Search results for: Parameter Selection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2088

Search results for: Parameter Selection

1428 Financing Decision and Productivity Growth for the Venture Capital Industry Using High-Order Fuzzy Time Series

Authors: Shang-En Yu

Abstract:

Human society, there are many uncertainties, such as economic growth rate forecast of the financial crisis, many scholars have, since the the Song Chissom two scholars in 1993 the concept of the so-called fuzzy time series (Fuzzy Time Series)different mode to deal with these problems, a previous study, however, usually does not consider the relevant variables selected and fuzzy process based solely on subjective opinions the fuzzy semantic discrete, so can not objectively reflect the characteristics of the data set, in addition to carrying outforecasts are often fuzzy rules as equally important, failed to consider the importance of each fuzzy rule. For these reasons, the variable selection (Factor Selection) through self-organizing map (Self-Organizing Map, SOM) and proposed high-end weighted multivariate fuzzy time series model based on fuzzy neural network (Fuzzy-BPN), and using the the sequential weighted average operator (Ordered Weighted Averaging operator, OWA) weighted prediction. Therefore, in order to verify the proposed method, the Taiwan stock exchange (Taiwan Stock Exchange Corporation) Taiwan Weighted Stock Index (Taiwan Stock Exchange Capitalization Weighted Stock Index, TAIEX) as experimental forecast target, in order to filter the appropriate variables in the experiment Finally, included in other studies in recent years mode in conjunction with this study, the results showed that the predictive ability of this study further improve.

Keywords: Heterogeneity, residential mortgage loans, foreclosure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1387
1427 Adaptive Shape Parameter (ASP) Technique for Local Radial Basis Functions (RBFs) and Their Application for Solution of Navier Strokes Equations

Authors: A. Javed, K. Djidjeli, J. T. Xing

Abstract:

The concept of adaptive shape parameters (ASP) has been presented for solution of incompressible Navier Strokes equations using mesh-free local Radial Basis Functions (RBF). The aim is to avoid ill-conditioning of coefficient matrices of RBF weights and inaccuracies in RBF interpolation resulting from non-optimized shape of basis functions for the cases where data points (or nodes) are not distributed uniformly throughout the domain. Unlike conventional approaches which assume globally similar values of RBF shape parameters, the presented ASP technique suggests that shape parameter be calculated exclusively for each data point (or node) based on the distribution of data points within its own influence domain. This will ensure interpolation accuracy while still maintaining well conditioned system of equations for RBF weights. Performance and accuracy of ASP technique has been tested by evaluating derivatives and laplacian of a known function using RBF in Finite difference mode (RBFFD), with and without the use of adaptivity in shape parameters. Application of adaptive shape parameters (ASP) for solution of incompressible Navier Strokes equations has been presented by solving lid driven cavity flow problem on mesh-free domain using RBF-FD. The results have been compared for fixed and adaptive shape parameters. Improved accuracy has been achieved with the use of ASP in RBF-FD especially at regions where larger gradients of field variables exist.

Keywords: CFD, Meshless Particle Method, Radial Basis Functions, Shape Parameters

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2828
1426 Neural Network Models for Actual Cost and Actual Duration Estimation in Construction Projects: Findings from Greece

Authors: Panagiotis Karadimos, Leonidas Anthopoulos

Abstract:

Predicting the actual cost and duration in construction projects concern a continuous and existing problem for the construction sector. This paper addresses this problem with modern methods and data available from past public construction projects. 39 bridge projects, constructed in Greece, with a similar type of available data were examined. Considering each project’s attributes with the actual cost and the actual duration, correlation analysis is performed and the most appropriate predictive project variables are defined. Additionally, the most efficient subgroup of variables is selected with the use of the WEKA application, through its attribute selection function. The selected variables are used as input neurons for neural network models through correlation analysis. For constructing neural network models, the application FANN Tool is used. The optimum neural network model, for predicting the actual cost, produced a mean squared error with a value of 3.84886e-05 and it was based on the budgeted cost and the quantity of deck concrete. The optimum neural network model, for predicting the actual duration, produced a mean squared error with a value of 5.89463e-05 and it also was based on the budgeted cost and the amount of deck concrete.

