Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30127
In vitro Control of Aedes aegypti Larvae Using Beauveria bassiana

Authors: R. O. B. Bitencourt, F. S. Farias, M. C. Freitas, C. J. R. Balduino, E.S. Mesquita, A. R. C. Corval, P. S. Gôlo, E. G. Pontes, V. R. E. P. Bittencourt, I. C. Angelo

Abstract:

Aedes aegypti larval survival rate was assessed after exposure to blastopores or conidia (mineral oil-in-water formulation or aqueous suspension) of Beauveria bassiana CG 479 propagules (blastospores or conidia). Here, mineral oil was used in the fungal formulation to control Aedes aegypti larvae. 1%, 0.5% or 0.1% mineral oil-in-water solutions were used to evaluate mineral oil toxicity for mosquito larvae. In the oil toxicity test, 0.1% mineral oil solution reduced only 4.5% larval survival; accordingly, this concentration was chosen for fungal oil-in-water formulations. Aqueous suspensions were prepared using 0.01% Tween 80® in sterile dechlorinated water. A. aegypti larvae (L2) were exposed in aqueous suspensions or mineral oil-in-water fungal formulations at 1×107 propagules mL-1; the survival rate (assessed daily, for 7 days) and the median survival time (S50) were calculated. Seven days after the treatment, mosquito larvae survival rates were 8.56%, 16.22%, 58%, and 42.56% after exposure to oil-in-water blastospores, oil-in-water conidia, blastospores aqueous suspension and conidia aqueous suspension (respectively). Larvae exposed to 0.01% Tween 80® had 100% survival rate and the ones treated with 0.1% mineral oil-in-water had 95.11% survival rate. Larvae treated with conidia (regardless the presence of oil) or treated with blastospores formulation had survival median time (S50) ranging from one to two days. S50 was not determined (ND) when larvae were exposed to blastospores aqueous suspension, 0.01% Tween 80® (aqueous control) or 0.1% mineral oil-in-water formulation (oil control). B. bassiana conidia and blastospores (mineral oil-in-water formulated or suspended in water) had potential to control A. aegypti mosquito larvae, despite mineral oil-in-water formulation yielded better results in comparison to aqueous suspensions. Here, B. bassiana CG 479 isolate is suggested as a potential biocontrol agent of A. aegypti mosquito larvae.

Keywords: Blastospores, formulation, mosquitoes, conidia.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1474974

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 371

References:


