Search results for: Configurable Motion Estimator
201 Simulation of Fluid Flow and Heat Transfer in the Inclined Enclosure
Authors: A. Karimipour, M. Afrand, M. Akbari, M.R. Safaei
Abstract:
Mixed convection in two-dimensional shallow rectangular enclosure is considered. The top hot wall moves with constant velocity while the cold bottom wall has no motion. Simulations are performed for Richardson number ranging from Ri = 0.001 to 100 and for Reynolds number keeping fixed at Re = 408.21. Under these conditions cavity encompasses three regimes: dominating forced, mixed and free convection flow. The Prandtl number is set to 6 and the effects of cavity inclination on the flow and heat transfer are studied for different Richardson number. With increasing the inclination angle, interesting behavior of the flow and thermal fields are observed. The streamlines and isotherm plots and the variation of the Nusselt numbers on the hot wall are presented. The average Nusselt number is found to increase with cavity inclination for Ri ³ 1 . Also it is shown that the average Nusselt number changes mildly with the cavity inclination in the dominant forced convection regime but it increases considerably in the regime with dominant natural convection.
Keywords: Mixed convection, inclined driven cavity, Richardson number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876200 Medical Image Segmentation Using Deformable Models and Local Fitting Binary
Authors: B. Bagheri Nakhjavanlo, T. J. Ellis, P. Raoofi, J. Dehmeshki
Abstract:
This paper presents a customized deformable model for the segmentation of abdominal and thoracic aortic aneurysms in CTA datasets. An important challenge in reliably detecting aortic aneurysm is the need to overcome problems associated with intensity inhomogeneities and image noise. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been extensively applied in image segmentation. A Gaussian kernel function in the level set formulation, which extracts the local intensity information, aids the suppression of noise in the extracted regions of interest and then guides the motion of the evolving contour for the detection of weak boundaries. The speed of curve evolution has been significantly improved with a resulting decrease in segmentation time compared with previous implementations of level sets. The results indicate the method is more effective than other approaches in coping with intensity inhomogeneities.Keywords: Abdominal and thoracic aortic aneurysms, intensityinhomogeneity, level sets, local fitting binary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821199 Vibration of FGM Cylindrical Shells under Effect Clamped-simply Support Boundary Conditions using Hamilton's Principle
Authors: M.R.Isvandzibaei, E.Bidokh, M.R.Alinaghizadeh, A.Nasirian, A.Moarrefzadeh
Abstract:
In this paper a study on the vibration of thin cylindrical shells with ring supports and made of functionally graded materials (FGMs) composed of stainless steel and nickel is presented. Material properties vary along the thickness direction of the shell according to volume fraction power law. The cylindrical shells have ring supports which are arbitrarily placed along the shell and impose zero lateral deflections. The study is carried out based on third order shear deformation shell theory (T.S.D.T). The analysis is carried out using Hamilton-s principle. The governing equations of motion of FGM cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of ring support position and the influence of boundary conditions. The present analysis is validated by comparing results with those available in the literature.Keywords: Vibration, FGM, Cylindrical shell, Hamilton'sprinciple, Ring support.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1484198 Robot Exploration and Navigation in Unseen Environments Using Deep Reinforcement Learning
Authors: Romisaa Ali
Abstract:
This paper presents a comparison between twin-delayed Deep Deterministic Policy Gradient (TD3) and Soft Actor-Critic (SAC) reinforcement learning algorithms in the context of training robust navigation policies for Jackal robots. By leveraging an open-source framework and custom motion control environments, the study evaluates the performance, robustness, and transferability of the trained policies across a range of scenarios. The primary focus of the experiments is to assess the training process, the adaptability of the algorithms, and the robot’s ability to navigate in previously unseen environments. Moreover, the paper examines the influence of varying environment complexities on the learning process and the generalization capabilities of the resulting policies. The results of this study aim to inform and guide the development of more efficient and practical reinforcement learning-based navigation policies for Jackal robots in real-world scenarios.
