Search results for: learning algorithm
4519 Review and Comparison of Associative Classification Data Mining Approaches
Authors: Suzan Wedyan
Abstract:
Associative classification (AC) is a data mining approach that combines association rule and classification to build classification models (classifiers). AC has attracted a significant attention from several researchers mainly because it derives accurate classifiers that contain simple yet effective rules. In the last decade, a number of associative classification algorithms have been proposed such as Classification based Association (CBA), Classification based on Multiple Association Rules (CMAR), Class based Associative Classification (CACA), and Classification based on Predicted Association Rule (CPAR). This paper surveys major AC algorithms and compares the steps and methods performed in each algorithm including: rule learning, rule sorting, rule pruning, classifier building, and class prediction.
Keywords: Associative Classification, Classification, Data Mining, Learning, Rule Ranking, Rule Pruning, Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66344518 Knowledge Management and e-Learning –An Agent-Based Approach
Authors: Teodora Bakardjieva, Galya Gercheva
Abstract:
In this paper an open agent-based modular framework for personalized and adaptive curriculum generation in e-learning environment is proposed. Agent-based approaches offer several potential advantages over alternative approaches. Agent-based systems exhibit high levels of flexibility and robustness in dynamic or unpredictable environments by virtue of their intrinsic autonomy. The presented framework enables integration of different types of expert agents, various kinds of learning objects and user modeling techniques. It creates possibilities for adaptive e-learning process. The KM e-learning system is in a process of implementation in Varna Free University and will be used for supporting the educational process at the University.Keywords: agents, e-Learning, knowledge management, knowledge sharing, artificial intelligence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21664517 A hybrid Tabu Search Algorithm to Cell Formation Problem and its Variants
Authors: Tai-Hsi Wu, Jinn-Yi Yeh, Chin-Chih Chang
Abstract:
Cell formation is the first step in the design of cellular manufacturing systems. In this study, a general purpose computational scheme employing a hybrid tabu search algorithm as the core is proposed to solve the cell formation problem and its variants. In the proposed scheme, great flexibilities are left to the users. The core solution searching algorithm embedded in the scheme can be easily changed to any other meta-heuristic algorithms, such as the simulated annealing, genetic algorithm, etc., based on the characteristics of the problems to be solved or the preferences the users might have. In addition, several counters are designed to control the timing of conducting intensified solution searching and diversified solution searching strategies interactively.Keywords: Cell formation problem, Tabu search
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17404516 An Effective Algorithm for Minimum Weighted Vertex Cover Problem
Authors: S. Balaji, V. Swaminathan, K. Kannan
Abstract:
The Minimum Weighted Vertex Cover (MWVC) problem is a classic graph optimization NP - complete problem. Given an undirected graph G = (V, E) and weighting function defined on the vertex set, the minimum weighted vertex cover problem is to find a vertex set S V whose total weight is minimum subject to every edge of G has at least one end point in S. In this paper an effective algorithm, called Support Ratio Algorithm (SRA), is designed to find the minimum weighted vertex cover of a graph. Computational experiments are designed and conducted to study the performance of our proposed algorithm. Extensive simulation results show that the SRA can yield better solutions than other existing algorithms found in the literature for solving the minimum vertex cover problem.
Keywords: Weighted vertex cover, vertex support, approximation algorithms, NP-complete problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38844515 An Exact Algorithm for Location–Transportation Problems in Humanitarian Relief
Authors: Chansiri Singhtaun
Abstract:
This paper proposes a mathematical model and examines the performance of an exact algorithm for a location– transportation problems in humanitarian relief. The model determines the number and location of distribution centers in a relief network, the amount of relief supplies to be stocked at each distribution center and the vehicles to take the supplies to meet the needs of disaster victims under capacity restriction, transportation and budgetary constraints. The computational experiments are conducted on the various sizes of problems that are generated. Branch and bound algorithm is applied for these problems. The results show that this algorithm can solve problem sizes of up to three candidate locations with five demand points and one candidate location with up to twenty demand points without premature termination.
Keywords: Disaster response, facility location, humanitarian relief, transportation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23814514 A Finite-Time Consensus Protocol of the Multi-Agent Systems
Authors: Xin-Lei Feng, Ting-Zhu Huang
Abstract:
According to conjugate gradient algorithm, a new consensus protocol algorithm of discrete-time multi-agent systems is presented, which can achieve finite-time consensus. Finally, a numerical example is given to illustrate our theoretical result.