[1] H.M. Al-abdely, “Zika an emerging teratogenic virus”. Saudi Medical Journal, vol.37, pp.831-833, 2016.
[2] I.A. Braga, D. Valle, “Aedes aegypti: inseticidas, mecanismos de ação e resistência”. Revista Epidemiologia e Serviço de Saúde, vol.16, pp.279-293, 2007.
[3] P. F. C. Vasconcelos, “Yellow fever”. Revista da Sociedade Brasileira de Medicina Tropical vol.36 pp.275-293, 2003.
[4] A. L. S. A Zara, S. M. Santos, E. S. F. Oliveira, E. S. F Carvalho, G. E. Coelho, “Aedes aegypti control strategies: a review”. Revista Epidemiológica e Serviço de Saúde, vol.25, pp.391-404, 2016.
[5] L. B. Smith, S. Kasai, J. G. Scott, “Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases”. Pesticide Biochemistry and Physiology. Vol.133, pp.1–12, 2016.
[6] S. Boyer, S. Lopes, D. Prasetyo, J. Hustedt, A. S. Sarady, D. Doum, S. Yean, B. Peng, S. Bunleng, R. Leang, D. Fontenille, J. Hii, “Resistance of Aedes aegypti (Diptera: Culicidae) Populations to Deltamethrin, Permethrin, and Temephos in Cambodia”. Asia Pacific Journal of Public Health, vol.0, pp.1-09, 2018
[7] M. M. C. S. L Diniz, A. D. S. Henrique, R.S. Leandro, D.L. Aguiar, E.B. Beserra, “Resistência de Aedes aegypti ao temefós e desvantagens adaptativas”. Revista de Saúde Pública, vol.48, pp.775-782, 2014.
[8] L. S. Dias, M. L. G. Macoris, M. T. M. Andrighetti, V. C. G. Otrera, A. S. Dias, L. G. S. R. Bauzer, C. M. Rodovalho, A. J. Martins, J. B. P. Lima, “Toxicity of spinosad to temephos-resistant Aedes aegypti populations in Brazil”. Plos one. vol.12, pp.1-12, 2017.
[9] C. Ragavendran, N. K. Dubey, D. Natarajan, “Beauveria bassiana (Clavicipitaceae): a potente fungal agent for controlling mosquito vectors of Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae)”. The Royal Society of Chemistry. vol.7, pp.3838–3851, 2017.
[10] J. F. S. Daniel, A. A. Silva, D. H. Nakagawa, L. S. Medeiros, M. G. Carvalho, L. J. Tavares, L. M. Abreu, E. Rodrigues-filho, “Larvicidal Activity of Beauveria bassiana Extracts against Aedes aegypti and Identifcation of Beauvericins”. Journal of the brazilian chemical society, vol. 28, pp.1003-1013, 2017
[11] G.S Miranpuri, G.G. Khachatourians, “Larvicidal activity of blastospores and conidiospores of Beauveria bassiana (strain GK 2016) against age groups of Aedes aegypti”. Veterinary Parasitology, vol.37 pp.155-162, 1990.
[12] M. G. Feng, T. J. Poprawski, G. G. Khachatourians, “Production, formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control: current status”. Biocontrol Science and Technology, vol.4 pp.3-34, 1994
[13] C. Wang, S. Wang. “Insect Pathogenic Fungi: Genomics, Molecular Interactions, and Genetic Improvements”. The Annual Review of Entomology, vol.62, pp.73–90, 2016.
[14] D. G. Boucias, J. C. Pendland, J. P. Latge, “Nonspecific Factors Involved in Attachment of Entomopathogenic Deuteromycetes to Host Insect Cuticle”. Applied and Environmental Microbiology, vol.54, pp.1795-1805, 1988.
[15] J. C. Pendland, S.-Y. Hung, and D. G. Boucias, “Evasion of Host Defense by In Vivo-Produced Protoplast-Like Cells of the Insect Mycopathogen Beauveria bassiana”, Journal of Bacteriology, vol.175, p. 5962-5969, 1993.
[16] C. C. Bernardo, “Conídios e blastosporos de Metarhizium spp. e Beauveria bassiana: virulência para Rhipicephalus microplus e resposta ao calor e à radiação UV-B”. Programa de Pós-Graduação em Medicina Tropical e Saúde Pública da Universidade Federal de Goiás, pp. 68-70, 2016.
[17] M. A. Jackson, “Optimizing nutritional conditions for the liquid culture production of effective fungal biological control agents Journal of Industrial Microbiology & Biotechnology. vol.19, pp.180–187, 1997.
[18] M. A. Jackson, A. R. Payne, D. A. Odelson, “Liquid-culture production of blastospores of the bioinsecticidal fungus Paecilomyces fumosorose ususing portable fermentation equipment”, Journal of Industrial Microbiology & Biotechnology, vol.31, pp.149-154, 2004.
[19] A. M. Alkhaibari, A. T. Carolino, J. C. Bull, R.I. Samuels, T. M. Butt, 2017. “Differential Pathogenicity of Metarhizium Blastospores and Conidia against Larvae of Three Mosquito Species”. Journal of Medical Entomology. vol.54, PP.696–704, 2017.
[20] A. M. Alkhaibari, A. T. Carolino, S. I. Yavasoglu and T. Maffeis, “Metarhizium brunneum Blastospore Pathogenesis in Aedes aegypti Larvae: Attack on Several Fronts Accelerates Mortality”. Plos Pathogens, vol.12, pp.1-19, 2016.
[21] T. Y. Dong, B.W. Zhang, Q. F. Weng, Q. B. Hu, “The production relationship of destruxins and blastospores of Metarhizium anisopliae with virulence against Plutella xylostella”. Jounal of Integrative Agriculture. vol.15, pp.60345-7, 2016.