Keywords: Actual cost and duration, attribute selection, bridge projects, neural networks, predicting models, FANN TOOL, WEKA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1226
1425 Cloud Enterprise Application Provider Selection Model for the Small and Medium Enterprise: A Pilot Study

Authors: Rowland R. Ogunrinde, Yusmadi Y. Jusoh, Noraini Che Pa, Wan Nurhayati W. Rahman, Azizol B. Abdullah

Abstract:

Enterprise Applications (EAs) aid the organizations achieve operational excellence and competitive advantage. Over time, most Small and Medium Enterprises (SMEs), which are known to be the major drivers of most thriving global economies, use the costly on-premise versions of these applications thereby making business difficult to competitively thrive in the same market environment with their large enterprise counterparts. The advent of cloud computing presents the SMEs an affordable offer and great opportunities as such EAs can be cloud-hosted and rented on a pay-per-use basis which does not require huge initial capital. However, as there are numerous Cloud Service Providers (CSPs) offering EAs as Software-as-a-Service (SaaS), there is a challenge of choosing a suitable provider with Quality of Service (QoS) that meet the organizations’ customized requirements. The proposed model takes care of that and goes a step further to select the most affordable among a selected few of the CSPs. In the earlier stage, before developing the instrument and conducting the pilot test, the researchers conducted a structured interview with three experts to validate the proposed model. In conclusion, the validity and reliability of the instrument were tested through experts, typical respondents, and analyzed with SPSS 22. Results confirmed the validity of the proposed model and the validity and reliability of the instrument.

Keywords: Cloud service provider, enterprise applications, quality of service, selection criteria, small and medium enterprise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 789
1424 Adaptive Kalman Filter for Noise Estimation and Identification with Bayesian Approach

Authors: Farhad Asadi, S. Hossein Sadati

Abstract:

Bayesian approach can be used for parameter identification and extraction in state space models and its ability for analyzing sequence of data in dynamical system is proved in different literatures. In this paper, adaptive Kalman filter with Bayesian approach for identification of variances in measurement parameter noise is developed. Next, it is applied for estimation of the dynamical state and measurement data in discrete linear dynamical system. This algorithm at each step time estimates noise variance in measurement noise and state of system with Kalman filter. Next, approximation is designed at each step separately and consequently sufficient statistics of the state and noise variances are computed with a fixed-point iteration of an adaptive Kalman filter. Different simulations are applied for showing the influence of noise variance in measurement data on algorithm. Firstly, the effect of noise variance and its distribution on detection and identification performance is simulated in Kalman filter without Bayesian formulation. Then, simulation is applied to adaptive Kalman filter with the ability of noise variance tracking in measurement data. In these simulations, the influence of noise distribution of measurement data in each step is estimated, and true variance of data is obtained by algorithm and is compared in different scenarios. Afterwards, one typical modeling of nonlinear state space model with inducing noise measurement is simulated by this approach. Finally, the performance and the important limitations of this algorithm in these simulations are explained. 

Keywords: adaptive filtering, Bayesian approach Kalman filtering approach, variance tracking

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 618
1423 Feature Based Unsupervised Intrusion Detection

Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein

Abstract:

The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.

Keywords: Information Gain (IG), Intrusion Detection System (IDS), K-means Clustering, Weka.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2774
1422 Hybridization and Evaluation of Jatropha (Jatropha curcas L.) to Improve High Yield Varieties in Indonesia

Authors: Rully D. Purwati, Tantri D. A. Anggraeni, Bambang Heliyanto, M. Machfud, Joko Hartono

Abstract:

Jatropha curcas L. is one of the crops producing non edible oil which is potential for bio-energy. Jatropha cultivation and development program in Indonesia is facing several problems especially low seed yield resulting in inefficient crop cultivation cost. To cope with the problem, development of high yielding varieties is necessary. Development of varieties to improve seed yield was conducted by hybridization and selection, and resulted in 14 potential genotypes. The yield potential of the 14 genotypes were evaluated and compared with two check varieties. The objective of the evaluation was to find Jatropha hybrids with some characters i.e. productivity higher than check varieties, oil content > 40% and harvesting age ≤ 110 days. Hybridization and individual plant selection were carried out from 2010 to 2014. Evaluation of high yield was conducted in Asembagus experimental station, Situbondo, East Java in three years (2015-2017). The experimental designed was Randomized Complete Block Design with three replication and plot size of 10 m x 8 m. The characters observed were number of capsules per plant, dry seed yield (kg/ha) and seed oil content (%). The results of this experiment indicated that all the hybrids evaluated have higher productivity than check variety IP-3A. There were two superior hybrids i.e. HS-49xSP-65/32 and HS-49xSP-19/28 with highest seed yield per hectare and number of capsules per plant during three years.

