Search results for: steel channel beam.
1222 Numerical Analysis of Concrete Crash Barriers
Authors: J. Kala, P. Hradil, V. Salajka
Abstract:
Reinforced concrete crash barriers used in road traffic must meet a number of criteria. Crash barriers are laid lengthwise, one behind another, and joined using specially designed steel locks. While developing BSV reinforced concrete crash barriers (type ŽPSV), experiments and calculations aimed to optimize the shape of a newly designed lock and the reinforcement quantity and distribution in a crash barrier were carried out. The tension carrying capacity of two parallelly joined locks was solved experimentally. Based on the performed experiments, adjustments of nonlinear properties of steel were performed in the calculations. The obtained results served as a basis to optimize the lock design using a computational model that takes into account the plastic behaviour of steel and the influence of the surrounding concrete [6]. The response to the vehicle impact has been analyzed using a specially elaborated complex computational model, comprising both the nonlinear model of the damping wall or crash barrier and the detailed model of the vehicle [7].Keywords: Crash Barrier, impact, static analysis, concrete nonlinear model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32441221 Cellulose Nanocrystals Suspensions as Water-Based Lubricants for Slurry Pump Gland Seals
Authors: Mohammad Javad Shariatzadeh, Dana Grecov
Abstract:
The tribological tests were performed on a new tribometer, in order to measure the coefficient of friction of a gland seal packing material on stainless steel shafts in presence of Cellulose Nanocrystal (CNC) suspension as a sustainable, environmentally friendly, water-based lubricant. To simulate the real situation from the slurry pumps, silica sands were used as slurry particles. The surface profiles after tests were measured by interferometer microscope to characterize the surface wear. Moreover, the coefficient of friction and surface wear were measured between stainless steel shaft and chrome steel ball to investigate the tribological effects of CNC in boundary lubrication region. Alignment of nanoparticles in the CNC suspensions are the main reason for friction and wear reduction. The homogeneous concentrated suspensions showed fingerprint patterns of a chiral nematic liquid crystal. These properties made CNC a very good lubricant additive in water.Keywords: Gland seal, lubricant additives, nanocrystalline cellulose, water-based lubricants.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8131220 The Incorporation of In in GaAsN as a Means of N Fraction Calibration
Authors: H. Hashim, B. F. Usher
Abstract:
InGaAsN and GaAsN epitaxial layers with similar nitrogen compositions in a sample were successfully grown on a GaAs (001) substrate by solid source molecular beam epitaxy. An electron cyclotron resonance nitrogen plasma source has been used to generate atomic nitrogen during the growth of the nitride layers. The indium composition changed from sample to sample to give compressive and tensile strained InGaAsN layers. Layer characteristics have been assessed by high-resolution x-ray diffraction to determine the relationship between the lattice constant of the GaAs1-yNy layer and the fraction x of In. The objective was to determine the In fraction x in an InxGa1-xAs1-yNy epitaxial layer which exactly cancels the strain present in a GaAs1-yNy epitaxial layer with the same nitrogen content when grown on a GaAs substrate.Keywords: Indium, molecular beam epitaxy, nitrogen, straincancellation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14131219 A Comparison Study of Electrical Characteristics in Conventional Multiple-gate Silicon Nanowire Transistors
Authors: Fatemeh Karimi, Morteza Fathipour, Hamdam Ghanatian, Vala Fathipour
Abstract:
In this paper electrical characteristics of various kinds of multiple-gate silicon nanowire transistors (SNWT) with the channel length equal to 7 nm are compared. A fully ballistic quantum mechanical transport approach based on NEGF was employed to analyses electrical characteristics of rectangular and cylindrical silicon nanowire transistors as well as a Double gate MOS FET. A double gate, triple gate, and gate all around nano wires were studied to investigate the impact of increasing the number of gates on the control of the short channel effect which is important in nanoscale devices. Also in the case of triple gate rectangular SNWT inserting extra gates on the bottom of device can improve the application of device. The results indicate that by using gate all around structures short channel effects such as DIBL, subthreshold swing and delay reduces.Keywords: SNWT (silicon nanowire transistor), non equilibriumGreen's function (NEGF), double gate (DG), triple gate (TG), multiple gate, cylindrical nano wire (CW), rectangular nano wire(RW), Poisson_ Schrödinger solver, drain induced barrier lowering(DIBL).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20811218 Non-reflection Boundary Conditions for Numerical Simulation of Supersonic Flow
Authors: A. Abdalla, A. Kaltayev
Abstract:
This article presents the boundary conditions for the problem of turbulent supersonic gas flow in a plane channel with a perpendicular injection jets. The non-reflection boundary conditions for direct modeling of compressible viscous gases are studied. A formulation using the NSCBC (Navier- Stocks characteristic boundary conditions) through boundaries is derived for the subsonic inflow and subsonic non-reflection outflow situations. Verification of the constructed algorithm of boundary conditions is carried out by solving a test problem of perpendicular sound of jets injection into a supersonic gas flow in a plane channel.