Keywords: Consensus protocols; Graph theory; Multi-agent systems;Conjugate gradient algorithm; Finite-time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21414513 A Computational Cost-Effective Clustering Algorithm in Multidimensional Space Using the Manhattan Metric: Application to the Global Terrorism Database
Authors: Semeh Ben Salem, Sami Naouali, Moetez Sallami
Abstract:
The increasing amount of collected data has limited the performance of the current analyzing algorithms. Thus, developing new cost-effective algorithms in terms of complexity, scalability, and accuracy raised significant interests. In this paper, a modified effective k-means based algorithm is developed and experimented. The new algorithm aims to reduce the computational load without significantly affecting the quality of the clusterings. The algorithm uses the City Block distance and a new stop criterion to guarantee the convergence. Conducted experiments on a real data set show its high performance when compared with the original k-means version.
Keywords: Pattern recognition, partitional clustering, K-means clustering, Manhattan distance, terrorism data analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13594512 Correlation of Viscosity in Nanofluids using Genetic Algorithm-neural Network (GA-NN)
Authors: Hajir Karimi, Fakheri Yousefi, Mahmood Reza Rahimi
Abstract:
An accurate and proficient artificial neural network (ANN) based genetic algorithm (GA) is developed for predicting of nanofluids viscosity. A genetic algorithm (GA) is used to optimize the neural network parameters for minimizing the error between the predictive viscosity and the experimental one. The experimental viscosity in two nanofluids Al2O3-H2O and CuO-H2O from 278.15 to 343.15 K and volume fraction up to 15% were used from literature. The result of this study reveals that GA-NN model is outperform to the conventional neural nets in predicting the viscosity of nanofluids with mean absolute relative error of 1.22% and 1.77% for Al2O3-H2O and CuO-H2O, respectively. Furthermore, the results of this work have also been compared with others models. The findings of this work demonstrate that the GA-NN model is an effective method for prediction viscosity of nanofluids and have better accuracy and simplicity compared with the others models.Keywords: genetic algorithm, nanofluids, neural network, viscosity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20854511 An E-learning System Architecture based on Cloud Computing
Authors: Md. Anwar Hossain Masud, Xiaodi Huang
Abstract:
The massive proliferation of affordable computers, Internet broadband connectivity and rich education content has created a global phenomenon in which information and communication technology (ICT) is being used to transform education. Therefore, there is a need to redesign the educational system to meet the needs better. The advent of computers with sophisticated software has made it possible to solve many complex problems very fast and at a lower cost. This paper introduces the characteristics of the current E-Learning and then analyses the concept of cloud computing and describes the architecture of cloud computing platform by combining the features of E-Learning. The authors have tried to introduce cloud computing to e-learning, build an e-learning cloud, and make an active research and exploration for it from the following aspects: architecture, construction method and external interface with the model.
Keywords: Architecture, Cloud Computing, E-learning, Information Technology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 110724510 Customer Churn Prediction: A Cognitive Approach
Authors: Damith Senanayake, Lakmal Muthugama, Laksheen Mendis, Tiroshan Madushanka
Abstract:
Customer churn prediction is one of the most useful areas of study in customer analytics. Due to the enormous amount of data available for such predictions, machine learning and data mining have been heavily used in this domain. There exist many machine learning algorithms directly applicable for the problem of customer churn prediction, and here, we attempt to experiment on a novel approach by using a cognitive learning based technique in an attempt to improve the results obtained by using a combination of supervised learning methods, with cognitive unsupervised learning methods.
