Search results for: viscous dissipation rate.
2400 Experimental Study of Subsurface Erosion in River Banks
Authors: F. Imanshoar, M. R. M. Tabatabai, Y. Hassanzadeh, M. Rostamipoor
Abstract:
Subsurface erosion in river banks and its details, in spite of its occurrence in various parts of the world has rarely been paid attention by researchers. In this paper, quantitative concept of the subsurface bank erosion has been investigated for vertical banks. Vertical banks were simulated experimentally by considering a sandy erodible layer overlaid by clayey one under uniformly distributed constant overhead pressure. Results of the experiments are indicated that rate of sandy layer erosion is decreased by an increase in overburden; likewise, substituting 20% of coarse (3.5 mm) sand layer bed material by fine material (1.4 mm) may lead to a decrease in erosion rate by one-third. This signifies the importance of the bed material composition effect on sandy layers erosion due to subsurface erosion in river banks.Keywords: Subsurface Erosion, Vertical Banks, Bed Material Size
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20702399 Wind-Induced Phenomenon in a Closed Water Area with Floating-Leaved Plant
Authors: Akinori Ozaki
Abstract:
In this study, in order to clarify wind-induced phenomena, especially vertical mixing of density stratification in a closed water area with floating-leaved plants, we conducted hydraulic experiments on wind flow characteristics, wind wave characteristics, entrainment phenomena and turbulent structure by using a wind tunnel test tank and simulated floating-leaved plants. From the experimental results of wind flow and wind wave characteristics, we quantified the impact of the occupancy rate of the plants on their resistance characteristics. From the experimental results of entrainment phenomena, we defined the parameter that could explain the magnitude of mixing between the density stratifications, and quantified the impact of the occupancy rate on vertical mixing between stratifications. From the experimental results of the turbulent structure of the upper layer, we clarified the differences in small-scale turbulence components at each occupancy rate and quantified the impact of the occupancy rate on the turbulence characteristics. For a summary of this study, we theoretically quantified wind-induced entrainment phenomena in a closed water area with luxuriant growth of floating-leaved plants. The results indicated that the impact of luxuriant growth of floating-leaved plants in a closed water body could be seen in the difference in small-scale fluid characteristics, and these characteristics could be expressed using the small-scale turbulent components.Keywords: Density Stratification, Floating-leaved Plant, Wind-induced Entrainment Phenomenon, Turbulent Structure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18082398 Low Computational Image Compression Scheme based on Absolute Moment Block Truncation Coding
Authors: K.Somasundaram, I.Kaspar Raj
Abstract:
In this paper we have proposed three and two stage still gray scale image compressor based on BTC. In our schemes, we have employed a combination of four techniques to reduce the bit rate. They are quad tree segmentation, bit plane omission, bit plane coding using 32 visual patterns and interpolative bit plane coding. The experimental results show that the proposed schemes achieve an average bit rate of 0.46 bits per pixel (bpp) for standard gray scale images with an average PSNR value of 30.25, which is better than the results from the exiting similar methods based on BTC.Keywords: Bit plane, Block Truncation Coding, Image compression, lossy compression, quad tree segmentation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17502397 Experimental on Free and Forced Heat Transfer and Pressure Drop of Copper Oxide-Heat Transfer Oil Nanofluid in Horizontal and Inclined Microfin Tube
Authors: F. Hekmatipour, M. A. Akhavan-Behabadi, B. Sajadi
Abstract:
In this paper, the combined free and forced convection heat transfer of the Copper Oxide-Heat Transfer Oil (CuO-HTO) nanofluid flow in horizontal and inclined microfin tubes is studied experimentally. The flow regime is laminar, and pipe surface temperature is constant. The effect of nanoparticle and microfin tube on the heat transfer rate is investigated with the Richardson number which is between 0.1 and 0.7. The results show an increasing nanoparticle concentration between 0% and 1.5% leads to enhance the combined free and forced convection heat transfer rate. According to the results, five correlations are proposed to provide estimating the free and forced heat transfer rate as the increasing Richardson number from 0.1 to 0.7. The maximum deviation of both correlations is less than 16%. Moreover, four correlations are suggested to assess the Nusselt number based on the Rayleigh number in inclined tubes from 1800000 to 7000000. The maximum deviation of the correlation is almost 16%. The Darcy friction factor of the nanofluid flow has been investigated. Furthermore, CuO-HTO nanofluid flows in inclined microfin tubes.