Keywords: WENO scheme, non-reflection boundary conditions, NSCBC, supersonic flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21961217 A Finite Element Model for Estimating Young-s Modulus of Carbon Nanotube Reinforced Composites Incorporating Elastic Cross-Links
Authors: Kaveh PourAkbar Saffar, Nima JamilPour, Ahmad Raeisi Najafi, Gholamreza Rouhi, Ahmad Reza Arshi, Abdolhossein Fereidoon
Abstract:
The presence of chemical bonding between functionalized carbon nanotubes and matrix in carbon nanotube reinforced composites is modeled by elastic beam elements representing covalent bonding characteristics. Neglecting other reinforcing mechanisms in the composite such as relatively weak interatomic Van der Waals forces, this model shows close results to the Rule of Mixtures model-s prediction for effective Young-s modulus of a Representative Volume Element of composite for small volume fractions (~1%) and high aspect ratios (L/D>200) of CNTs.
Keywords: Beam Element, Carbon Nanotube Reinforced Composite, Cross-link, Young's modulus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23251216 Modeling, Analysis and Control of a Smart Composite Structure
Authors: Nader H. Ghareeb, Mohamed S. Gaith, Sayed M. Soleimani
Abstract:
In modern engineering, weight optimization has a priority during the design of structures. However, optimizing the weight can result in lower stiffness and less internal damping, causing the structure to become excessively prone to vibration. To overcome this problem, active or smart materials are implemented. The coupled electromechanical properties of smart materials, used in the form of piezoelectric ceramics in this work, make these materials well-suited for being implemented as distributed sensors and actuators to control the structural response. The smart structure proposed in this paper is composed of a cantilevered steel beam, an adhesive or bonding layer, and a piezoelectric actuator. The static deflection of the structure is derived as function of the piezoelectric voltage, and the outcome is compared to theoretical and experimental results from literature. The relation between the voltage and the piezoelectric moment at both ends of the actuator is also investigated and a reduced finite element model of the smart structure is created and verified. Finally, a linear controller is implemented and its ability to attenuate the vibration due to the first natural frequency is demonstrated.
Keywords: Active linear control, Lyapunov stability theorem, piezoelectricity, smart structure, static deflection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14971215 Nonlinear Response of Infinite Beams on a Tensionless Extensible Geosynthetic – Reinforced Earth Beds under Moving Load
Authors: Karuppsamy K., Eswara Prasad C. R.
Abstract:
In this paper analysis of an infinite beam resting on tensionless extensible geosynthetic reinforced granular bed overlying soft soil strata under moving load with constant velocity is presented. The beam is subjected to a concentrated load moving with constant velocity. The upper reinforced granular bed is modeled by a rough elastic membrane embedded in Pasternak shear layer overlying a series of compressible nonlinear Winkler springs representing the under-lied very poor soil. The tensionless extensible geosynthetic layer has been assumed to deform such that at interface the geosynthetic and the soil have some deformation. Nonlinear behavior of granular fill and the very poor soil has been considered in the analysis by means of hyperbolic constitutive relationships. Detailed parametric study has been conducted to study the influence of various parameters on the response of soil foundation system under consideration by means of deflection and bending moment in the beam and tension mobilized in the geosynthetic layer. This study clearly observed that the comparisons of tension and tensionless foundation and magnitude of applied load, relative compressibility of granular fill and ultimate resistance of poor soil has significant influence on the response of soil foundation system.