Keywords: Growing Self Organizing Maps, Kernel Methods, Churn Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25604509 The Selection of the Nearest Anchor Using Received Signal Strength Indication (RSSI)
Authors: Hichem Sassi, Tawfik Najeh, Noureddine Liouane
Abstract:
The localization information is crucial for the operation of WSN. There are principally two types of localization algorithms. The Range-based localization algorithm has strict requirements on hardware, thus is expensive to be implemented in practice. The Range-free localization algorithm reduces the hardware cost. However, it can only achieve high accuracy in ideal scenarios. In this paper, we locate unknown nodes by incorporating the advantages of these two types of methods. The proposed algorithm makes the unknown nodes select the nearest anchor using the Received Signal Strength Indicator (RSSI) and choose two other anchors which are the most accurate to achieve the estimated location. Our algorithm improves the localization accuracy compared with previous algorithms, which has been demonstrated by the simulating results.Keywords: WSN, localization, DV-hop, RSSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18164508 Auto Classification for Search Intelligence
Authors: Lilac A. E. Al-Safadi
Abstract:
This paper proposes an auto-classification algorithm of Web pages using Data mining techniques. We consider the problem of discovering association rules between terms in a set of Web pages belonging to a category in a search engine database, and present an auto-classification algorithm for solving this problem that are fundamentally based on Apriori algorithm. The proposed technique has two phases. The first phase is a training phase where human experts determines the categories of different Web pages, and the supervised Data mining algorithm will combine these categories with appropriate weighted index terms according to the highest supported rules among the most frequent words. The second phase is the categorization phase where a web crawler will crawl through the World Wide Web to build a database categorized according to the result of the data mining approach. This database contains URLs and their categories.Keywords: Information Processing on the Web, Data Mining, Document Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16194507 Bandwidth Estimation Algorithms for the Dynamic Adaptation of Voice Codec
Authors: Davide Pierattoni, Ivan Macor, Pier Luca Montessoro
Abstract:
In the recent years multimedia traffic and in particular VoIP services are growing dramatically. We present a new algorithm to control the resource utilization and to optimize the voice codec selection during SIP call setup on behalf of the traffic condition estimated on the network path. The most suitable methodologies and the tools that perform realtime evaluation of the available bandwidth on a network path have been integrated with our proposed algorithm: this selects the best codec for a VoIP call in function of the instantaneous available bandwidth on the path. The algorithm does not require any explicit feedback from the network, and this makes it easily deployable over the Internet. We have also performed intensive tests on real network scenarios with a software prototype, verifying the algorithm efficiency with different network topologies and traffic patterns between two SIP PBXs. The promising results obtained during the experimental validation of the algorithm are now the basis for the extension towards a larger set of multimedia services and the integration of our methodology with existing PBX appliances.Keywords: Integrated voice-data communication, computernetwork performance, resource optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16934506 Improved Zero Text Watermarking Algorithm against Meaning Preserving Attacks
Authors: Jalil Z., Farooq M., Zafar H., Sabir M., Ashraf E.
Abstract:
Internet is largely composed of textual contents and a huge volume of digital contents gets floated over the Internet daily. The ease of information sharing and re-production has made it difficult to preserve author-s copyright. Digital watermarking came up as a solution for copyright protection of plain text problem after 1993. In this paper, we propose a zero text watermarking algorithm based on occurrence frequency of non-vowel ASCII characters and words for copyright protection of plain text. The embedding algorithm makes use of frequency non-vowel ASCII characters and words to generate a specialized author key. The extraction algorithm uses this key to extract watermark, hence identify the original copyright owner. Experimental results illustrate the effectiveness of the proposed algorithm on text encountering meaning preserving attacks performed by five independent attackers.Keywords: Copyright protection, Digital watermarking, Document authentication, Information security, Watermark.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21604505 Enhancing Experiential Learning in a Smart Flipped Classroom: A Case Study
Authors: Fahri Benli, Sitalakshmi Venkatraman, Ye Wei, Fiona Wahr
Abstract:
A flipped classroom which is a form of blended learning shifts the focus from a teacher-centered approach to a learner-centered approach. However, not all learners are ready to take the active role of knowledge and skill acquisition through a flipped classroom and they continue to delve in a passive mode of learning. This challenges educators in designing, scaffolding and facilitating in-class activities for students to have active learning experiences in a flipped classroom environment. Experiential learning theories have been employed by educators in the past in physical classrooms based on the principle that knowledge could be actively developed through direct experience. However, with more of online teaching witnessed recently, there are inherent limitations in designing and simulating an experiential learning activity for an online environment. In this paper, we explore enhancing experiential learning using smart digital tools that could be employed in a flipped classroom within a higher education setting. We present the use of smart collaborative tools online to enhance the experiential learning activity to teach higher-order cognitive concepts of business process modeling as a case study.