Keywords: Nanofluid; heat transfer oil; mixed convection; inclined tube; laminar flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6712396 Gas-Solid Nitrocarburizing of Steels: Kinetic Modeling and Experimental Validation
Authors: L. Torchane
Abstract:
The study is devoted to define the optimal conditions for the nitriding of pure iron at atmospheric pressure by using NH3- Ar-C3H8 gas mixtures. After studying the mechanisms of phase formation and mass transfer at the gas-solid interface, a mathematical model is developed in order to predict the nitrogen transfer rate in the solid, the ε-carbonitride layer growth rate and the nitrogen and carbon concentration profiles. In order to validate the model and to show its possibilities, it is compared with thermogravimetric experiments, analyses and metallurgical observations (X-ray diffraction, optical microscopy and electron microprobe analysis). Results obtained allow us to demonstrate the sound correlation between the experimental results and the theoretical predictions.
Keywords: Gaseous Nitrocarburizing, Kinetic Model, Diffusion, Layer Growth Kinetic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21812395 The Impact of the Interest Rates on Investments in the Context of Financial Crisis
Authors: Joanna Stawska
Abstract:
The main objective of this article is to examine the impact of interest rates on investments in Poland in the context of financial crisis. The paper also investigates the dependence of bank loans to enterprises on interbank market rates. The article studies the impact of interbank market rate on the level of investments in Poland. Besides, this article focuses on the research of the correlation between the level of corporate loans and the amount of investments in Poland in order to determine the indirect impact of central bank interest rates through the transmission mechanism of monetary policy on the real economy. To achieve the objective we have used econometric and statistical research methods like: econometric model and Pearson correlation coefficient. This analysis suggests that the central bank reference rate inversely proportionally affects the level of investments in Poland and this dependence is moderate. This is also important issue because it is related to preparing of Poland to accession to euro area. The research is important from both theoretical and empirical points of view. The formulated conclusions and recommendations determine the practical significance of the paper which may be used in the decision making process of monetary and economic authorities of the country.Keywords: Central bank, financial crisis, interest rate, investments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15952394 Nanocrystalline Mg-3%Al Alloy: its Synthesis and Investigation of its Tensile Behavior
Authors: A. Mallick
Abstract:
The tensile properties of Mg-3%Al nanocrystalline alloys were investigated at different test environment. Bulk nanocrystalline samples of these alloy was successfully prepared by mechanical alloying (MA) followed by cold compaction, sintering, and hot extrusion process. The crystal size of the consolidated milled sample was calculated by X-Ray line profile analysis. The deformation mechanism and microstructural characteristic at different test condition was discussed extensively. At room temperature, relatively lower value of activation volume (AV) and higher value of strain rate sensitivity (SRS) suggests that new rate controlling mechanism accommodating plastic flow in the present nanocrystalline sample. The deformation behavior and the microstructural character of the present samples were discussed in details.Keywords: Nanocrystalline, tensile properties, temperature effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14602393 The Mechanical Response of a Composite Propellant under Harsh Conditions
Authors: Xin Tong, Jin-sheng Xu, Xiong Chen, Ya Zheng
Abstract:
The aim of this paper is to study the mechanical properties of HTPB (Hydroxyl-terminated polybutadiene) composite propellant under harsh conditions. It describes two tests involving uniaxial tensile tests of various strain rates (ranging from 0.0005 s-1 to 1.5 s-1), temperatures (ranging from 223 K to 343 K) and high-cycle fatigue tests under low-temperature (223 K, frequencies were set at 50, 100, 150 Hz) using DMA (Dynamic Mechanical Analyzer). To highlight the effect of small pre-strain on fatigue properties of HTPB propellant, quasi-static stretching was carried out before fatigue loading, and uniaxial tensile tests at constant strain rates were successively applied. The results reveal that flow stress of propellant increases with reduction in temperature and rise in strain rate, and the strain rate-temperature equivalence relationship could be described by TTSP (time-temperature superposition principle) incorporating a modified WLF equation. Moreover, the rate of performance degradations and damage accumulation of propellant during fatigue tests increased with increasing strain amplitude and loading frequencies, while initial quasi-static loading has a negative effect on fatigue properties by comparing stress-strain relations after fatigue tests.