Keywords: Jatropha, biodiesel, hybrid, high seed yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 764
1421 Behavioral Analysis of Team Members in Virtual Organization based on Trust Dimension and Learning

Authors: Indiramma M., K. R. Anandakumar

Abstract:

Trust management and Reputation models are becoming integral part of Internet based applications such as CSCW, E-commerce and Grid Computing. Also the trust dimension is a significant social structure and key to social relations within a collaborative community. Collaborative Decision Making (CDM) is a difficult task in the context of distributed environment (information across different geographical locations) and multidisciplinary decisions are involved such as Virtual Organization (VO). To aid team decision making in VO, Decision Support System and social network analysis approaches are integrated. In such situations social learning helps an organization in terms of relationship, team formation, partner selection etc. In this paper we focus on trust learning. Trust learning is an important activity in terms of information exchange, negotiation, collaboration and trust assessment for cooperation among virtual team members. In this paper we have proposed a reinforcement learning which enhances the trust decision making capability of interacting agents during collaboration in problem solving activity. Trust computational model with learning that we present is adapted for best alternate selection of new project in the organization. We verify our model in a multi-agent simulation where the agents in the community learn to identify trustworthy members, inconsistent behavior and conflicting behavior of agents.

Keywords: Collaborative Decision making, Trust, Multi Agent System (MAS), Bayesian Network, Reinforcement Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
1420 Maximum Water Hammer Sensitivity Analysis

Authors: Jalil Emadi, Abbas Solemani

Abstract:

Pressure waves and Water Hammer occur in a pumping system when valves are closed or opened suddenly or in the case of sudden failure of pumps. Determination of maximum water hammer is considered one of the most important technical and economical items of which engineers and designers of pumping stations and conveyance pipelines should take care. Hammer Software is a recent application used to simulate water hammer. The present study focuses on determining significance of each input parameter of the application relative to the maximum amount of water hammer estimated by the software. The study determines estimated maximum water hammer variations due to variations of input parameters including water temperature, pipe type, thickness and diameter, electromotor rpm and power, and moment of inertia of electromotor and pump. In our study, Kuhrang Pumping Station was modeled using WaterGEMS Software. The pumping station is characterized by total discharge of 200 liters per second, dynamic height of 194 meters and 1.5 kilometers of steel conveyance pipeline and transports water to Cheshme Morvarid for farmland irrigation. The model was run in steady hydraulic condition and transferred to Hammer Software. Then, the model was run in several unsteady hydraulic conditions and sensitivity of maximum water hammer to each input parameter was calculated. It is shown that parameters to which maximum water hammer is most sensitive are moment of inertia of pump and electromotor, diameter, type and thickness of pipe and water temperature, respectively.

Keywords: Pressure Wave, Water Hammer, Sensitivity Analysis, Hammer Software, Kuhrang, Cheshme Morvarid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3274
1419 Feature Reduction of Nearest Neighbor Classifiers using Genetic Algorithm

Authors: M. Analoui, M. Fadavi Amiri

Abstract:

The design of a pattern classifier includes an attempt to select, among a set of possible features, a minimum subset of weakly correlated features that better discriminate the pattern classes. This is usually a difficult task in practice, normally requiring the application of heuristic knowledge about the specific problem domain. The selection and quality of the features representing each pattern have a considerable bearing on the success of subsequent pattern classification. Feature extraction is the process of deriving new features from the original features in order to reduce the cost of feature measurement, increase classifier efficiency, and allow higher classification accuracy. Many current feature extraction techniques involve linear transformations of the original pattern vectors to new vectors of lower dimensionality. While this is useful for data visualization and increasing classification efficiency, it does not necessarily reduce the number of features that must be measured since each new feature may be a linear combination of all of the features in the original pattern vector. In this paper a new approach is presented to feature extraction in which feature selection, feature extraction, and classifier training are performed simultaneously using a genetic algorithm. In this approach each feature value is first normalized by a linear equation, then scaled by the associated weight prior to training, testing, and classification. A knn classifier is used to evaluate each set of feature weights. The genetic algorithm optimizes a vector of feature weights, which are used to scale the individual features in the original pattern vectors in either a linear or a nonlinear fashion. By this approach, the number of features used in classifying can be finely reduced.