Keywords: Infinite Beams, Tensionless Extensible Geosynthetic, Granular layer, Moving Load and Nonlinear behavior of poor soil
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20481214 The Effect of Ion Nitriding and Carbonitriding on Fretting Fatigue of Steels
Authors: V. Linhart, M.
Abstract:
The paper deals with the effect of ion nitriding and carbonitriding on fatigue strength of steel parts under the fretting conditions. Instrumented fatigue tests were carried out on surface treated flat bars from EA1N and EA4T steels with different strength. The chosen surfacing decrease importantly an unfavorable fretting effect. Nitridation suppressed the unfavorable effect of fretting almost entirely, while the influence of carbonitridation was less striking. The results were compared with those ones obtained on bars without surfacing. The causes of favorable influence of surfacing are discussed.Keywords: Carbonitriding, fatigue, fretting, nitriding, steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23771213 Experimental and Analytical Study of Scrap Tire Rubber Pad for Seismic Isolation
Authors: Huma Kanta Mishra, Akira Igarashi
Abstract:
A seismic isolation pad produced by utilizing the scrap tire rubber which contains interleaved steel reinforcing cords has been proposed. The steel cords are expected to function similar to the steel plates used in conventional laminated rubber bearings. The scrap tire rubber pad (STRP) isolator is intended to be used in low rise residential buildings of highly seismic areas of the developing countries. Experimental investigation was conducted on unbonded STRP isolators, and test results provided useful information including stiffness, damping values and an eventual instability of the isolation unit. Finite element analysis (FE analysis) of STRP isolator was carried out on properly bonded samples. These types of isolators provide positive incremental force resisting capacity up to shear strain level of 155%. This paper briefly discusses the force deformation behavior of bonded STRP isolators including stability of the isolation unit.Keywords: base isolation, buckling load, finite element analysis, STRP isolators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29521212 A Refined Nonlocal Strain Gradient Theory for Assessing Scaling-Dependent Vibration Behavior of Microbeams
Authors: Xiaobai Li, Li Li, Yujin Hu, Weiming Deng, Zhe Ding
Abstract:
A size-dependent Euler–Bernoulli beam model, which accounts for nonlocal stress field, strain gradient field and higher order inertia force field, is derived based on the nonlocal strain gradient theory considering velocity gradient effect. The governing equations and boundary conditions are derived both in dimensional and dimensionless form by employed the Hamilton principle. The analytical solutions based on different continuum theories are compared. The effect of higher order inertia terms is extremely significant in high frequency range. It is found that there exists an asymptotic frequency for the proposed beam model, while for the nonlocal strain gradient theory the solutions diverge. The effect of strain gradient field in thickness direction is significant in low frequencies domain and it cannot be neglected when the material strain length scale parameter is considerable with beam thickness. The influence of each of three size effect parameters on the natural frequencies are investigated. The natural frequencies increase with the increasing material strain gradient length scale parameter or decreasing velocity gradient length scale parameter and nonlocal parameter.Keywords: Euler-Bernoulli Beams, free vibration, higher order inertia, nonlocal strain gradient theory, velocity gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10051211 Numerical Investigation for External Strengthening of Dapped-End Beams
Authors: A. Abdel-Moniem, H. Madkour, K. Farah, A. Abdullah
Abstract:
The reduction in dapped end beams depth nearby the supports tends to produce stress concentration and hence results in shear cracks, if it does not have an adequate reinforcement detailing. This study investigates numerically the efficiency of applying different external strengthening techniques to the dapped end of such beams. A two-dimensional finite element model was built to predict the structural behavior of dapped ends strengthened with different techniques. The techniques included external bonding of the steel angle at the re-entrant corner, un-bounded bolt anchoring, external steel plate jacketing, exterior carbon fiber wrapping and/or stripping and external inclined steel plates. The FE analysis results are then presented in terms of the ultimate load capacities, load-deflection and crack pattern at failure. The results showed that the FE model, at various stages, was found to be comparable to the available test data. Moreover, it enabled the capture of the failure progress, with acceptable accuracy, which is very difficult in a laboratory test.Keywords: Dapped-end beams, finite element, shear failure, strengthening techniques, reinforced concrete, numerical investigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10011210 On the Thermal Behavior of the Slab in a Reheating Furnace with Radiation