Keywords: Fatigue, HTPB propellant, tensile properties, time-temperature superposition principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10672392 Performance of Heat Pump Dryer for Kaffir Lime Leaves and Quality of Dried Products under Different Temperatures and Media
Authors: N. Poomsa-ad, K. Deejing, L. Wiset
Abstract:
This research is to study the performance of heat pump dryer for drying of kaffir lime leaves under different media and to compare the color values and essential oil content of final products after drying. In the experiments, kaffir lime leaves were dried in the closed-loop system at drying temperatures of 40, 50 and 60 oC. The drying media used in this study were hot air, CO2 and N2 gases. The velocity of drying media in the drying chamber was 0.4 m/s with bypass ratio of 30%. The initial moisture content of kaffir lime leaves was approximately 180-190 % d.b. It was dried until down to a final moisture content of 10% d.b. From the experiments, the results showed that drying rate, the coefficient of performance (COP) and specific energy consumption (SEC) depended on drying temperature. While drying media did not affect on drying rate. The time for kaffir lime leaves drying at 40, 50 and 60 oC was 10, 5 and 3 hours, respectively. The performance of the heat pump system decreased with drying temperature in the range of 2.20-3.51. In the aspect of final product color, the greenness and overall color had a great change under drying temperature at 60 oC rather than drying at 40 and 50 oC. When compared among drying media, the greenness and overall color of product dried with hot air at 60 oC had a great change rather than dried with CO2 and N2.Keywords: airless drying, drying rate, essential oil content
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22452391 Modeling and Optimization of Process Parameters in PMEDM by Genetic Algorithm
Authors: Farhad Kolahan, Mohammad Bironro
Abstract:
This paper addresses modeling and optimization of process parameters in powder mixed electrical discharge machining (PMEDM). The process output characteristics include metal removal rate (MRR) and electrode wear rate (EWR). Grain size of Aluminum powder (S), concentration of the powder (C), discharge current (I) pulse on time (T) are chosen as control variables to study the process performance. The experimental results are used to develop the regression models based on second order polynomial equations for the different process characteristics. Then, a genetic algorithm (GA) has been employed to determine optimal process parameters for any desired output values of machining characteristics.
Keywords: Regression modeling, PMEDM, GeneticAlgorithm, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14932390 Peak Data Rate Enhancement Using Switched Micro-Macro Diversity in Cellular Multiple-Input-Multiple-Output Systems
Authors: Jihad S. Daba, J. P. Dubois, Yvette Antar
Abstract:
With the exponential growth of cellular users, a new generation of cellular networks is needed to enhance the required peak data rates. The co-channel interference between neighboring base stations inhibits peak data rate increase. To overcome this interference, multi-cell cooperation known as coordinated multipoint transmission is proposed. Such a solution makes use of multiple-input-multiple-output (MIMO) systems under two different structures: Micro- and macro-diversity. In this paper, we study the capacity and bit error rate in cellular networks using MIMO technology. We analyse both micro- and macro-diversity schemes and develop a hybrid model that switches between macro- and micro-diversity in the case of hard handoff based on a cut-off range of signal-to-noise ratio values. We conclude that our hybrid switched micro-macro MIMO system outperforms classical MIMO systems at the cost of increased hardware and software complexity.