Keywords: Jackal robot environments, reinforcement learning, TD3, SAC, robust navigation, transferability, Custom Environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 86197 A Lagrangian Hamiltonian Computational Method for Hyper-Elastic Structural Dynamics
Authors: Hosein Falahaty, Hitoshi Gotoh, Abbas Khayyer
Abstract:
Performance of a Hamiltonian based particle method in simulation of nonlinear structural dynamics is subjected to investigation in terms of stability and accuracy. The governing equation of motion is derived based on Hamilton's principle of least action, while the deformation gradient is obtained according to Weighted Least Square method. The hyper-elasticity models of Saint Venant-Kirchhoff and a compressible version similar to Mooney- Rivlin are engaged for the calculation of second Piola-Kirchhoff stress tensor, respectively. Stability along with accuracy of numerical model is verified by reproducing critical stress fields in static and dynamic responses. As the results, although performance of Hamiltonian based model is evaluated as being acceptable in dealing with intense extensional stress fields, however kinds of instabilities reveal in the case of violent collision which can be most likely attributed to zero energy singular modes.
Keywords: Hamilton's principle of least action, particle based method, hyper-elasticity, analysis of stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674196 Emotion Classification using Adaptive SVMs
Authors: P. Visutsak
Abstract:
The study of the interaction between humans and computers has been emerging during the last few years. This interaction will be more powerful if computers are able to perceive and respond to human nonverbal communication such as emotions. In this study, we present the image-based approach to emotion classification through lower facial expression. We employ a set of feature points in the lower face image according to the particular face model used and consider their motion across each emotive expression of images. The vector of displacements of all feature points input to the Adaptive Support Vector Machines (A-SVMs) classifier that classify it into seven basic emotions scheme, namely neutral, angry, disgust, fear, happy, sad and surprise. The system was tested on the Japanese Female Facial Expression (JAFFE) dataset of frontal view facial expressions [7]. Our experiments on emotion classification through lower facial expressions demonstrate the robustness of Adaptive SVM classifier and verify the high efficiency of our approach.Keywords: emotion classification, facial expression, adaptive support vector machines, facial expression classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2230195 Acoustic Instabilities on Swirling Flames
Authors: T. Parra, R. Z. Szasz, C. Duwig, R. Pérez, V. Mendoza, F. Castro
Abstract:
The POD makes possible to reduce the complete high-dimensional acoustic field to a low-dimensional subspace where different modes are identified and let reconstruct in a simple way a high percentage of the variance of the field.
Rotating modes are instabilities which are commonly observed in swirling flows. Such modes can appear under both cold and reacting conditions but that they have different sources: while the cold flow rotating mode is essentially hydrodynamic and corresponds to the wellknown PVC (precessing vortex core) observed in many swirled unconfined flows, the rotating structure observed for the reacting case inside the combustion chamber might be not hydrodynamically but acoustically controlled. The two transverse acoustic modes of the combustion chamber couple and create a rotating motion of the flame which leads to a self-sustained turning mode which has the features of a classical PVC but a very different source (acoustics and not hydrodynamics).
Keywords: Acoustic field, POD, swirling flames.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2339194 A New Controlling Parameter in Design of Above Knee Prosthesis
Abstract:
In this paper after reviewing some previous studies, in order to optimize the above knee prosthesis, beside the inertial properties a new controlling parameter is informed. This controlling parameter makes the prosthesis able to act as a multi behavior system when the amputee is opposing to different environments. This active prosthesis with the new controlling parameter can simplify the control of prosthesis and reduce the rate of energy consumption in comparison to recently presented similar prosthesis “Agonistantagonist active knee prosthesis". In this paper three models are generated, a passive, an active, and an optimized active prosthesis. Second order Taylor series is the numerical method in solution of the models equations and the optimization procedure is genetic algorithm. Modeling the prosthesis which comprises this new controlling parameter (SEP) during the swing phase represents acceptable results in comparison to natural behavior of shank. Reported results in this paper represent 3.3 degrees as the maximum deviation of models shank angle from the natural pattern. The natural gait pattern belongs to walking at the speed of 81 m/min.Keywords: Above knee prosthesis, active controlling parameter, ballistic motion, swing phase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1879193 Free Vibration Analysis of Smart FGM Plates
