (PV) panels destiny to supply the power demand on off-the-grid areas was developed. Photovoltaic cells have high costs in relation to t low efficiency; and while a lot of research and investment has been made to increases its efficiency a few points, there is a profitable solution that increases by 30-40% the annual power production: two axis solar trackers. A solar tracker is a device that supports a load in a perpendicular position toward the sun during daylight. Mounted on solar trackers, the solar panels remain perpendicular to the incoming sunlight at day and seasons so the maximum amount of energy is outputted. Through a preview research done it was justified why the generation of solar energy through photovoltaic panels mounted on dual axis structures is an attractive solution to bring electricity to remote off-the-grid areas. The work results are the embodiment design of an azimuth-altitude solar tracker to guide an array of photovoltaic panels based on a specific design methodology. The designed solar tracker is mounted on a pedestal that uses two slewing drives‚ with a nominal torque of 1950 Nm‚ to move a solar array that provides 3720 W from 12 PV panels.
Keywords: Azimuth-altitude sun tracker, dual-axis solar tracker, photovoltaic system, solar energy, stand-alone power system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17849854 A Robust Wheel Slip Controller for a Hybrid Braking System
Authors: Martin Ringdorfer, Martin Horn
Abstract:
A robust wheel slip controller for electric vehicles is introduced. The proposed wheel slip controller exploits the dynamics of electric traction drives and conventional hydraulic brakes for achieving maximum energy efficiency and driving safety. Due to the control of single wheel traction motors in combination with a hydraulic braking system, it can be shown, that energy recuperation and vehicle stability control can be realized simultaneously. The derivation of a sliding mode wheel slip controller accessing two drivetrain actuators is outlined and a comparison to a conventionally braked vehicle is shown by means of simulation.Keywords: Wheel slip control, sliding mode control, vehicle dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20509853 Exergetic and Sustainability Evaluation of a Building Heating System in Izmir, Turkey
Authors: Nurdan Yildirim, Arif Hepbasli
Abstract:
Heating, cooling and lighting appliances in buildings account for more than one third of the world’s primary energy demand. Therefore, main components of the building heating systems play an essential role in terms of energy consumption. In this context, efficient energy and exergy utilization in HVAC-R systems has been very essential, especially in developing energy policies towards increasing efficiencies. The main objective of the present study is to assess the performance of a family house with a volume of 326.7 m3 and a net floor area of 121 m2, located in the city of Izmir, Turkey in terms of energetic, exergetic and sustainability aspects. The indoor and exterior air temperatures are taken as 20°C and 1°C, respectively. In the analysis and assessment, various metrics (indices or indicators) such as exergetic efficiency, exergy flexibility ratio and sustainability index are utilized. Two heating options (Case 1: condensing boiler and Case 2: air heat pump) are considered for comparison purposes. The total heat loss rate of the family house is determined to be 3770.72 W. The overall energy efficiencies of the studied cases are calculated to be 49.4% for Case 1 and 54.7% for Case 2. The overall exergy efficiencies, the flexibility factor and the sustainability index of Cases 1 and 2 are computed to be around 3.3%, 0.17 and 1.034, respectively.