Keywords: Cooperative multipoint transmission, ergodic capacity, hard handoff, macro-diversity, micro-diversity, multiple-input-multiple-output systems, MIMO, orthogonal frequency division multiplexing, OFDM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10912389 Analysis of Testing and Operational Software Reliability in SRGM based on NHPP
Authors: S. Thirumurugan, D. R. Prince Williams
Abstract:
Software Reliability is one of the key factors in the software development process. Software Reliability is estimated using reliability models based on Non Homogenous Poisson Process. In most of the literature the Software Reliability is predicted only in testing phase. So it leads to wrong decision-making concept. In this paper, two Software Reliability concepts, testing and operational phase are studied in detail. Using S-Shaped Software Reliability Growth Model (SRGM) and Exponential SRGM, the testing and operational reliability values are obtained. Finally two reliability values are compared and optimal release time is investigated.Keywords: Error Detection Rate, Estimation of Parameters, Instantaneous Failure Rate, Mean Value Function, Non Homogenous Poisson Process (NHPP), Software Reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16342388 The Kinetic of Biogas Production Rate from Cattle Manure in Batch Mode
Authors: Budiyono, I N. Widiasa, S. Johari, Sunarso
Abstract:
In this study, the kinetic of biogas production was studied by performing a series laboratory experiment using rumen fluid of animal ruminant as inoculums. Cattle manure as substrate was inoculated by rumen fluid to the anaerobic biodigester. Laboratory experiments using 400 ml biodigester were performed in batch operation mode. Given 100 grams of fresh cattle manure was fed to each biodigester and mixed with rumen fluid by manure : rumen weight ratio of 1:1 (MR11). The operating temperatures were varied at room temperature and 38.5 oC. The cumulative volume of biogas produced was used to measure the biodigester performance. The research showed that the rumen fluid inoculated to biodigester gave significant effect to biogas production (P<0.05). Rumen fluid inoculums caused biogas production rate and efficiency increase two to three times in compare to manure substrate without rumen fluid. With the rumen fluid inoculums, gave the kinetic parameters of biogas production i.e biogas production rate constants (U), maximum biogas production (A), and minimum time to produce biogas (λ) are 3.89 ml/(gVS.day); 172.51 (ml/gVS); dan 7.25 days, respectively. While the substrate without rumen fluid gave the kinetic parameters U, A, and λ are 1.74 ml/(gVS.day); 73.81 (ml/gVS); dan 14.75 days, respectively. The future work will be carried out to study the dynamics of biogas production if both the rumen inoculums and manure are fed in the continuous system.
Keywords: rumen fluid, inoculums, anaerobic digestion, biogasproduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30322387 CFD Modeling of Air Stream Pressure Drop inside Combustion Air Duct of Coal-Fired Power Plant with and without Airfoil
Authors: Pakawhat Khumkhreung, Yottana Khunatorn
Abstract:
The flow pattern inside rectangular intake air duct of 300 MW lignite coal-fired power plant is investigated in order to analyze and reduce overall inlet system pressure drop. The system consists of the 45-degree inlet elbow, the flow instrument, the 90-degree mitered elbow and fans, respectively. The energy loss in each section can be determined by Bernoulli’s equation and ASHRAE standard table. Hence, computational fluid dynamics (CFD) is used in this study based on Navier-Stroke equation and the standard k-epsilon turbulence modeling. Input boundary condition is 175 kg/s mass flow rate inside the 11-m2 cross sectional duct. According to the inlet air flow rate, the Reynolds number of airstream is 2.7x106 (based on the hydraulic duct diameter), thus the flow behavior is turbulence. The numerical results are validated with the real operation data. It is found that the numerical result agrees well with the operating data, and dominant loss occurs at the flow rate measurement device. Normally, the air flow rate is measured by the airfoil and it gets high pressure drop inside the duct. To overcome this problem, the airfoil is planned to be replaced with the other type measuring instrument, such as the average pitot tube which generates low pressure drop of airstream. The numerical result in case of average pitot tube shows that the pressure drop inside the inlet airstream duct is decreased significantly. It should be noted that the energy consumption of inlet air system is reduced too.Keywords: Airfoil, average pitot tube, combustion air, CFD, pressure drop, rectangular duct.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10802386 Application of Adaptive Network-Based Fuzzy Inference System in Macroeconomic Variables Forecasting
Authors: Ε. Giovanis
Abstract:
In this paper we apply an Adaptive Network-Based Fuzzy Inference System (ANFIS) with one input, the dependent variable with one lag, for the forecasting of four macroeconomic variables of US economy, the Gross Domestic Product, the inflation rate, six monthly treasury bills interest rates and unemployment rate. We compare the forecasting performance of ANFIS with those of the widely used linear autoregressive and nonlinear smoothing transition autoregressive (STAR) models. The results are greatly in favour of ANFIS indicating that is an effective tool for macroeconomic forecasting used in academic research and in research and application by the governmental and other institutionsKeywords: Linear models, Macroeconomics, Neuro-Fuzzy, Non-Linear models
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17932385 Numerical Analysis of Cold-Formed Steel Shear Wall Panels Subjected to Cyclic Loading
Authors: H. Meddah, M. Berediaf-Bourahla, B. El-Djouzi, N. Bourahla
Abstract:
Shear walls made of cold formed steel are used as lateral force resisting components in residential and low-rise commercial and industrial constructions. The seismic design analysis of such structures is often complex due to the slenderness of members and their instability prevalence. In this context, a simplified modeling technique across the panel is proposed by using the finite element method. The approach is based on idealizing the whole panel by a nonlinear shear link element which reflects its shear behavior connected to rigid body elements which transmit the forces to the end elements (studs) that resist the tension and the compression. The numerical model of the shear wall panel was subjected to cyclic loads in order to evaluate the seismic performance of the structure in terms of lateral displacement and energy dissipation capacity. In order to validate this model, the numerical results were compared with those from literature tests. This modeling technique is particularly useful for the design of cold formed steel structures where the shear forces in each panel and the axial forces in the studs can be obtained using spectrum analysis.