Authors: F.Ebrahimi, A.Rastgo
Abstract:
Analytical investigation of the free vibration behavior of circular functionally graded (FG) plates integrated with two uniformly distributed actuator layers made of piezoelectric (PZT4) material on the top and bottom surfaces of the circular FG plate based on the classical plate theory (CPT) is presented in this paper. The material properties of the functionally graded substrate plate are assumed to be graded in the thickness direction according to the power-law distribution in terms of the volume fractions of the constituents and the distribution of electric potential field along the thickness direction of piezoelectric layers is simulated by a quadratic function. The differential equations of motion are solved analytically for clamped edge boundary condition of the plate. The detailed mathematical derivations are presented and Numerical investigations are performed for FG plates with two surface-bonded piezoelectric layers. Emphasis is placed on investigating the effect of varying the gradient index of FG plate on the free vibration characteristics of the structure. The results are verified by those obtained from threedimensional finite element analyses.Keywords: Circular plate, CPT, Functionally graded, Piezoelectric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2303192 Interactive Shadow Play Animation System
Authors: Bo Wan, Xiu Wen, Lingling An, Xiaoling Ding
Abstract:
The paper describes a Chinese shadow play animation system based on Kinect. Users, without any professional training, can personally manipulate the shadow characters to finish a shadow play performance by their body actions and get a shadow play video through giving the record command to our system if they want. In our system, Kinect is responsible for capturing human movement and voice commands data. Gesture recognition module is used to control the change of the shadow play scenes. After packaging the data from Kinect and the recognition result from gesture recognition module, VRPN transmits them to the server-side. At last, the server-side uses the information to control the motion of shadow characters and video recording. This system not only achieves human-computer interaction, but also realizes the interaction between people. It brings an entertaining experience to users and easy to operate for all ages. Even more important is that the application background of Chinese shadow play embodies the protection of the art of shadow play animation.
Keywords: Gesture recognition, Kinect, shadow play animation, VRPN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2714191 Blood Cell Dynamics in a Simple Shear Flow using an Implicit Fluid-Structure Interaction Method Based on the ALE Approach
Authors: Choeng-Ryul Choi, Chang-Nyung Kim, Tae-Hyub Hong
Abstract:
A numerical method is developed for simulating the motion of particles with arbitrary shapes in an effectively infinite or bounded viscous flow. The particle translational and angular motions are numerically investigated using a fluid-structure interaction (FSI) method based on the Arbitrary-Lagrangian-Eulerian (ALE) approach and the dynamic mesh method (smoothing and remeshing) in FLUENT ( ANSYS Inc., USA). Also, the effects of arbitrary shapes on the dynamics are studied using the FSI method which could be applied to the motions and deformations of a single blood cell and multiple blood cells, and the primary thrombogenesis caused by platelet aggregation. It is expected that, combined with a sophisticated large-scale computational technique, the simulation method will be useful for understanding the overall properties of blood flow from blood cellular level (microscopic) to the resulting rheological properties of blood as a mass (macroscopic).Keywords: Blood Flow, Fluid-Structure Interaction (FSI), Micro-Channels, Arbitrary Shapes, Red Blood Cells (RBCs)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2313190 Experimental and Finite Element Study of Bending Fatigue Failure: A Case Study on Main Shaft of a Gyrator Crusher
Authors: Rahim Sotoudeh Bahreini, Alireza Foroughi Nematollahi, Akbar Jafari
Abstract:
This study investigates the mechanism of a Gyratory crusher-located in Golgohar mining and industrial Co. specifically with a focus on stresses distribution and fatigue failure of its main shaft. At first step, the cross section of the fractured shaft is studied, and the crack growth is analyzed. Then, the rotational motion of the shaft and the oil temperature of oil circuit of equipment are monitored. Condition monitoring is used to help finding a better modification. Based on the results of this study, the main causes of shaft failure are identified, and corrective solution is offered to increase crusher performance, especially its main shaft life. To predict the efficiency of the proposed modification, finite element simulation is performed, and its results are compared with the similar modified cases. The comparison and interpretation of simulation results confirm the efficiency of proposed corrective method.