Keywords: Feature reduction, genetic algorithm, pattern classification, nearest neighbor rule classifiers (k-NNR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
1418 Path-Tracking Controller for Tracked Mobile Robot on Rough Terrain

Authors: Toshifumi Hiramatsu, Satoshi Morita, Manuel Pencelli, Marta Niccolini, Matteo Ragaglia, Alfredo Argiolas

Abstract:

Automation technologies for agriculture field are needed to promote labor-saving. One of the most relevant problems in automated agriculture is represented by controlling the robot along a predetermined path in presence of rough terrain or incline ground. Unfortunately, disturbances originating from interaction with the ground, such as slipping, make it quite difficult to achieve the required accuracy. In general, it is required to move within 5-10 cm accuracy with respect to the predetermined path. Moreover, lateral velocity caused by gravity on the incline field also affects slipping. In this paper, a path-tracking controller for tracked mobile robots moving on rough terrains of incline field such as vineyard is presented. The controller is composed of a disturbance observer and an adaptive controller based on the kinematic model of the robot. The disturbance observer measures the difference between the measured and the reference yaw rate and linear velocity in order to estimate slip. Then, the adaptive controller adapts “virtual” parameter of the kinematics model: Instantaneous Centers of Rotation (ICRs). Finally, target angular velocity reference is computed according to the adapted parameter. This solution allows estimating the effects of slip without making the model too complex. Finally, the effectiveness of the proposed solution is tested in a simulation environment.

Keywords: Agricultural robot, autonomous control, path-tracking control, tracked mobile robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1133
1417 Limiting Fiber Extensibility as Parameter for Damage in Venous Wall

Authors: Lukas Horny, Rudolf Zitny, Hynek Chlup, Tomas Adamek, Michal Sara

Abstract:

An inflation–extension test with human vena cava inferior was performed with the aim to fit a material model. The vein was modeled as a thick–walled tube loaded by internal pressure and axial force. The material was assumed to be an incompressible hyperelastic fiber reinforced continuum. Fibers are supposed to be arranged in two families of anti–symmetric helices. Considered anisotropy corresponds to local orthotropy. Used strain energy density function was based on a concept of limiting strain extensibility. The pressurization was comprised by four pre–cycles under physiological venous loading (0 – 4kPa) and four cycles under nonphysiological loading (0 – 21kPa). Each overloading cycle was performed with different value of axial weight. Overloading data were used in regression analysis to fit material model. Considered model did not fit experimental data so good. Especially predictions of axial force failed. It was hypothesized that due to nonphysiological values of loading pressure and different values of axial weight the material was not preconditioned enough and some damage occurred inside the wall. A limiting fiber extensibility parameter Jm was assumed to be in relation to supposed damage. Each of overloading cycles was fitted separately with different values of Jm. Other parameters were held the same. This approach turned out to be successful. Variable value of Jm can describe changes in the axial force – axial stretch response and satisfy pressure – radius dependence simultaneously.

Keywords: Constitutive model, damage, fiber reinforcedcomposite, limiting fiber extensibility, preconditioning, vena cavainferior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
1416 Estimation of the Mean of the Selected Population

Authors: Kalu Ram Meena, Aditi Kar Gangopadhyay, Satrajit Mandal

Abstract:

Two normal populations with different means and same variance are considered, where the variance is known. The population with the smaller sample mean is selected. Various estimators are constructed for the mean of the selected normal population. Finally, they are compared with respect to the bias and MSE risks by the mehod of Monte-Carlo simulation and their performances are analysed with the help of graphs.

Keywords: Estimation after selection, Brewster-Zidek technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404
1415 Decision Support System for Flood Crisis Management using Artificial Neural Network

Authors: Muhammad Aqil, Ichiro Kita, Akira Yano, Nishiyama Soichi

Abstract:

This paper presents an alternate approach that uses artificial neural network to simulate the flood level dynamics in a river basin. The algorithm was developed in a decision support system environment in order to enable users to process the data. The decision support system is found to be useful due to its interactive nature, flexibility in approach and evolving graphical feature and can be adopted for any similar situation to predict the flood level. The main data processing includes the gauging station selection, input generation, lead-time selection/generation, and length of prediction. This program enables users to process the flood level data, to train/test the model using various inputs and to visualize results. The program code consists of a set of files, which can as well be modified to match other purposes. This program may also serve as a tool for real-time flood monitoring and process control. The running results indicate that the decision support system applied to the flood level seems to have reached encouraging results for the river basin under examination. The comparison of the model predictions with the observed data was satisfactory, where the model is able to forecast the flood level up to 5 hours in advance with reasonable prediction accuracy. Finally, this program may also serve as a tool for real-time flood monitoring and process control.