Keywords: Cold-formed steel, cyclic loading, modeling technique, nonlinear analysis, shear wall panel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12632384 Dispersion Rate of Spilled Oil in Water Column under Non-Breaking Water Waves
Authors: Hanifeh Imanian, Morteza Kolahdoozan
Abstract:
The purpose of this study is to present a mathematical phrase for calculating the dispersion rate of spilled oil in water column under non-breaking waves. In this regard, a multiphase numerical model is applied for which waves and oil phase were computed concurrently, and accuracy of its hydraulic calculations have been proven. More than 200 various scenarios of oil spilling in wave waters were simulated using the multiphase numerical model and its outcome were collected in a database. The recorded results were investigated to identify the major parameters affected vertical oil dispersion and finally 6 parameters were identified as main independent factors. Furthermore, some statistical tests were conducted to identify any relationship between the dependent variable (dispersed oil mass in the water column) and independent variables (water wave specifications containing height, length and wave period and spilled oil characteristics including density, viscosity and spilled oil mass). Finally, a mathematical-statistical relationship is proposed to predict dispersed oil in marine waters. To verify the proposed relationship, a laboratory example available in the literature was selected. Oil mass rate penetrated in water body computed by statistical regression was in accordance with experimental data was predicted. On this occasion, it was necessary to verify the proposed mathematical phrase. In a selected laboratory case available in the literature, mass oil rate penetrated in water body computed by suggested regression. Results showed good agreement with experimental data. The validated mathematical-statistical phrase is a useful tool for oil dispersion prediction in oil spill events in marine areas.Keywords: Dispersion, marine environment, mathematical-statistical relationship, oil spill.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11462383 Continuous Flow Experimental Set-Up for Fouling Deposit Study
Authors: A. L. Ho, N. Ab. Aziz, F. S. Taip, M. N. Ibrahim
Abstract:
The study of the fouling deposition of pink guava juice (PGJ) is relatively new research compared to milk fouling deposit. In this work, a new experimental set-up was developed to imitate the fouling formation in heat exchanger, namely a continuous flow experimental set-up heat exchanger. The new experimental setup was operated under industrial pasteurization temperature of PGJ, which was at 93°C. While the flow rate and pasteurization period were based on the experimental capacity, which were 0.5 and 1 liter/min for the flow rate and the pasteurization period was set for 1 hour. Characterization of the fouling deposit was determined by using various methods. Microstructure of the deposits was carried out using ESEM. Proximate analyses were performed to determine the composition of moisture, fat, protein, fiber, ash and carbohydrate content. A study on the hardness and stickiness of the fouling deposit was done using a texture analyzer. The presence of seedstone in pink guava juice was also analyzed using a particle analyzer. The findings shown that seedstone from pink guava juice ranging from 168 to 200μm and carbohydrate was found to be a major composition (47.7% of fouling deposit consists of carbohydrate). Comparison between the hardness and stickiness of the deposits at two different flow rates showed that fouling deposits were harder and denser at higher flow rate. Findings from this work provide basis knowledge for further study on fouling and cleaning of PGJ.Keywords: Pink guava juice, fouling deposit, heat exchanger.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16242382 In vitro Control of Aedes aegypti Larvae Using Beauveria bassiana
Authors: R. O. B. Bitencourt, F. S. Farias, M. C. Freitas, C. J. R. Balduino, E.S. Mesquita, A. R. C. Corval, P. S. Gôlo, E. G. Pontes, V. R. E. P. Bittencourt, I. C. Angelo
Abstract:
Aedes aegypti larval survival rate was assessed after exposure to blastopores or conidia (mineral oil-in-water formulation or aqueous suspension) of Beauveria bassiana CG 479 propagules (blastospores or conidia). Here, mineral oil was used in the fungal formulation to control Aedes aegypti larvae. 