[22] F.R.S. Paixão, E.R. Muniz, L.P. Barreto, C.C. Bernardo, G.M. Mascarin, C. Luz, É.K.K. Fernandes, “Increased heat tolerance afforded by oil-based conidial formulations of Metarhizium anisopliae and M. robertsii”, Biocontrol Science and Technology, vol.27. pp. 324-337, 2017.
[23] L. Adamek, “Submerse cultivation of the fungus Metarhizium anisopliae (Metsch.)”. Folia Microbiolofica. vol.10, pp.255–25, 1963
[24] S. B. Alves, “Fungos entomopatogênicos. Controle Microbiano de Insetos, In: Alves, S.B. (Ed.)”, FEALQ: Piracicaba, pp. 289–382, 1998.
[25] S. A. Gomes, A. R. Paula, A. Ribeiro, C. A. P. Moraes, J.W.A.B. Santos, C. P. Silva, R. L. Samuels, “Neem oil increases the efficiency of the entomopathogenic fungus Metarhizium anisopliae for the control of Aedes aegypti (Diptera: Culicidae) larvae.” Parasites & Vectors, vol.8, pp.1280-1289, 2015.
[26] I. C. Angelo, E. K. K. Fernandes, Thiago C. Bahiense, W. M.S. Perinotto, A. P. R. Moraes, A. L.M. Terra, V. R. E. P. Bittencourt, “Efficiency of Lecanicillium lecanii to control the tick Rhipicephalus microplus”. Veterinary Parasitology vol.172 pp.317–322, 2010.
[27] G. S. De Hoog, G.S., “The genera Beauveria, Isaria, Tritirachium and Acrodontium gen. nov”. Studies in Mycology. vol.1, pp.1-41, 1972.
[28] E. Rivalier, S. Seydel, “Nouveau Procedé de Culture Sur Lames Gélosées Appliqué a L’étude Microscopique des Champignons des Teignes”. Annales de Parasitologie, vol.5, pp.444-452, 1932.
[29] D. L. Hawksworth, “Micologist’s handbook. 2ªed” England, Kew Surrey: CAB Press, pp.231, 1977.
[30] T. B.Clark, W. R. Kellen, T. Fokuda, J. E. Lindegren, “Field and laboratory studies on the pathogenicity of the fungus Beauveria bassiana to three genera of mosquitoes”. Journal of Invertebrate Pathology, vol.11, pp. 1-7, 1968.
[31] A. R. de Paula, E. S. Brito, C.R. Pereira, M. P. Carrera, R. I. Samuels, “Susceptibility of adult Aedes aegypti (Diptera: Culicidae) to infection by Metarhizium anisopliae and Beauveria bassiana: prospects for Dengue vector control
[32] J. M. Darbro, P. H. Johnson, M. B. Thomas, S. A. Ritchie, B. H. Kay, P A. Ryan, “Effects of Beauveria bassiana on Survival, Blood-Feeding Success, and Fecundity of Aedes aegypti in Laboratory and Semi-Field Conditions”. The American Society of Tropical Medicine and Hygiene, vol.86, pp. 656–664, 2012.
[33] A. M. García-Munguía, J. A. Garza-Hernández, E. A. Rebollar-Tellez, M. A. Rodríguez-Pérez, Filiberto Reyes-Villanueva, “Transmission of Beauveria bassiana from male to female Aedes aegypti mosquitoes”. Parasites & Vectors, vol.4, pp.1-6, 2011.
[34] A. N. Banu, C. Balasubramanian, “Myco-synthesis of silver nanoparticles using Beauveria bassiana against dengue vector, Aedes aegypti (Diptera: Culicidae)”. Parasitology Research, vol. 113, pp. 2869–2877, 2014.
[35] R. A. Daoust, M. G. Ward, D. W. Robert, “Effect of Formulation on the Virulence of Metarhizium anisopliae Conidia against Mosquito Larvae”. Journal of Invertebrate Pathology 40, pp.228-236, 1982.
[36] D. A. S. Albernaz, M. H. H. Tai, C. Luz, “Enhanced ovicidal activity of an oil formulation of the fungus Metarhizium anisopliae on the mosquito Aedes aegypti”. Medical and Veterinary Entomology, vol.23, pp.141–147, 2009.
[37] T. Bukhari, W. Takken, C. J. M. Koenraadt, “Development of Metarhizium anisopliae and Beauveria bassiana formulations for control of malaria mosquito larvae”. Parasites and Vectors. 4, pp.1-14, 2001.
[38] P. A. Smith, “Oil and Emulsion Formulations of a Microbial Control Agent Increase the Potency against a Wider Range of Pest Life Stages”. Phytoparasitica vol.25, pp.93-100, 1997.
[39] S. Weber, K. Schrag, G. Mildau, T. Kuballa, S. G Walch, D. W. Lachenmeier, “Analytical Methods for the Determination of Mineral Oil Saturated Hydrocarbons (MOSH) and Mineral Oil Aromatic Hydrocarbons (MOAH)—A Short Review”. Analytical Chemistry Insights, vol.13, pp.1-16, 2018.
[40] B.P. J. Greenfeld, A. M. Lord, Ed Dudley, T. M. Butt, “Conidia of the insect pathogenic fungus, Metarhizium anisopliae, fail to adhere to mosquito larval cuticle” Royal Society open Science, vol. 1, pp.1-09, 2014.
[41] T. M. Butt, B. P. J. Greenfield, C. Greig, T. G. G. Maffeis, J. W. D. Taylor, J. Piaseck, A, D. C. Eastwood, “Metarhizium anisopliae Pathogenesis of Mosquito Larvae: A Verdict of Accidental Death”. Plos One, vol.8, pp.1-11, 2013.
[42] E.I. Helmy, F. A. Kwaiz, O. M. N. El-Sahn, “The usage of mineral oils to control insects” Egyptian Academic Journal of Biological Sciences, vol.5, pp.167 -174, 2012.