Authors: Gyo Woo Lee, Man Young Kim
Abstract:
A mathematical heat transfer model for the prediction of transient heating of the slab in a direct-fired walking beam type reheating furnace has been developed by considering the nongray thermal radiation with given furnace environments. The furnace is modeled as radiating nongray medium with carbon dioxide and water with five-zoned gas temperature and the furnace wall is considered as a constant temperature lower than furnace gas one. The slabs are moving with constant velocity depending on the residence time through the non-firing, charging, preheating, heating, and final soaking zones. Radiative heat flux obtained by considering the radiative heat exchange inside the furnace as well as convective one from the surrounding hot gases are introduced as boundary condition of the transient heat conduction within the slab. After validating thermal radiation model adopted in this work, thermal fields in both model and real reheating furnace are investigated in terms of radiative heat flux in the furnace and temperature inside the slab. The results show that the slab in the furnace can be more heated with higher slab emissivity and residence time.
Keywords: Reheating Furnace, Steel Slab, Radiative Heat Transfer, WSGGM, Emissivity, Residence Time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41741209 Theoretical Analysis of Capacities in Dynamic Spatial Multiplexing MIMO Systems
Authors: Imen Sfaihi, Noureddine Hamdi
Abstract:
In this paper, we investigate the study of techniques for scheduling users for resource allocation in the case of multiple input and multiple output (MIMO) packet transmission systems. In these systems, transmit antennas are assigned to one user or dynamically to different users using spatial multiplexing. The allocation of all transmit antennas to one user cannot take full advantages of multi-user diversity. Therefore, we developed the case when resources are allocated dynamically. At each time slot users have to feed back their channel information on an uplink feedback channel. Channel information considered available in the schedulers is the zero forcing (ZF) post detection signal to interference plus noise ratio. Our analysis study concerns the round robin and the opportunistic schemes. In this paper, we present an overview and a complete capacity analysis of these schemes. The main results in our study are to give an analytical form of system capacity using the ZF receiver at the user terminal. Simulations have been carried out to validate all proposed analytical solutions and to compare the performance of these schemes.Keywords: MIMO, scheduling, ZF receiver, spatial multiplexing, round robin scheduling, opportunistic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13171208 EEG-Based Fractal Analysis of Different Motor Imagery Tasks using Critical Exponent Method
Authors: Montri Phothisonothai, Masahiro Nakagawa
Abstract:
The objective of this paper is to characterize the spontaneous Electroencephalogram (EEG) signals of four different motor imagery tasks and to show hereby a possible solution for the present binary communication between the brain and a machine ora Brain-Computer Interface (BCI). The processing technique used in this paper was the fractal analysis evaluated by the Critical Exponent Method (CEM). The EEG signal was registered in 5 healthy subjects,sampling 15 measuring channels at 1024 Hz.Each channel was preprocessed by the Laplacian space ltering so as to reduce the space blur and therefore increase the spaceresolution. The EEG of each channel was segmented and its Fractaldimension (FD) calculated. The FD was evaluated in the time interval corresponding to the motor imagery and averaged out for all the subjects (each channel). In order to characterize the FD distribution,the linear regression curves of FD over the electrodes position were applied. The differences FD between the proposed mental tasks are quantied and evaluated for each experimental subject. The obtained results of the proposed method are a substantial fractal dimension in the EEG signal of motor imagery tasks and can be considerably utilized as the multiple-states BCI applications.