Keywords: Experiential learning, flipped classroom, smart software tools, online learning higher-order learning attributes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4394504 Genetic Algorithm for Solving Non-Convex Economic Dispatch Problem
Authors: Navid Javidtash, Abdolmohamad Davodi, Mojtaba Hakimzadeh, Abdolreza Roozbeh
Abstract:
Economic dispatch (ED) is considered to be one of the key functions in electric power system operation. This paper presents a new hybrid approach based genetic algorithm (GA) to economic dispatch problems. GA is most commonly used optimizing algorithm predicated on principal of natural evolution. Utilization of chaotic queue with GA generates several neighborhoods of near optimal solutions to keep solution variation. It could avoid the search process from becoming pre-mature. For the objective of chaotic queue generation, utilization of tent equation as opposed to logistic equation results in improvement of iterative speed. The results of the proposed approach were compared in terms of fuel cost, with existing differential evolution and other methods in literature.
Keywords: Economic Dispatch(ED), Optimization, Fuel Cost, Genetic Algorithm (GA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23964503 Enhanced Character Based Algorithm for Small Parsimony
Authors: Parvinder Singh Sandhu, Sumeet Kaur Sehra, Karmjit Kaur
Abstract:
Phylogenetic tree is a graphical representation of the evolutionary relationship among three or more genes or organisms. These trees show relatedness of data sets, species or genes divergence time and nature of their common ancestors. Quality of a phylogenetic tree requires parsimony criterion. Various approaches have been proposed for constructing most parsimonious trees. This paper is concerned about calculating and optimizing the changes of state that are needed called Small Parsimony Algorithms. This paper has proposed enhanced small parsimony algorithm to give better score based on number of evolutionary changes needed to produce the observed sequence changes tree and also give the ancestor of the given input.Keywords: Phylogenetic Analysis, Small Parsimony, EnhancedFitch Algorithm, Enhanced Sakoff Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13494502 Kernel’s Parameter Selection for Support Vector Domain Description
Authors: Mohamed EL Boujnouni, Mohamed Jedra, Noureddine Zahid
Abstract:
Support Vector Domain Description (SVDD) is one of the best-known one-class support vector learning methods, in which one tries the strategy of using balls defined on the feature space in order to distinguish a set of normal data from all other possible abnormal objects. As all kernel-based learning algorithms its performance depends heavily on the proper choice of the kernel parameter. This paper proposes a new approach to select kernel's parameter based on maximizing the distance between both gravity centers of normal and abnormal classes, and at the same time minimizing the variance within each class. The performance of the proposed algorithm is evaluated on several benchmarks. The experimental results demonstrate the feasibility and the effectiveness of the presented method.
Keywords: Gravity centers, Kernel’s parameter, Support Vector Domain Description, Variance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18324501 Radial Basis Surrogate Model Integrated to Evolutionary Algorithm for Solving Computation Intensive Black-Box Problems
Authors: Abdulbaset Saad, Adel Younis, Zuomin Dong
Abstract:
For design optimization with high-dimensional expensive problems, an effective and efficient optimization methodology is desired. This work proposes a series of modification to the Differential Evolution (DE) algorithm for solving computation Intensive Black-Box Problems. The proposed methodology is called Radial Basis Meta-Model Algorithm Assisted Differential Evolutionary (RBF-DE), which is a global optimization algorithm based on the meta-modeling techniques. A meta-modeling assisted DE is proposed to solve computationally expensive optimization problems. The Radial Basis Function (RBF) model is used as a surrogate model to approximate the expensive objective function, while DE employs a mechanism to dynamically select the best performing combination of parameters such as differential rate, cross over probability, and population size. The proposed algorithm is tested on benchmark functions and real life practical applications and problems. The test results demonstrate that the proposed algorithm is promising and performs well compared to other optimization algorithms. The proposed algorithm is capable of converging to acceptable and good solutions in terms of accuracy, number of evaluations, and time needed to converge.