Keywords: Decision Support System, Neural Network, Flood Level

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
1414 Characterization of Printed Reflectarray Elements on Variable Substrate Thicknesses

Authors: M. Y. Ismail, Arslan Kiyani

Abstract:

Narrow bandwidth and high loss performance limits the use of reflectarray antennas in some applications. This article reports on the feasibility of employing strategic reflectarray resonant elements to characterize the reflectivity performance of reflectarrays in X-band frequency range. Strategic reflectarray resonant elements incorporating variable substrate thicknesses ranging from 0.016λ to 0.052λ have been analyzed in terms of reflection loss and reflection phase performance. The effect of substrate thickness has been validated by using waveguide scattering parameter technique. It has been demonstrated that as the substrate thickness is increased from 0.508mm to 1.57mm the measured reflection loss of dipole element decreased from 5.66dB to 3.70dB with increment in 10% bandwidth of 39MHz to 64MHz. Similarly the measured reflection loss of triangular loop element is decreased from 20.25dB to 7.02dB with an increment in 10% bandwidth of 12MHz to 23MHz. The results also show a significant decrease in the slope of reflection phase curve as well. A Figure of Merit (FoM) has also been defined for the comparison of static phase range of resonant elements under consideration. Moreover, a novel numerical model based on analytical equations has been established incorporating the material properties of dielectric substrate and electrical properties of different reflectarray resonant elements to obtain the progressive phase distribution for each individual reflectarray resonant element.

Keywords: Numerical model, Reflectarray resonant elements, Scattering parameter measurements, Variable substrate thickness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
1413 Applying Case-Based Reasoning in Supporting Strategy Decisions

Authors: S. M. Seyedhosseini, A. Makui, M. Ghadami

Abstract:

Globalization and therefore increasing tight competition among companies, have resulted to increase the importance of making well-timed decision. Devising and employing effective strategies, that are flexible and adaptive to changing market, stand a greater chance of being effective in the long-term. In other side, a clear focus on managing the entire product lifecycle has emerged as critical areas for investment. Therefore, applying wellorganized tools to employ past experience in new case, helps to make proper and managerial decisions. Case based reasoning (CBR) is based on a means of solving a new problem by using or adapting solutions to old problems. In this paper, an adapted CBR model with k-nearest neighbor (K-NN) is employed to provide suggestions for better decision making which are adopted for a given product in the middle of life phase. The set of solutions are weighted by CBR in the principle of group decision making. Wrapper approach of genetic algorithm is employed to generate optimal feature subsets. The dataset of the department store, including various products which are collected among two years, have been used. K-fold approach is used to evaluate the classification accuracy rate. Empirical results are compared with classical case based reasoning algorithm which has no special process for feature selection, CBR-PCA algorithm based on filter approach feature selection, and Artificial Neural Network. The results indicate that the predictive performance of the model, compare with two CBR algorithms, in specific case is more effective.

Keywords: Case based reasoning, Genetic algorithm, Groupdecision making, Product management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2173
1412 The Effects of Weather Anomalies on the Quantitative and Qualitative Parameters of Maize Hybrids of Different Genetic Traits in Hungary

Authors: Zs. J. Becze, Á. Krivián, M. Sárvári

Abstract:

Hybrid selection and the application of hybrid specific production technologies are important in terms of the increase of the yield and crop safety of maize. The main explanation for this is climate change, since weather extremes are going on and seem to accelerate in Hungary too.

The biological bases, the selection of appropriate hybrids will be of greater importance in the future. The issue of the adaptability of hybrids will be considerably appreciated. Its good agronomical traits and stress bearing against climatic factors and agrotechnical elements (e.g. different types of herbicides) will be important. There have been examples of 3-4 consecutive droughty years in the past decades, e.g. 1992-1993-1994 or 2009-2011-2012, which made the results of crop production critical. Irrigation cannot be the solution for the problem since currently only the 2% of the arable land is irrigated. Temperatures exceeding the multi-year average are characteristic mainly to the July and August in Hungary, which significantly increase the soil surface evaporation, thus further enhance water shortage. In terms of the yield and crop safety of maize, the weather of these two months is crucial, since the extreme high temperature in July decreases the viability of the pollen and the pistil of maize, decreases the extent of fertilization and makes grain-filling tardy. Consequently, yield and crop safety decrease.

Keywords: Abiotic factors, drought, nutrition content, yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
1411 Friction Stir Welded Joint Aluminum Alloy H20-H20 with Different Type of Tools Mechanical Properties

Authors: Omid A. Zargar

Abstract:

In this project three type of tools, straight cylindrical, taper cylindrical and triangular tool all made of High speed steel (Wc-Co) used for the friction stir welding (FSW) aluminum alloy H20–H20 and the mechanical properties of the welded joint tested by tensile test and vicker hardness test. Besides, mentioned mechanical properties compared with each other to make conclusion. The result helped design of welding parameter optimization for different types of friction stir process like rotational speed, depth of welding, travel speed, type of material, type of joint, work piece dimension, joint dimension, tool material and tool geometry. Previous investigations in different types of materials work pieces; joint type, machining parameter and preheating temperature take placed. In this investigation 3 mentioned tool types that are popular in FSW tested and the results completed other aspects of the process. Hope this paper can open a new horizon in experimental investigation of mechanical properties for friction stir welded joint with other different type of tools like oval shape probe, paddle shape probe, three flat sided probe, and three sided re-entrant probe and other materials and alloys like titanium or steel in near future.