Keywords: electroencephalogram (EEG), motor imagery tasks, mental tasks, biomedical signals processing, human-machine interface, fractal analysis, critical exponent method (CEM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22591207 Seismic Behavior Evaluation of Semi-Rigid Steel Frames with Knee Bracing by Modal Pushover Analysis (MPA)
Authors: Farzan Namvari, Panam Zarfam
Abstract:
Nowadays use of a new structural bracing system called 'Knee Bracing System' have taken the specialists attention too much. On the other hand nonlinear static analysis procedures in estimate structures performance in earthquake time have taken attention too much. One of these procedure is modal pushover analysis (MPA) procedure. The accuracy of MPA procedure for simple steel moment resisting frame has been verified and considered in Chintanapakdee and Chopra-s article in 2003. Since the accuracy of MPA procedure has not verified for semi-rigid steel frames with knee bracing, we are going to get through with this matter in this study. For this purpose, the selected structures are four frames with different heights, 5 to 20 stories, will be designed according to AISC criteria. Then MPA procedure is used for the same frames with different rigidity percentiles of connections. The results of seismic responses are compared with dynamic nonlinear response history analysis as exact procedure and accuracy of MPA procedure is evaluated. It seems that MPA procedure accuracy will come down by reduction of the rigidity percentiles of semi-rigid connections.Keywords: Knee Bracing, Modal Pushover Analysis, SeismicBehavior, Semi-Rigid Connections.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21351206 Methods for Manufacture of Corrugated Wire Mesh Laminates
Authors: Jeongho Choi, Krishna Shankar, Alan Fien, Andrew Neely
Abstract:
Corrugated wire mesh laminates (CWML) are a class of engineered open cell structures that have potential for applications in many areas including aerospace and biomedical engineering. Two different methods of fabricating corrugated wire mesh laminates from stainless steel, one using a high temperature Lithobraze alloy and the other using a low temperature Eutectic solder for joining the corrugated wire meshes are described herein. Their implementation is demonstrated by manufacturing CWML samples of 304 and 316 stainless steel (SST). It is seen that due to the facility of employing wire meshes of different densities and wire diameters, it is possible to create CWML laminates with a wide range of effective densities. The fabricated laminates are tested under uniaxial compression. The variation of the compressive yield strength with relative density of the CWML is compared to the theory developed by Gibson and Ashby for open cell structures [22]. It is shown that the compressive strength of the corrugated wire mesh laminates can be described using the same equations by using an appropriate value for the linear coefficient in the Gibson-Ashby model.Keywords: cellular solids, corrugation, foam, open-cell, metal mesh, laminate, stainless steel
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22081205 Nonlinear Dynamics of Cracked RC Beams under Harmonic Excitation
Authors: Atul Krishna Banik
Abstract:
Nonlinear response behaviour of a cracked RC beam under harmonic excitation is analysed to investigate various instability phenomena like, bifurcation, jump phenomena etc. The nonlinearity of the system arises due to opening and closing of the cracks in the RC beam and is modelled as a cubic polynomial. In order to trace different branches at the bifurcation point on the response curve (amplitude versus frequency of excitation plot), an arc length continuation technique along with the incremental harmonic balance (IHBC) method is employed. The stability of the solution is investigated by the Floquet theory using Hsu-s scheme. The periodic solutions obtained by the IHBC method are compared with these obtained by the numerical integration of the equation of motion. Characteristics of solutions fold bifurcation, jump phenomena and from stable to unstable zones are identified.