Keywords: Buildings, exergy, low exergy, sustainability, efficiency, heating, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20559852 Powering Pacemakers from Heart Pressure Variation with Piezoelectric Energy Harvesters
Authors: A. Mathieu, B. Aubry, E. Chhim, M. Jobe, M. Arnaud
Abstract:
Present project consists in a study and a development of piezoelectric devices for supplying power to new generation pacemakers. They are miniaturized leadless implants without battery placed directly in right ventricle. Amongst different acceptable energy sources in cardiac environment, we choose the solution of a device based on conversion of the energy produced by pressure variation inside the heart into electrical energy. The proposed energy harvesters can meet the power requirements of pacemakers, and can be a good solution to solve the problem of regular surgical operation. With further development, proposed device should provide enough energy to allow pacemakers autonomy, and could be good candidate for next pacemaker generation.Keywords: Energy harvester, heart, leadless pacemaker, piezoelectric cells, pressure variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14369851 Hybrid Heat Pump for Micro Heat Network
Authors: J. M. Counsell, Y. Khalid, M. J. Stewart
Abstract:
Achieving nearly zero carbon heating continues to be identified by UK government analysis as an important feature of any lowest cost pathway to reducing greenhouse gas emissions. Heat currently accounts for 48% of UK energy consumption and approximately one third of UK’s greenhouse gas emissions. Heat Networks are being promoted by UK investment policies as one means of supporting hybrid heat pump based solutions. To this effect the RISE (Renewable Integrated and Sustainable Electric) heating system project is investigating how an all-electric heating sourceshybrid configuration could play a key role in long-term decarbonisation of heat. For the purposes of this study, hybrid systems are defined as systems combining the technologies of an electric driven air source heat pump, electric powered thermal storage, a thermal vessel and micro-heat network as an integrated system. This hybrid strategy allows for the system to store up energy during periods of low electricity demand from the national grid, turning it into a dynamic supply of low cost heat which is utilized only when required. Currently a prototype of such a system is being tested in a modern house integrated with advanced controls and sensors. This paper presents the virtual performance analysis of the system and its design for a micro heat network with multiple dwelling units. The results show that the RISE system is controllable and can reduce carbon emissions whilst being competitive in running costs with a conventional gas boiler heating system.
Keywords: Gas boilers, heat pumps, hybrid heating and thermal storage, renewable integrated& sustainable electric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13139850 Photovoltaic Array Sizing for PV-Electrolyzer
Authors: Panhathai Buasri
Abstract:
Hydrogen that used as fuel in fuel cell vehicles can be produced from renewable sources such as wind, solar, and hydro technologies. PV-electrolyzer is one of the promising methods to produce hydrogen with zero pollution emission. Hydrogen production from a PV-electrolyzer system depends on the efficiency of the electrolyzer and photovoltaic array, and sun irradiance at that site. In this study, the amount of hydrogen is obtained using mathematical equations for difference driving distance and sun peak hours. The results show that the minimum of 99 PV modules are used to generate 1.75 kgH2 per day for two vehicles.Keywords: About four key words or phrases in alphabetical order, separated by commas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17539849 Numerical Investigation of Dynamic Stall over a Wind Turbine Pitching Airfoil by Using OpenFOAM
Authors: Mahbod Seyednia, Shidvash Vakilipour, Mehran Masdari
Abstract:
Computations for two-dimensional flow past a stationary and harmonically pitching wind turbine airfoil at a moderate value of Reynolds number (400000) are carried out by progressively increasing the angle of attack for stationary airfoil and at fixed pitching frequencies for rotary one. The incompressible Navier-Stokes equations in conjunction with Unsteady Reynolds Average Navier-Stokes (URANS) equations for turbulence modeling are solved by OpenFOAM package to investigate the aerodynamic phenomena occurred at stationary and pitching conditions on a NACA 6-series wind turbine airfoil. The aim of this study is to enhance the accuracy of numerical simulation in predicting the aerodynamic behavior of an oscillating airfoil in OpenFOAM. Hence, for turbulence modelling, k-ω-SST with low-Reynolds correction is employed to capture the unsteady phenomena occurred in stationary and oscillating motion of the airfoil. Using aerodynamic and pressure coefficients along with flow patterns, the unsteady aerodynamics at pre-, near-, and post-static stall regions are analyzed in harmonically pitching airfoil, and the results are validated with the corresponding experimental data possessed by the authors. The results indicate that implementing the mentioned turbulence model leads to accurate prediction of the angle of static stall for stationary airfoil and flow separation, dynamic stall phenomenon, and reattachment of the flow on the surface of airfoil for pitching one. Due to the geometry of the studied 6-series airfoil, the vortex on the upper surface of the airfoil during upstrokes is formed at the trailing edge. Therefore, the pattern flow obtained by our numerical simulations represents the formation and change of the trailing-edge vortex at near- and post-stall regions where this process determines the dynamic stall phenomenon.
Keywords: CFD, Moderate Reynolds number, OpenFOAM, pitching oscillation, unsteady aerodynamics, wind turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15479848 The Reconstruction New Agegraphic and Gauss- Bonnet Dark Energy Models with a Special Power Law Expasion
Authors: V. Fayaz , F. Felegary
Abstract:
Here, in this work we study correspondence the energy density New agegraphic and the energy density Gauss- Bonnet models in flat universe. We reconstruct Λ and Λ ω for them with 0 ( ) 0 h a t = a t .