1%, 0.5% or 0.1% mineral oil-in-water solutions were used to evaluate mineral oil toxicity for mosquito larvae. In the oil toxicity test, 0.1% mineral oil solution reduced only 4.5% larval survival; accordingly, this concentration was chosen for fungal oil-in-water formulations. Aqueous suspensions were prepared using 0.01% Tween 80® in sterile dechlorinated water. A. aegypti larvae (L2) were exposed in aqueous suspensions or mineral oil-in-water fungal formulations at 1×107 propagules mL-1; the survival rate (assessed daily, for 7 days) and the median survival time (S50) were calculated. Seven days after the treatment, mosquito larvae survival rates were 8.56%, 16.22%, 58%, and 42.56% after exposure to oil-in-water blastospores, oil-in-water conidia, blastospores aqueous suspension and conidia aqueous suspension (respectively). Larvae exposed to 0.01% Tween 80® had 100% survival rate and the ones treated with 0.1% mineral oil-in-water had 95.11% survival rate. Larvae treated with conidia (regardless the presence of oil) or treated with blastospores formulation had survival median time (S50) ranging from one to two days. S50 was not determined (ND) when larvae were exposed to blastospores aqueous suspension, 0.01% Tween 80® (aqueous control) or 0.1% mineral oil-in-water formulation (oil control). B. bassiana conidia and blastospores (mineral oil-in-water formulated or suspended in water) had potential to control A. aegypti mosquito larvae, despite mineral oil-in-water formulation yielded better results in comparison to aqueous suspensions. Here, B. bassiana CG 479 isolate is suggested as a potential biocontrol agent of A. aegypti mosquito larvae.
Keywords: Blastospores, formulation, mosquitoes, conidia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9302381 An Experimental Study of Tip Vortex Cavitation Inception in an Axial Flow Pump
Authors: Mohammad Taghi Shervani Tabar, Zahra Poursharifi
Abstract:
The interaction of the blade tip with the casing boundary layer and the leakage flow may lead to a kind of cavitation namely tip vortex cavitation. In this study, the onset of tip vortex cavitation was experimentally investigated in an axial flow pump. For a constant speed and a fixed angle of attack and by changing the flow rate, the pump head, input power, output power and efficiency were calculated and the pump characteristic curves were obtained. The cavitation phenomenon was observed with a camera and a stroboscope. Finally, the critical flow region, which tip vortex cavitation might have occurred, was identified. The results show that just by adjusting the flow rate, out of the specified region, the possibility of occurring tip vortex cavitation, decreases to a great extent.Keywords: Axial flow pump, Gap cavitation, Leakage vortex, Tip vortex cavitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26992380 The Fire Performance of Exposed Timber Panels
Authors: Bernice V. Y. Wong, Kong Fah Tee
Abstract:
Cross-laminated timber is increasingly being used in the construction of high-rise buildings due to its simple manufacturing system. In term of fire resistance, cross-laminated timber panels are promoted as having excellent fire resistance, comparable to that of non-combustible materials and to heavy timber construction, due to the ability of thick wood assemblies to char slowly at a predictable rate while maintaining most of their strength during the fire exposure. This paper presents an overview of fire performance of cross-laminated timber and evaluation of its resistance to elevated temperature in comparison to homogeneous timber panels. Charring rates for cross-laminated timber panels of those obtained experimentally were compared with those provided by Eurocode simplified calculation methods.
Keywords: Timber structure, cross-laminated timber, charring rate, timber fire resistance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33822379 Finite Volume Method for Flow Prediction Using Unstructured Meshes
Authors: Juhee Lee, Yongjun Lee
Abstract:
In designing a low-energy-consuming buildings, the heat transfer through a large glass or wall becomes critical. Multiple layers of the window glasses and walls are employed for the high insulation. The gravity driven air flow between window glasses or wall layers is a natural heat convection phenomenon being a key of the heat transfer. For the first step of the natural heat transfer analysis, in this study the development and application of a finite volume method for the numerical computation of viscous incompressible flows is presented. It will become a part of the natural convection analysis with high-order scheme, multi-grid method, and dual-time step in the future. A finite volume method based on a fully-implicit second-order is used to discretize and solve the fluid flow on unstructured grids composed of arbitrary-shaped cells. The integrations of the governing equation are discretised in the finite volume manner using a collocated arrangement of variables. The convergence of the SIMPLE segregated algorithm for the solution of the coupled nonlinear algebraic equations is accelerated by using a sparse matrix solver such as BiCGSTAB. The method used in the present study is verified by applying it to some flows for which either the numerical solution is known or the solution can be obtained using another numerical technique available in the other researches. The accuracy of the method is assessed through the grid refinement.