Keywords: Incremental harmonic balance, arc-length continuation, bifurcation, jump phenomena.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15221204 Fracture Mechanics Modeling of a Shear-Cracked RC Beams Shear-Strengthened with FRP Sheets
Authors: Shahriar Shahbazpanahi, Alaleh Kamgar
Abstract:
So far, the conventional experimental and theoretical analysis in fracture mechanics have been applied to study concrete flexural- cracked beams, which are strengthened using fiber reinforced polymer (FRP) composite sheets. However, there is still little knowledge about the shear capacity of a side face FRP- strengthened shear-cracked beam. A numerical analysis is herein presented to model the fracture mechanics of a four-point RC beam, with two inclined initial notch on the supports, which is strengthened with side face FRP sheets. In the present study, the shear crack is forced to conduct by using an initial notch in supports. The ABAQUS software is used to model crack propagation by conventional cohesive elements. It is observed that the FRP sheets play important roles in preventing the propagation of shear cracks.
Keywords: Crack, FRP, shear, strengthening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11921203 Finite Element Study of a DfD Beam-Column Connection
Authors: Zhi Sheng Lin, K. C. G. Ong, Lado Riannevo Chandra, Bee Hong Angeline Tan, Chat Tim Tam, Sze Dai Pang
Abstract:
Design for Disassembly (DfD) aims to reuse the structural components instead of demolition followed by recycling of the demolition debris. This concept preserves the invested embodied energy of materials, thus reducing inputs of new embodied energy during materials reprocessing or remanufacturing. Both analytical and experimental research on a proposed DfD beam-column connection for use in residential apartments is currently investigated at the National University of Singapore in collaboration with the Housing and Development Board of Singapore. The present study reports on the results of a numerical analysis of the proposed connection utilizing finite element analysis. The numerical model was calibrated and validated by comparison against experimental results. Results of a parametric study will also be presented and discussed.Keywords: Design for Disassembly (DfD), finite element analysis, parametric study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20621202 Deicing and Corrosive Performances of Calcium Acetate Deicer Made from Bamboo-Vinegar
Authors: Xinyuan Jiang, Genan Li, Zhiping Wu
Abstract:
Calcium magnesium acetate (CMA) is environmentally benign deicing chemicals that can replace sodium chloride that is widely used on roads and highways at present for snow and ice control to provide safe driving conditions during winter. The price of CMA from petroleum-derived acetic acid is quite expensive. The bamboo vinegar is the by-product from bamboo charcoal production. The bamboo vinegar was used to prepare calcium acetate as raw materials, and its deicing and corrosive performances were studied in this paper. The results show that the freezing temperature of calcium acetate is lower than that of sodium chloride when they have same molar concentration, the deicing performance of calcium acetate is better than that of sodium chloride when they have same moles, while the deicing performance of sodium chloride is better than that of calcium acetate. The corrosion of sodium chloride on iron-nail and steel-nail is larger than that of calcium acetate whether they have same mass concentration or same molar concentration, and the corrosion of sodium chloride and calcium acetate on iron-nail is larger than that on steel-nail, and calcium acetate almost hasn't corrosion on steel-nail.Keywords: bamboo vinegar, calcium acetate, corrosion, deicer, deicing performance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25591201 Study of the Tribological Behavior of a Pin on Disc Type of Contact
Authors: S. Djebali, S. Larbi, A. Bilek
Abstract:
The present work aims at contributing to the study of the complex phenomenon of wear of pin on disc contact in dry sliding friction between two material couples (bronze/steel and unsaturated polyester virgin and charged with graphite powder/steel). The work consists of the determination of the coefficient of friction, the study of the influence of the tribological parameters on this coefficient and the determination of the mass loss and the wear rate of the pin. This study is also widened to the highlighting of the influence of the addition of graphite powder on the tribological properties of the polymer constituting the pin. The experiments are carried out on a pin-disc type tribometer that we have designed and manufactured. Tests are conducted according to the standards DIN 50321 and DIN EN 50324. The discs are made of annealed XC48 steel and quenched and tempered XC48 steel. The main results are described here after. The increase of the normal load and the sliding speed causes the increase of the friction coefficient, whereas the increase of the percentage of graphite and the hardness of the disc surface contributes to its reduction. The mass loss also increases with the normal load. The influence of the normal load on the friction coefficient is more significant than that of the sliding speed. The effect of the sliding speed decreases for large speed values. The increase of the amount of graphite powder leads to a decrease of the coefficient of friction, the mass loss and the wear rate. The addition of graphite to the UP resin is beneficial; it plays the role of solid lubricant.