Keywords: Friction stir welding (FSW), tool, CNC milling machine, aluminum alloy H20, Vickers hardness test, tensile test, straight cylindrical tool, taper cylindrical tool, triangular tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2865
1410 Image Ranking to Assist Object Labeling for Training Detection Models

Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman

Abstract:

Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.

Keywords: Computer vision, deep learning, object detection, semiconductor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 823
1409 Automatic Staging and Subtype Determination for Non-Small Cell Lung Carcinoma Using PET Image Texture Analysis

Authors: Seyhan Karaçavuş, Bülent Yılmaz, Ömer Kayaaltı, Semra İçer, Arzu Taşdemir, Oğuzhan Ayyıldız, Kübra Eset, Eser Kaya

Abstract:

In this study, our goal was to perform tumor staging and subtype determination automatically using different texture analysis approaches for a very common cancer type, i.e., non-small cell lung carcinoma (NSCLC). Especially, we introduced a texture analysis approach, called Law’s texture filter, to be used in this context for the first time. The 18F-FDG PET images of 42 patients with NSCLC were evaluated. The number of patients for each tumor stage, i.e., I-II, III or IV, was 14. The patients had ~45% adenocarcinoma (ADC) and ~55% squamous cell carcinoma (SqCCs). MATLAB technical computing language was employed in the extraction of 51 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and Laws’ texture filters. The feature selection method employed was the sequential forward selection (SFS). Selected textural features were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). In the automatic classification of tumor stage, the accuracy was approximately 59.5% with k-NN classifier (k=3) and 69% with SVM (with one versus one paradigm), using 5 features. In the automatic classification of tumor subtype, the accuracy was around 92.7% with SVM one vs. one. Texture analysis of FDG-PET images might be used, in addition to metabolic parameters as an objective tool to assess tumor histopathological characteristics and in automatic classification of tumor stage and subtype.

Keywords: Cancer stage, cancer cell type, non-small cell lung carcinoma, PET, texture analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 975
1408 Encrypter Information Software Using Chaotic Generators

Authors: Cardoza-Avendaño L., López-Gutiérrez R.M., Inzunza-González E., Cruz-Hernández C., García-Guerrero E., Spirin V., Serrano H.

Abstract:

This document shows a software that shows different chaotic generator, as continuous as discrete time. The software gives the option for obtain the different signals, using different parameters and initial condition value. The program shows then critical parameter for each model. All theses models are capable of encrypter information, this software show it too.

Keywords: cryptography, chaotic attractors, software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
1407 Analyzing the Effect of Materials’ Selection on Energy Saving and Carbon Footprint: A Case Study Simulation of Concrete Structure Building

Authors: M. Kouhirostamkolaei, M. Kouhirostami, M. Sam, J. Woo, A. T. Asutosh, J. Li, C. Kibert

Abstract:

Construction is one of the most energy consumed activities in the urban environment that results in a significant amount of greenhouse gas emissions around the world. Thus, the impact of the construction industry on global warming is undeniable. Thus, reducing building energy consumption and mitigating carbon production can slow the rate of global warming. The purpose of this study is to determine the amount of energy consumption and carbon dioxide production during the operation phase and the impact of using new shells on energy saving and carbon footprint. Therefore, a residential building with a re-enforced concrete structure is selected in Babolsar, Iran. DesignBuilder software has been used for one year of building operation to calculate the amount of carbon dioxide production and energy consumption in the operation phase of the building. The primary results show the building use 61750 kWh of energy each year. Computer simulation analyzes the effect of changing building shells -using XPS polystyrene and new electrochromic windows- as well as changing the type of lighting on energy consumption reduction and subsequent carbon dioxide production. The results show that the amount of energy and carbon production during building operation has been reduced by approximately 70% by applying the proposed changes. The changes reduce CO2e to 11345 kg CO2/yr. The result of this study helps designers and engineers to consider material selection’s process as one of the most important stages of design for improving energy performance of buildings.