Keywords: Finite volume method, fluid flow, laminar flow, unstructured grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18452378 Critical Analysis of Parking Situation of GEC Circle of Chittagong City, Bangladesh
Authors: Md. Ashraful Islam, Rahat Sharif
Abstract:
Chittagong is the Commercial Capital of Bangladesh. The study area at GEC in Chittagong is one of the most commercial activity centers of Chittagong. This paper first analyzes the parking demand of the commercial centers, based on the parking survey. Further, it analyzes the relationship between the parking demand of the commercial buildings and the public transport accessibility. The conclusion is that the parking demand rate of the shopping centre and supermarkets decreases with the increasing of the public transport accessibility. This paper also provides the parking demand rate under the different levels of the public transport accessibility and the parking demand model with the accessibility. The conclusions are valuable for the researches on the parking demand and the making of the parking index for the commercial buildings.
Keywords: Parking, accumulation, inventory, demand, supply, occupancy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13902377 The Nonlinear Dynamic Elasto-Plastic Analysis for Evaluating the Controlling Effectiveness and Failure Mechanism of the MSCSS
Authors: Toi Limazie, Xun'an Zhang, Xianjie Wang
Abstract:
This paper focuses on the Mega-Sub Controlled Structure Systems (MSCSS) performances and characteristics regarding the new control principle contained in MSCSS subjected to strong earthquake excitations. The adopted control scheme consists of modulated sub-structures where the control action is achieved by viscous dampers and sub-structure own configuration. The elastic-plastic time history analysis under severe earthquake excitation is analyzed base on the Finite Element Analysis Method (FEAM), and some comparison results are also given in this paper. The result shows that the MSCSS systems can remarkably reduce vibrations effects more than the mega-sub structure (MSS). The study illustrates that the improved MSCSS presents good seismic resistance ability even at 1.2g and can absorb seismic energy in the structure, thus imply that structural members cross section can be reduce and achieve to good economic characteristics. Furthermore, the elasto-plastic analysis demonstrates that the MSCSS is accurate enough regarding international building evaluation and design codes. This paper also shows that the elasto-plastic dynamic analysis method is a reasonable and reliable analysis method for structures subjected to strong earthquake excitations and that the computed results are more precise.Keywords: controlling effectiveness, Elasto-plastic dynamic analysis, Mega-Sub Controlled Structure, Plastic hinge pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18362376 The Dividend Payments for General Claim Size Distributions under Interest Rate
Authors: Li-Li Li, Jinghai Feng, Lixin Song
Abstract:
This paper evaluates the dividend payments for general claim size distributions in the presence of a dividend barrier. The surplus of a company is modeled using the classical risk process perturbed by diffusion, and in addition, it is assumed to accrue interest at a constant rate. After presenting the integro-differential equation with initial conditions that dividend payments satisfies, the paper derives a useful expression of the dividend payments by employing the theory of Volterra equation. Furthermore, the optimal value of dividend barrier is found. Finally, numerical examples illustrate the optimality of optimal dividend barrier and the effects of parameters on dividend payments.Keywords: Dividend payout, Integro-differential equation, Jumpdiffusion model, Volterra equation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18002375 Self-Organization of Radiation Defects: Temporal Dissipative Structures
Authors: Pavlo Selyshchev
Abstract:
A theoretical approach to radiation damage evolution is developed. Stable temporal behavior taking place in solids under irradiation are examined as phenomena of self-organization in nonequilibrium systems. Experimental effects of temporal self-organization in solids under irradiation are reviewed. Their essential common properties and features are highlighted and analyzed. Dynamical model to describe development of self-oscillation of density of point defects under stationary irradiation is proposed. The emphasis is the nonlinear couplings between rate of annealing and density of defects that determine the kind and parameters of an arising self-oscillation. The field of parameters (defect generation rate and environment temperature) at which self-oscillations develop is found. Bifurcation curve and self-oscillation period near it is obtained.Keywords: Irradiation, Point Defects, Solids, Temporal Selforganization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19732374 The Nuclear Power Plant Environment Monitoring System through Mobile Units
Authors: P. Tanuska, A. Elias, P. Vazan, B. Zahradnikova
Abstract:
This article describes the information system for measuring and evaluating the dose rate in the environment of nuclear power plants Mochovce and Bohunice in Slovakia. The article presents the results achieved in the implementation of the EU project – Research of monitoring and evaluation of nonstandard conditions in the area of nuclear power plants. The objectives included improving the system of acquisition, measuring and evaluating data with mobile and autonomous units applying new knowledge from research. The article provides basic and specific features of the system and compared to the previous version of the system, also new functions.