Keywords: Fatigue failure, finite element method, gyratory crusher, condition monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641189 Numerical Analysis on Triceratops Restraining System: Failure Conditions of Tethers
Authors: Srinivasan Chandrasekaran, Manda Hari Venkata Ramachandra Rao
Abstract:
Increase in the oil and gas exploration in ultra deep-water demands an adaptive structural form of the platform. Triceratops has superior motion characteristics compared to that of the Tension Leg Platform and Single Point Anchor Reservoir platforms, which is well established in the literature. Buoyant legs that support the deck are position-restrained to the sea bed using tethers with high axial pretension. Environmental forces that act on the platform induce dynamic tension variations in the tethers, causing the failure of tethers. The present study investigates the dynamic response behavior of the restraining system of the platform under the failure of a single tether of each buoyant leg in high sea states. Using the rain-flow counting algorithm and the Goodman diagram, fatigue damage caused to the tethers is estimated, and the fatigue life is predicted. Results shows that under failure conditions, the fatigue life of the remaining tethers is quite alarmingly low.
Keywords: Fatigue life, Failure analysis, PM spectrum, rain flow counting, triceratops.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 755188 Kinematic Parameters for Asa River Routing
Authors: A. O. Ogunlela, B. Adelodun
Abstract:
Flood routing is used in estimating the travel time and attenuation of flood waves as they move downstream a river or channel. The routing procedure is usually classified as hydrologic or hydraulic. Hydraulic methods utilize the equations of continuity and motion. Kinematic routing, a hydraulic technique was used in routing Asa River at Ilorin. The river is of agricultural and industrial importance to Ilorin, the capital of Kwara State, Nigeria. This paper determines the kinematic parameters of kinematic wave velocity, time step, time required to traverse, weighting factor and change in length. Values obtained were 4.67 m/s, 19 secs, 21 secs, 0.75 and 100 m, respectively. These parameters adequately reflect the watershed and flow characteristics essential for the routing. The synthetic unit hydrograph was developed using the Natural Resources Conservation Service (NRCS) method. 24-hr 10yr, 25yr, 50yr and 100yr storm hydrographs were developed from the unit hydrograph using convolution procedures and the outflow hydrographs were obtained for each of 24-hr 10yr, 25yr, 50yr and 100yr indicating 0.11 m3/s, 0.10 m3/s, 0.10 m3/s and 0.10 m3/s attenuations respectively.
Keywords: Asa River, Kinematic parameters, Routing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2304187 Research of Amplitude-Frequency Characteristics of Nonlinear Oscillations of the Interface of Two-Layered Liquid
Authors: Win Ko Ko, A. N. Temnov
Abstract:
The problem of nonlinear oscillations of a two-layer liquid completely filling a limited volume is considered. Using two basic asymmetric harmonics excited in two mutually perpendicular planes, ordinary differential equations of nonlinear oscillations of the interface of a two-layer liquid are investigated. In this paper, hydrodynamic coefficients of linear and nonlinear problems in integral relations were determined. As a result, the instability regions of forced oscillations of a two-layered liquid in a cylindrical tank occurring in the plane of action of the disturbing force are constructed, as well as the dynamic instability regions of the parametric resonance for different ratios of densities of the upper and lower liquids depending on the amplitudes of liquids from the excitations frequencies. Steady-state regimes of fluid motion were found in the regions of dynamic instability of the initial oscillation form. The Bubnov-Galerkin method is used to construct instability regions for approximate solution of nonlinear differential equations.
Keywords: Hydrodynamic coefficients, instability region, nonlinear oscillations, resonance frequency, two-layered liquid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 571186 Design of Electromagnetic Drive Module for Micro-gyroscope
Authors: Nan-Chyuan Tsai, Jiun-Sheng Liou, Chih-Che Lin, Tuan Li
Abstract:
For micro-gyroscopes, the angular rate detection components have to oscillate forwards and backwards alternatively. An innovative design of micro-electromagnetic drive module is proposed to make a Π-type disc reciprocally and efficiently rotate within a certain of angular interval. Twelve Electromagnetic poles enclosing the thin disc are designed to provide the magnetic drive power. Isotropic etching technique is employed to fabricate the high-aspect-ratio trench, so that the contact angle of wire against trench can be increased and the potential defect of cavities and pores within the wire can be prevented. On the other hand, a Π-type thin disc is designed to conduct the pitch motion as an angular excitation, in addition to spinning, is exerted on the gyroscope. The efficacy of the micro-magnetic drive module is verified by the commercial software, Ansoft Maxewll. In comparison with the conventional planar windings in micro-scale systems, the magnetic drive force is increased by 150%.