Keywords: Construction materials, green construction, energy simulation, carbon footprint, energy saving, concrete structure, DesignBuilder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 990
1406 Assessment of Downy mildew Resistance (Peronospora farinosa) in a Quinoa (Chenopodium quinoa Willd.) Germplasm

Authors: Manal Mhada, BrahimEzzahiri, Ouafae Benlhabib

Abstract:

Seventy-nine accessions, including two local wild species (Chenopodium album and C. murale) and several cultivated quinoa lines developed through recurrent selection in Morocco were screened for their resistance against Peronospora farinose, the causal agent of downy mildew disease. The method of artificial inoculation on detached healthy leaves taken from the middle stage of the plant was used. Screened accessions showed different levels of quantitative resistance to downy mildew as they were scored through the calculation of their area under disease progress curve and their two resistance components, the incubation period and the latent period. Significant differences were found between accessions regarding the three criteria (Incubation Period, Latent Period and Area Under Diseases Progress Curve). Accessions M2a and S938/1 were ranked resistant as they showed the longest Incubation Period (7 days) and Latent Period (12 days) and the lowest area under diseases progress curve (4). Therefore, M24 is the most susceptible accession as it has presented the highest area under diseases progress curve (34.5) and the shortest Incubation Period (1 day) and Latent Period (3 days). In parallel to this evaluation approach, the accession resistance was confirmed under the field conditions through natural infection by using the tree-leaf method. The high correlation found between detached leaf inoculation method and field screening under natural infection allows us to use this laboratory technique with sureness in further selection works.

Keywords: Detached leaf inoculation, Downy mildew, Field screening, Quinoa.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2509
1405 Grading and Sequencing Tasks in Task-Based Syllabus: A Critical Look at Criterion Selection

Authors: Hossein Ahmadi, Ogholgol Nazari

Abstract:

The necessity of grading and sequencing tasks has led to the development of different criteria in this regard. However, appropriateness of these criteria in different situations is less discussed. This paper attempts to shed more light on the priority of different criteria in relation with different factors including learners, teachers, educational, and cultural factors.

Keywords: Criteria, Grading, Sequencing, Language learning tasks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6654
1404 Hopf Bifurcation for a New Chaotic System

Authors: Kejun Zhuang

Abstract:

In this paper, a three dimensional autonomous chaotic system is considered. The existence of Hopf bifurcation is investigated by choosing the appropriate bifurcation parameter. Furthermore, formulas for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions are derived with the help of normal form theory. Finally, a numerical example is given.

Keywords: Chaotic system, Hopf bifurcation, normal form theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
1403 Decomposition of Graphs into Induced Paths and Cycles

Authors: I. Sahul Hamid, Abraham V. M.

Abstract:

A decomposition of a graph G is a collection ψ of subgraphs H1,H2, . . . , Hr of G such that every edge of G belongs to exactly one Hi. If each Hi is either an induced path or an induced cycle in G, then ψ is called an induced path decomposition of G. The minimum cardinality of an induced path decomposition of G is called the induced path decomposition number of G and is denoted by πi(G). In this paper we initiate a study of this parameter.

Keywords: Path decomposition, Induced path decomposition, Induced path decomposition number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2373
1402 Sound Selection for Gesture Sonification and Manipulation of Virtual Objects

Authors: Benjamin Bressolette, S´ebastien Denjean, Vincent Roussarie, Mitsuko Aramaki, Sølvi Ystad, Richard Kronland-Martinet

Abstract:

New sensors and technologies – such as microphones, touchscreens or infrared sensors – are currently making their appearance in the automotive sector, introducing new kinds of Human-Machine Interfaces (HMIs). The interactions with such tools might be cognitively expensive, thus unsuitable for driving tasks. It could for instance be dangerous to use touchscreens with a visual feedback while driving, as it distracts the driver’s visual attention away from the road. Furthermore, new technologies in car cockpits modify the interactions of the users with the central system. In particular, touchscreens are preferred to arrays of buttons for space improvement and design purposes. However, the buttons’ tactile feedback is no more available to the driver, which makes such interfaces more difficult to manipulate while driving. Gestures combined with an auditory feedback might therefore constitute an interesting alternative to interact with the HMI. Indeed, gestures can be performed without vision, which means that the driver’s visual attention can be totally dedicated to the driving task. In fact, the auditory feedback can both inform the driver with respect to the task performed on the interface and on the performed gesture, which might constitute a possible solution to the lack of tactile information. As audition is a relatively unused sense in automotive contexts, gesture sonification can contribute to reducing the cognitive load thanks to the proposed multisensory exploitation. Our approach consists in using a virtual object (VO) to sonify the consequences of the gesture rather than the gesture itself. This approach is motivated by an ecological point of view: Gestures do not make sound, but their consequences do. In this experiment, the aim was to identify efficient sound strategies, to transmit dynamic information of VOs to users through sound. The swipe gesture was chosen for this purpose, as it is commonly used in current and new interfaces. We chose two VO parameters to sonify, the hand-VO distance and the VO velocity. Two kinds of sound parameters can be chosen to sonify the VO behavior: Spectral or temporal parameters. Pitch and brightness were tested as spectral parameters, and amplitude modulation as a temporal parameter. Performances showed a positive effect of sound compared to a no-sound situation, revealing the usefulness of sounds to accomplish the task.