Keywords: Friction coefficients, mass loss, wear rate, bronze, polyester, graphite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12701200 Operation Stability Enhancement in Once-Through Micro Evaporators
Authors: Cor M. Rops, Giaco C. Oosterbaan, Cees W.M. v/d Geld
Abstract:
Equipment miniaturisation offers several opportunities such as an increased surface-to-volume ratio and higher heat transfer coefficients. However, moving towards small-diameter channels demands extra attention to fouling, reliability and stable operation of the system. The present investigation explores possibilities to enhance the stability of the once-through micro evaporator by reducing its flow boiling induced pressure fluctuations. Experimental comparison shows that the measured reduction factor approaches a theoretically derived value. Pressure fluctuations are reduced by a factor of ten in the solid conical channel and a factor of 15 in the porous conical channel. This presumably leads to less backflow and therefore to a better flow control.
Keywords: Flow boiling, Operation stability, Microfluidics, Microchannels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16431199 High Performance Fibre Reinforced Alkali Activated Slag Concrete
Authors: A. Sivakumar, K. Srinivasan
Abstract:
The main objective of the study is focused in producing slag based geopolymer concrete obtained with the addition of alkali activator. Test results indicated that the reaction of silicates in slag is based on the reaction potential of sodium hydroxide and the formation of alumino-silicates. The study also comprises on the evaluation of the efficiency of polymer reaction in terms of the strength gain properties for different geopolymer mixtures. Geopolymer mixture proportions were designed for different binder to total aggregate ratio (0.3 & 0.45) and fine to coarse aggregate ratio (0.4 & 0.8). Geopolymer concrete specimens casted with normal curing conditions reported a maximum 28 days compressive strength of 54.75 MPa. The addition of glued steel fibres at 1.0% Vf in geopolymer concrete showed reasonable improvements on the compressive strength, split tensile strength and flexural properties of different geopolymer mixtures. Further, comparative assessment was made for different geopolymer mixtures and the reinforcing effects of steel fibres were investigated in different concrete matrix.
Keywords: Accelerators, Alkali activators, Geopolymer, Hot air oven curing, Polypropylene fibres, Slag, Steam curing, Steel fibres.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27951198 The Design of a Die for the Processing of Aluminum through Equal Channel Angular Pressing
Authors: P. G. F. Siqueira, N. G. S. Almeida, P. M. A. Stemler, P. R. Cetlin, M. T. P. Aguilar
Abstract:
The processing of metals through Equal Channel Angular Pressing (ECAP) leads to their remarkable strengthening. The ECAP dies control the amount of strain imposed on the material through its geometry, especially through the angle between the die channels, and thus the microstructural and mechanical properties evolution of the material. The present study describes the design of an ECAP die whose utilization and maintenance are facilitated, and that also controls the eventual undesired flow of the material during processing. The proposed design was validated through numerical simulations procedures using commercial software. The die was manufactured according to the present design and tested. Tests using aluminum alloys also indicated to be suitable for the processing of higher strength alloys.
Keywords: ECAP, mechanical design, numerical methods, SPD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7861197 Accelerating Side Channel Analysis with Distributed and Parallelized Processing
Authors: Kyunghee Oh, Dooho Choi
Abstract:
Although there is no theoretical weakness in a cryptographic algorithm, Side Channel Analysis can find out some secret data from the physical implementation of a cryptosystem. The analysis is based on extra information such as timing information, power consumption, electromagnetic leaks or even sound which can be exploited to break the system. Differential Power Analysis is one of the most popular analyses, as computing the statistical correlations of the secret keys and power consumptions. It is usually necessary to calculate huge data and takes a long time. It may take several weeks for some devices with countermeasures. We suggest and evaluate the methods to shorten the time to analyze cryptosystems. Our methods include distributed computing and parallelized processing.