Keywords: Micro-gyroscope, micro-electromagnetic, micro actuator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491185 Electric Field Effect on the Rise of Single Bubbles during Boiling
Authors: N. Masoudnia, M. Fatahi
Abstract:
An experimental study of saturated pool boiling on a single artificial nucleation site without and with the application of an electric field on the boiling surface has been conducted. N-pentane is boiling on a copper surface and is recorded with a high speed camera providing high quality pictures and movies. The accuracy of the visualization allowed establishing an experimental bubble growth law from a large number of experiments. This law shows that the evaporation rate is decreasing during the bubble growth, and underlines the importance of liquid motion induced by the preceding bubble. Bubble rise is therefore studied: once detached, bubbles accelerate vertically until reaching a maximum velocity in good agreement with a correlation from literature. The bubbles then turn to another direction. The effect of applying an electric field on the boiling surface in finally studied. In addition to changes of the bubble shape, changes are also shown in the liquid plume and the convective structures above the surface. Lower maximum rising velocities were measured in the presence of electric fields, especially with a negative polarity.
Keywords: Single bubbles, electric field, boiling, effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1201184 The Accuracy of the Flight Derivative Estimates Derived from Flight Data
Authors: Jung-hoon Lee, Eung Tai Kim, Byung-hee Chang, In-hee Hwang, Dae-sung Lee
Abstract:
The accuracy of estimated stability and control derivatives of a light aircraft from flight test data were evaluated. The light aircraft, named ChangGong-91, is the first certified aircraft from the Korean government. The output error method, which is a maximum likelihood estimation technique and considers measurement noise only, was used to analyze the aircraft responses measures. The multi-step control inputs were applied in order to excite the short period mode for the longitudinal and Dutch-roll mode for the lateral-directional motion. The estimated stability/control derivatives of Chan Gong-91 were analyzed for the assessment of handling qualities comparing them with those of similar aircraft. The accuracy of the flight derivative estimates derived from flight test measurement was examined in engineering judgment, scatter and Cramer-Rao bound, which turned out to be satisfactory with minor defects..Keywords: Light Aircraft, Flight Test, Accuracy, Engineering Judgment, Scatter, Cramer-Rao Bound
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955183 Color Image Segmentation Using SVM Pixel Classification Image
Authors: K. Sakthivel, R. Nallusamy, C. Kavitha
Abstract:
The goal of image segmentation is to cluster pixels into salient image regions. Segmentation could be used for object recognition, occlusion boundary estimation within motion or stereo systems, image compression, image editing, or image database lookup. In this paper, we present a color image segmentation using support vector machine (SVM) pixel classification. Firstly, the pixel level color and texture features of the image are extracted and they are used as input to the SVM classifier. These features are extracted using the homogeneity model and Gabor Filter. With the extracted pixel level features, the SVM Classifier is trained by using FCM (Fuzzy C-Means).The image segmentation takes the advantage of both the pixel level information of the image and also the ability of the SVM Classifier. The Experiments show that the proposed method has a very good segmentation result and a better efficiency, increases the quality of the image segmentation compared with the other segmentation methods proposed in the literature.
Keywords: Image Segmentation, Support Vector Machine, Fuzzy C–Means, Pixel Feature, Texture Feature, Homogeneity model, Gabor Filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6754182 Pull-In Instability Determination of Microcapacitive Sensor for Measuring Special Range of Pressure
Authors: Yashar Haghighatfar, Shahrzad Mirhosseini
Abstract:
Pull-in instability is a nonlinear and crucial effect that is important for the design of microelectromechanical system devices. In this paper, the appropriate electrostatic voltage range is determined by measuring fluid flow pressure via micro pressure sensor based microbeam. The microbeam deflection contains two parts, the static and perturbation deflection of static. The second order equation regarding the equivalent stiffness, mass and damping matrices based on Galerkin method is introduced to predict pull-in instability due to the external voltage. Also the reduced order method is used for solving the second order nonlinear equation of motion. Furthermore, in the present study, the micro capacitive pressure sensor is designed for measuring special fluid flow pressure range. The results show that the measurable pressure range can be optimized, regarding damping field and external voltage.