Keywords: Auditory feedback, gesture, sonification, sound perception, virtual object.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 965
1401 Waist Circumference-Related Performance of Tense Indices during Varying Pediatric Obesity States and Metabolic Syndrome

Authors: Mustafa M. Donma

Abstract:

Obesity increases the risk of elevated blood pressure, which is a metabolic syndrome (MetS) component. Waist circumference (WC) is accepted as an indispensable parameter for the evaluation of these health problems. The close relationship of height with blood pressure values revealed the necessity of including height in tense indices. The association of tense indices with WC has also become an increasingly important topic. The purpose of this study was to develop a tense index that could contribute to differential diagnosis of MetS more than the indices previously introduced. 194 children, aged 6-11 years, were considered to constitute four groups. The study was performed on normal weight (Group 1), overweight + obese (Group 2), morbid obese [without (Group 3) and with (Group 4) MetS findings] children. Children were included in the groups according to the recommendations of World Health Organization based on age- and gender-dependent body mass index percentiles. For MetS group, MetS components well-established before were considered. Anthropometric measurements as well as blood pressure values were taken. Statistical calculations were performed. 0.05 was accepted as the p value indicating statistical significance. There were no statistically significant differences between the groups for pulse pressure, systolic-to-diastolic pressure ratio and tense index. Increasing values were observed from Group 1 to Group 4 in terms of mean arterial blood pressure and ADTI, which was highly correlated with WC in all groups except Group 1. Both tense index and ADTI exhibited significant correlations with WC in Group 3. However, in Group 4, ADTI, which includes height parameter in the equation, was unique in establishing a strong correlation with WC. In conclusion, ADTI was suggested as a tense index while investigating children with MetS.

Keywords: Blood pressure, metabolic syndrome, waist circumference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63
1400 Robust Adaptive ELS-QR Algorithm for Linear Discrete Time Stochastic Systems Identification

Authors: Ginalber L. O. Serra

Abstract:

This work proposes a recursive weighted ELS algorithm for system identification by applying numerically robust orthogonal Householder transformations. The properties of the proposed algorithm show it obtains acceptable results in a noisy environment: fast convergence and asymptotically unbiased estimates. Comparative analysis with others robust methods well known from literature are also presented.

Keywords: Stochastic Systems, Robust Identification, Parameter Estimation, Systems Identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
1399 Application of Ultrasonic Assisted Machining Technique for Glass-Ceramic Milling

Authors: S. Y. Lin, C. H. Kuan, C. H. She, W. T. Wang

Abstract:

In this study, ultrasonic assisted machining (UAM) technique is applied in side-surface milling experiment for glass-ceramic workpiece material. The tungsten carbide cutting-tool with diamond coating is used in conjunction with two kinds of cooling/lubrication mediums such as water-soluble (WS) cutting fluid and minimum quantity lubricant (MQL). Full factorial process parameter combinations on the milling experiments are planned to investigate the effect of process parameters on cutting performance. From the experimental results, it tries to search for the better process parameter combination which the edge-indentation and the surface roughness are acceptable. In the machining experiments, ultrasonic oscillator was used to excite a cutting-tool along the radial direction producing a very small amplitude of vibration frequency of 20KHz to assist the machining process. After processing, toolmaker microscope was used to detect the side-surface morphology, edge-indentation and cutting tool wear under different combination of cutting parameters, and analysis and discussion were also conducted for experimental results. The results show that the main leading parameters to edge-indentation of glass ceramic are cutting depth and feed rate. In order to reduce edge-indentation, it needs to use lower cutting depth and feed rate. Water-soluble cutting fluid provides a better cooling effect in the primary cutting area; it may effectively reduce the edge-indentation and improve the surface morphology of the glass ceramic. The use of ultrasonic assisted technique can effectively enhance the surface finish cleanness and reduce cutting tool wear and edge-indentation. 

Keywords: Glass-ceramic, ultrasonic assisted machining, cutting performance, edge-indentation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2799