Keywords: dark energy, new age graphic, gauss- bonnet, late time universe
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14919847 Real-time Interactive Ocean Wave Simulation using Multithread
Authors: K. Prachumrak, T. Kanchanapornchai
Abstract:
This research simulates one of the natural phenomena, the ocean wave. Our goal is to be able to simulate the ocean wave at real-time rate with the water surface interacting with objects. The wave in this research is calm and smooth caused by the force of the wind above the ocean surface. In order to make the simulation of the wave real-time, the implementation of the GPU and the multithreading techniques are used here. Based on the fact that the new generation CPUs, for personal computers, have multi cores, they are useful for the multithread. This technique utilizes more than one core at a time. This simulation is programmed by C language with OpenGL. To make the simulation of the wave look more realistic, we applied an OpenGL technique called cube mapping (environmental mapping) to make water surface reflective and more realistic.Keywords: Interactive wave, ocean wave, wind effect, multithread
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24819846 Evaluation of Transfer Capability Considering Uncertainties of System Operating Condition and System Cascading Collapse
Authors: N. A. Salim, M. M. Othman, I. Musirin, M. S. Serwan
Abstract:
Over the past few decades, power system industry in many developing and developed countries has gone through a restructuring process of the industry where they are moving towards deregulated power industry. This situation will lead to competition among the generation and distribution companies to provide quality and efficient production of electric energy, which will reduce the price of electricity. Therefore it is important to obtain an accurate value of the available transfer capability (ATC) and transmission reliability margin (TRM) in order to ensure the effective power transfer between areas during the occurrence of uncertainties in the system. In this paper, the TRM and ATC is determined by taking into consideration the uncertainties of the system operating condition and system cascading collapse by applying the bootstrap technique. A case study of the IEEE RTS-79 is employed to verify the robustness of the technique proposed in the determination of TRM and ATC.
Keywords: Available transfer capability, bootstrap technique, cascading collapse, transmission reliability margin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15589845 Evaporative Air Coolers Optimization for Energy Consumption Reduction and Energy Efficiency Ratio Increment
Authors: Leila Torkaman, Nasser Ghassembaglou
Abstract:
Significant quota of Municipal Electrical Energy consumption is related to Decentralized Air Conditioning which is mostly provided by evaporative coolers. So the aim is to optimize design of air conditioners to increase their efficiencies. To achieve this goal, results of practical standardized tests for 40 evaporative coolers in different types collected and simultaneously results for same coolers based on one of EER (Energy Efficiency Ratio) modeling styles are figured out. By comparing experimental results of different coolers standardized tests with modeling results, preciseness of used model is assessed and after comparing gained preciseness with international standards based on EER for cooling capacity, aeration, and also electrical energy consumption, energy label from A (most effective) to G (less effective) is classified; finally needed methods to optimize energy consumption and coolers’ classification are provided.
Keywords: Cooler, EER, Energy Label, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25669844 An Innovation and Development System for a New Hybrid Composite Technology in Aerospace Industry
Authors: M. Fette, J. P. Wulfsberg, A. Herrmann, R.-H. Ladstaetter
Abstract:
Lightweight design represents an important key to successful implementation of energy-saving, fuel-efficient and environmentally friendly means of transport in the aerospace and automotive industry. In this context the use of carbon fibre reinforced plastics (CFRP) which are distinguished by their outstanding mechanical properties at relatively low weight, promise significant improvements. Due to the reduction of the total mass, with the resulting lowered fuel or energy consumption and CO2 emissions during the operational phase, commercial aircraft will increasingly be made of CFRP. An auspicious technology for the efficient and economic production of high performance thermoset composites and hybrid structures for future lightweight applications is the combination of carbon fibre sheet moulding compound, tailored continuous carbon fibre reinforcements and metallic components in a one-shot pressing and curing process. This paper deals with a hybrid composite technology for aerospace industries, which was developed with the help of a special innovation and development system.
Keywords: Composite, development, hybrid, innovation, system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2599