Keywords: MEMS, pull-in instability, electrostatically actuated microbeam, reduced order method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 773181 Biomechanical Findings in Patients with Bipartite Medial Cuneiforms
Authors: Aliza Lee, Mark Wilt, John Bonk, Scott Floyd, Bradley Hoffman, Karen Uchmanowicz
Abstract:
Bipartite medial cuneiforms are relatively rare but may play a significant role in biomechanical and gait abnormalities. It is believed that a bipartite medial cuneiform may alter the available range of motion due to its larger morphological variant, thus limiting the metatarsal plantarflexion needed to achieve adequate hallux dorsiflexion for normal gait. Radiographic and clinical assessment were performed on two patients who reported with foot pain along the first ray. Both patients had visible bipartite medial cuneiforms on MRI. Using gait plate and Metascan ™ analysis, both were noted to have four measurements far beyond the expected range. Medial and lateral heel peak pressure, hallux peak pressure, and 1st metatarsal peak pressure were all noted to be increased. These measurements are believed to be increased due to the hindrance placed on the available ROM of the first ray by the increased size of the medial cuneiform. A larger patient population would be needed to fully understand this developmental anomaly.
Keywords: Bipartite medial cuneiforms, cuneiform, developmental anomaly, gait abnormality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 428180 Unsteady Natural Convection Heat and Mass Transfer of Non-Newtonian Casson Fluid along a Vertical Wavy Surface
Authors: A. Mahdy, Sameh E. Ahmed
Abstract:
Detailed numerical calculations are illustrated in our investigation for unsteady natural convection heat and mass transfer of non-Newtonian Casson fluid along a vertical wavy surface. The surface of the plate is kept at a constant temperature and uniform concentration. To transform the complex wavy surface to a flat plate, a simple coordinate transformation is employed. The resulting partial differential equations are solved using the fully implicit finite difference method with SUR procedure. Flow and heat transfer characteristics are investigated for a wide range of values of the Casson parameter, the dimensionless time parameter, the buoyancy ratio and the amplitude-wavelength parameter. It is found that, the variations of the Casson parameter have significant effects on the fluid motion, heat and mass transfer. Also, the maximum and minimum values of the local Nusselt and Sherwood numbers increase by increase either the Casson parameter or the buoyancy ratio.Keywords: Casson fluid, wavy surface, mass transfer, transient analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920179 Kinematic Parameter-Independent Modeling and Measuring of Three-Axis Machine Tools
Authors: Yung-Yuan Hsu
Abstract:
The primary objective of this paper was to construct a “kinematic parameter-independent modeling of three-axis machine tools for geometric error measurement" technique. Improving the accuracy of the geometric error for three-axis machine tools is one of the machine tools- core techniques. This paper first applied the traditional method of HTM to deduce the geometric error model for three-axis machine tools. This geometric error model was related to the three-axis kinematic parameters where the overall errors was relative to the machine reference coordinate system. Given that the measurement of the linear axis in this model should be on the ideal motion axis, there were practical difficulties. Through a measurement method consolidating translational errors and rotational errors in the geometric error model, we simplified the three-axis geometric error model to a kinematic parameter-independent model. Finally, based on the new measurement method corresponding to this error model, we established a truly practical and more accurate error measuring technique for three-axis machine tools.Keywords: Three-axis machine tool, Geometric error, HTM, Error measuring
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127178 Trimmed Mean as an Adaptive Robust Estimator of a Location Parameter for Weibull Distribution
Authors: Carolina B. Baguio
Abstract:
One of the purposes of the robust method of estimation is to reduce the influence of outliers in the data, on the estimates. The outliers arise from gross errors or contamination from distributions with long tails. The trimmed mean is a robust estimate. This means that it is not sensitive to violation of distributional assumptions of the data. It is called an adaptive estimate when the trimming proportion is determined from the data rather than being fixed a “priori-. The main objective of this study is to find out the robustness properties of the adaptive trimmed means in terms of efficiency, high breakdown point and influence function. Specifically, it seeks to find out the magnitude of the trimming proportion of the adaptive trimmed mean which will yield efficient and robust estimates of the parameter for data which follow a modified Weibull distribution with parameter λ = 1/2 , where the trimming proportion is determined by a ratio of two trimmed means defined as the tail length. Secondly, the asymptotic properties of the tail length and the trimmed means are also investigated. Finally, a comparison is made on the efficiency of the adaptive trimmed means in terms of the standard deviation for the trimming proportions and when these were fixed a “priori". The asymptotic tail lengths defined as the ratio of two trimmed means and the asymptotic variances were computed by using the formulas derived. While the values of the standard deviations for the derived tail lengths for data of size 40 simulated from a Weibull distribution were computed for 100 iterations using a computer program written in Pascal language. The findings of the study revealed that the tail lengths of the Weibull distribution increase in magnitudes as the trimming proportions increase, the measure of the tail length and the adaptive trimmed mean are asymptotically independent as the number of observations n becomes very large or approaching infinity, the tail length is asymptotically distributed as the ratio of two independent normal random variables, and the asymptotic variances decrease as the trimming proportions increase. The simulation study revealed empirically that the standard error of the adaptive trimmed mean using the ratio of tail lengths is relatively smaller for different values of trimming proportions than its counterpart when the trimming proportions were fixed a 'priori'.Keywords: Adaptive robust estimate, asymptotic efficiency, breakdown point, influence function, L-estimates, location parameter, tail length, Weibull distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2079177 Rheological and Thermomechanical Properties of Graphene/ABS/PP Nanocomposites
Authors: Marianna I. Triantou, Konstantina I. Stathi, Petroula A. Tarantili
Abstract:
In the present study, the incorporation of graphene into blends of acrylonitrile-butadiene-styrene terpolymer with polypropylene (ABS/PP) was investigated focusing on the improvement of their thermomechanical characteristics and the effect on their rheological behavior. The blends were prepared by melt mixing in a twin-screw extruder and were characterized by measuring the MFI as well as by performing DSC, TGA and mechanical tests. The addition of graphene to ABS/PP blends tends to increase their melt viscosity, due to the confinement of polymer chains motion. Also, graphene causes an increment of the crystallization temperature (Tc), especially in blends with higher PP content, because of the reduction of surface energy of PP nucleation, which is a consequence of the attachment of PP chains to the surface of graphene through the intermolecular CH-π interaction. Moreover, the above nanofiller improves the thermal stability of PP and increases the residue of thermal degradation at all the investigated compositions of blends, due to the thermal isolation effect and the mass transport barrier effect. Regarding the mechanical properties, the addition of graphene improves the elastic modulus, because of its intrinsic mechanical characteristics and its rigidity, and this effect is particularly strong in the case of pure PP.
Keywords: Acrylonitrile-butadiene-styrene terpolymer, blends, graphene, polypropylene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3788176 Coupled Lateral-Torsional Free Vibrations Analysis of Laminated Composite Beam using Differential Quadrature Method
Authors: S.H. Mirtalaie, M. Mohammadi, M.A. Hajabasi, F.Hejripour
Abstract:
In this paper the Differential Quadrature Method (DQM) is employed to study the coupled lateral-torsional free vibration behavior of the laminated composite beams. In such structures due to the fiber orientations in various layers, the lateral displacement leads to a twisting moment. The coupling of lateral and torsional vibrations is modeled by the bending-twisting material coupling rigidity. In the present study, in addition to the material coupling, the effects of shear deformation and rotary inertia are taken into account in the definition of the potential and kinetic energies of the beam. The governing differential equations of motion which form a system of three coupled PDEs are solved numerically using DQ procedure under different boundary conditions consist of the combinations of simply, clamped, free and other end conditions. The resulting natural frequencies and mode shapes for cantilever beam are compared with similar results in the literature and good agreement is achieved.