Keywords: Information system, dose rate, mobile devices, nuclear power plant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18062373 Species Spreading due to Environmental Hostility, Dispersal Adaptation and Allee Effects
Authors: Sanjeeva Balasuriya
Abstract:
A phenomenological model for species spreading which incorporates the Allee effect, a species- maximum attainable growth rate, collective dispersal rate and dispersal adaptability is presented. This builds on a well-established reaction-diffusion model for spatial spreading of invading organisms. The model is phrased in terms of the “hostility" (which quantifies the Allee threshold in relation to environmental sustainability) and dispersal adaptability (which measures how a species is able to adapt its migratory response to environmental conditions). The species- invading/retreating speed and the sharpness of the invading boundary are explicitly characterised in terms of the fundamental parameters, and analysed in detail.
Keywords: Allee effect, dispersal, migration speed, diffusion, invasion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12642372 Evaluating Urban Land Expansion Using Geographic Information System and Remote Sensing in Kabul City, Afghanistan
Authors: Ahmad Sharif Ahmadi, Yoshitaka Kajita
Abstract:
With massive population expansion and fast economic development in last decade, urban land has increasingly expanded and formed high informal development territory in Kabul city. This paper investigates integrated urbanization trends in Kabul city since the formation of the basic structure of the present city using GIS and remote sensing. This study explores the spatial and temporal difference of urban land expansion and land use categories among different time intervals, 1964-1978 and 1978-2008 from 1964 to 2008 in Kabul city. Furthermore, the goal of this paper is to understand the extent of urban land expansion and the factors driving urban land expansion in Kabul city. Many factors like population expansion, the return of refugees from neighboring countries and significant economic growth of the city affected urban land expansion. Across all the study area urban land expansion rate, population expansion rate and economic growth rate have been compared to analyze the relationship of driving forces with urban land expansion. Based on urban land change data detected by interpreting land use maps, it was found that in the entire study area the urban territory has been expanded by 14 times between 1964 and 2008.Keywords: GIS, Kabul city, land use, urban land expansion, urbanization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16622371 Growth of Multi-Layered Graphene Using Organic Solvent-PMMA Film as the Carbon Source under Low Temperature Conditions
Authors: Alaa Y. Ali, Natalie P. Holmes, John Holdsworth, Warwick Belcher, Paul Dastoor, Xiaojing Zhou
Abstract:
Multi-layered graphene has been produced under low temperature chemical vapour deposition (CVD) growth conditions by utilizing an organic solvent and polymer film source. Poly(methylmethacrylate) (PMMA) was dissolved in chlorobenzene solvent and used as a drop-cast film carbon source on a quartz slide. A source temperature (Tsource) of 180 °C provided sufficient carbon to grow graphene, as identified by Raman spectroscopy, on clean copper foil catalytic surfaces. Systematic variation of hydrogen gas (H2) flow rate from 25 standard cubic centimeters per minute (sccm) to 100 sccm and CVD temperature (Tgrowth) from 400 to 800 °C, yielded graphene films of varying quality as characterized by Raman spectroscopy. The optimal graphene growth parameters were found to occur with a hydrogen flow rate of 75 sccm sweeping the 180 °C source carbon past the Cu foil at 600 °C for 1 min. The deposition at 600 °C with a H2 flow rate of 75 sccm yielded a 2D band peak with ~53.4 cm-1 FWHM and a relative intensity ratio of the G to 2D bands (IG/I2D) of 0.21. This recipe fabricated a few layers of good quality graphene.
Keywords: Graphene, chemical vapour deposition, carbon source, low temperature growth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 908