Keywords: DPA, distributed computing, parallelized processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19031196 Data-driven ASIC for Multichannel Sensors
Authors: Eduard Atkin, Alexander Klyuev, Vitaly Shumikhin
Abstract:
An approach and its implementation in 0.18 m CMOS process of the multichannel ASIC for capacitive (up to 30 pF) sensors are described in the paper. The main design aim was to study an analog data-driven architecture. The design was done for an analog derandomizing function of the 128 to 16 structure. That means that the ASIC structure should provide a parallel front-end readout of 128 input analog sensor signals and after the corresponding fast commutation with appropriate arbitration logic their processing by means of 16 output chains, including analog-to-digital conversion. The principal feature of the ASIC is a low power consumption within 2 mW/channel (including a 9-bit 20Ms/s ADC) at a maximum average channel hit rate not less than 150 kHz.
Keywords: Data-driven architecture, derandomizer, multichannel sensor readout
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14231195 Experimental Investigation on Flexural Behaviors in Framed Structure of PST Method
Authors: S. Hong, H. Kim, D. Cho, S. Park
Abstract:
Existing underground pipe jacking methods use a reinforcing rod in a steel tube to obtain structural stiffness. However, some problems such as inconvenience of works and expensive materials resulted from limited working space and reinforcing works are existed. To resolve these problems, a new pipe jacking method, namely PST (Prestressed Segment Tunnel) method, was developed which used joint to connect the steel segment and form erection structure. For evaluating the flexural capacity of the PST method structure, a experimental test was conducted. The parameters considered in the test were span-to-depth ratio of segment, diameter of steel tube at the corner, prestressing force, and welding of joint. The flexural behaviours with the effect of load capacity in serviceability state according to different parameters were examined.. The frame with long segments could increase flexural stiffness and the specimen with large diameter of concave corner showed excellent resistance ability to the negative moment. In addition, welding of joints increased the flexural capacity.Keywords: PST method, Pipe jacking method, Flexural behavior, Prestressed concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15631194 Diagonal Crack Width of RC Members with High Strength Materials
Authors: J. Y. Lee, H. S. Lim, S. H. Yoon
Abstract:
This paper presents an analysis of the diagonal crack widths of RC members with various types of materials by simulating a compatibility-aided truss model. The analytical results indicated that the diagonal crack width was influenced by not only the shear reinforcement ratio but also the yield strength of shear reinforcement and the compressive strength of concrete. The yield strength of shear reinforcement and the compressive strength of concrete decreased the diagonal shear crack width of RC members for the same shear force because of the change of shear failure modes. However, regarding the maximum shear crack width at shear failure, the shear crack width of the beam with high strength materials was greater than that of the beam with normal strength materials.Keywords: Diagonal crack width, high strength stirrups, high strength concrete, RC members, shear behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13631193 X-Ray Fluorescence Molecular Imaging with Improved Sensitivity for Biomedical Applications
Authors: Guohua Cao, Xu Dong
Abstract:
X-ray Fluorescence Molecular Imaging (XFMI) holds great promise as a low-cost molecular imaging modality for biomedical applications with high chemical sensitivity. However, for in vivo biomedical applications, a key technical bottleneck is the relatively low chemical sensitivity of XFMI, especially at a reasonably low radiation dose. In laboratory x-ray source based XFMI, one of the main factors that limits the chemical sensitivity of XFMI is the scattered x-rays. We will present our latest findings on improving the chemical sensitivity of XFMI using excitation beam spectrum optimization. XFMI imaging experiments on two mouse-sized phantoms were conducted at three different excitation beam spectra. Our results show that the minimum detectable concentration (MDC) of iodine can be readily increased by five times via excitation spectrum optimization. Findings from this investigation could find use for in vivo pre-clinical small-animal XFMI in the future.Keywords: Molecular imaging, X-ray fluorescence, chemical sensitivity, X-ray scattering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 943