Keywords: Differential Quadrature Method, Free vibration, Laminated composite beam, Material coupling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134175 Optimum Parameter of a Viscous Damper for Seismic and Wind Vibration
Authors: Soltani Amir, Hu Jiaxin
Abstract:
Determination of optimal parameters of a passive control system device is the primary objective of this study. Expanding upon the use of control devices in wind and earthquake hazard reduction has led to development of various control systems. The advantage of non-linearity characteristics in a passive control device and the optimal control method using LQR algorithm are explained in this study. Finally, this paper introduces a simple approach to determine optimum parameters of a nonlinear viscous damper for vibration control of structures. A MATLAB program is used to produce the dynamic motion of the structure considering the stiffness matrix of the SDOF frame and the non-linear damping effect. This study concluded that the proposed system (variable damping system) has better performance in system response control than a linear damping system. Also, according to the energy dissipation graph, the total energy loss is greater in non-linear damping system than other systems.
Keywords: Passive Control System, Damping Devices, Viscous Dampers, Control Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3601174 Masonry CSEB Building Models under Shaketable Testing-An Experimental Study
Authors: Lakshmi Keshav, V. G. Srisanthi
Abstract:
In this experimental investigation shake table tests were conducted on two reduced models that represent normal single room building constructed by Compressed Stabilized Earth Block (CSEB) from locally available soil. One model was constructed with earthquake resisting features (EQRF) having sill band, lintel band and vertical bands to control the building vibration and another one was without Earthquake Resisting Features. To examine the seismic capacity of the models particularly when it is subjected to long-period ground motion by large amplitude by many cycles of repeated loading, the test specimen was shaken repeatedly until the failure. The test results from Hi-end Data Acquisition system show that model with EQRF behave better than without EQRF. This modified masonry model with new material combined with new bands is used to improve the behavior of masonry building.Keywords: Earth Quake Resisting Features, Compressed Stabilized Earth Blocks, Masonry structures, Shake table testing, Horizontal and vertical bands.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2740173 Quadratic Pulse Inversion Ultrasonic Imaging(QPI): A Two-Step Procedure for Optimization of Contrast Sensitivity and Specificity
Authors: Mamoun F. Al-Mistarihi
Abstract:
We have previously introduced an ultrasonic imaging approach that combines harmonic-sensitive pulse sequences with a post-beamforming quadratic kernel derived from a second-order Volterra filter (SOVF). This approach is designed to produce images with high sensitivity to nonlinear oscillations from microbubble ultrasound contrast agents (UCA) while maintaining high levels of noise rejection. In this paper, a two-step algorithm for computing the coefficients of the quadratic kernel leading to reduction of tissue component introduced by motion, maximizing the noise rejection and increases the specificity while optimizing the sensitivity to the UCA is presented. In the first step, quadratic kernels from individual singular modes of the PI data matrix are compared in terms of their ability of maximize the contrast to tissue ratio (CTR). In the second step, quadratic kernels resulting in the highest CTR values are convolved. The imaging results indicate that a signal processing approach to this clinical challenge is feasible.Keywords: Volterra Filter, Pulse Inversion, Ultrasonic Imaging, Contrast Agent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596172 Scorbot-ER 4U Using Forward Kinematics Modelling and Analysis
Authors: D. Maneetham, L. Sivhour
Abstract:
Robotic arm manipulators are widely used to accomplish many kinds of tasks. SCORBOT-ER 4u is a 5-degree of freedom (DOF) vertical articulated educational robotic arm, and all joints are revolute. It is specifically designed to perform pick and place task with its gripper. The pick and place task consists of consideration of the end effector coordinate of the robotic arm and the desired position coordinate in its workspace. This paper describes about forward kinematics modeling and analysis of the robotic end effector motion through joint space. The kinematics problems are defined by the transformation from the Cartesian space to the joint space. Denavit-Hartenberg (D-H) model is used in order to model the robotic links and joints with 4x4 homogeneous matrix. The forward kinematics model is also developed and simulated in MATLAB. The mathematical model is validated by using robotic toolbox in MATLAB. By using this method, it may be applicable to get the end effector coordinate of this robotic arm and other similar types to this arm. The software development of SCORBOT-ER 4u is also described here. PC-and EtherCAT based control technology from BECKHOFF is used to control the arm to express the pick and place task.
Keywords: Forward kinematics, D-H model, robotic toolbox, PC-and EtherCAT based control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823