Keywords: Differential evolution, engineering design, expensive computations, meta-modeling, radial basis function, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11734500 Comparison of Back-Projection with Non-Uniform Fast Fourier Transform for Real-Time Photoacoustic Tomography
Authors: Moung Young Lee, Chul Gyu Song
Abstract:
Photoacoustic imaging is the imaging technology that combines the optical imaging and ultrasound. This provides the high contrast and resolution due to optical imaging and ultrasound imaging, respectively. We developed the real-time photoacoustic tomography (PAT) system using linear-ultrasound transducer and digital acquisition (DAQ) board. There are two types of algorithm for reconstructing the photoacoustic signal. One is back-projection algorithm, the other is FFT algorithm. Especially, we used the non-uniform FFT algorithm. To evaluate the performance of our system and algorithms, we monitored two wires that stands at interval of 2.89 mm and 0.87 mm. Then, we compared the images reconstructed by algorithms. Finally, we monitored the two hairs crossed and compared between these algorithms.Keywords: Back-projection, image comparison, non-uniform FFT, photoacoustic tomography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18924499 Low Resolution Single Neural Network Based Face Recognition
Authors: Jahan Zeb, Muhammad Younus Javed, Usman Qayyum
Abstract:
This research paper deals with the implementation of face recognition using neural network (recognition classifier) on low-resolution images. The proposed system contains two parts, preprocessing and face classification. The preprocessing part converts original images into blurry image using average filter and equalizes the histogram of those image (lighting normalization). The bi-cubic interpolation function is applied onto equalized image to get resized image. The resized image is actually low-resolution image providing faster processing for training and testing. The preprocessed image becomes the input to neural network classifier, which uses back-propagation algorithm to recognize the familiar faces. The crux of proposed algorithm is its beauty to use single neural network as classifier, which produces straightforward approach towards face recognition. The single neural network consists of three layers with Log sigmoid, Hyperbolic tangent sigmoid and Linear transfer function respectively. The training function, which is incorporated in our work, is Gradient descent with momentum (adaptive learning rate) back propagation. The proposed algorithm was trained on ORL (Olivetti Research Laboratory) database with 5 training images. The empirical results provide the accuracy of 94.50%, 93.00% and 90.25% for 20, 30 and 40 subjects respectively, with time delay of 0.0934 sec per image.Keywords: Average filtering, Bicubic Interpolation, Neurons, vectorization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17504498 Robot Operating System-Based SLAM for a Gazebo-Simulated Turtlebot2 in 2d Indoor Environment with Cartographer Algorithm
Authors: Wilayat Ali, Li Sheng, Waleed Ahmed
Abstract:
The ability of the robot to make simultaneously map of the environment and localize itself with respect to that environment is the most important element of mobile robots. To solve SLAM many algorithms could be utilized to build up the SLAM process and SLAM is a developing area in Robotics research. Robot Operating System (ROS) is one of the frameworks which provide multiple algorithm nodes to work with and provide a transmission layer to robots. Manyof these algorithms extensively in use are Hector SLAM, Gmapping and Cartographer SLAM. This paper describes a ROS-based Simultaneous localization and mapping (SLAM) library Google Cartographer mapping, which is open-source algorithm. The algorithm was applied to create a map using laser and pose data from 2d Lidar that was placed on a mobile robot. The model robot uses the gazebo package and simulated in Rviz. Our research work's primary goal is to obtain mapping through Cartographer SLAM algorithm in a static indoor environment. From our research, it is shown that for indoor environments cartographer is an applicable algorithm to generate 2d maps with LIDAR placed on mobile robot because it uses both odometry and poses estimation. The algorithm has been evaluated and maps are constructed against the SLAM algorithms presented by Turtlebot2 in the static indoor environment.Keywords: SLAM, ROS, navigation, localization and mapping, Gazebo, Rviz, Turtlebot2, SLAM algorithms, 2d Indoor environment, Cartographer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12334497 Reduction of Impulsive Noise in OFDM System Using Adaptive Algorithm
Authors: Alina Mirza, Sumrin M. Kabir, Shahzad A. Sheikh
Abstract:
The Orthogonal Frequency Division Multiplexing (OFDM) with high data rate, high spectral efficiency and its ability to mitigate the effects of multipath makes them most suitable in wireless application. Impulsive noise distorts the OFDM transmission and therefore methods must be investigated to suppress this noise. In this paper, a State Space Recursive Least Square (SSRLS) algorithm based adaptive impulsive noise suppressor for OFDM communication system is proposed. And a comparison with another adaptive algorithm is conducted. The state space model-dependent recursive parameters of proposed scheme enables to achieve steady state mean squared error (MSE), low bit error rate (BER), and faster convergence than that of some of existing algorithm.Keywords: OFDM, Impulsive Noise, SSRLS, BER.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27014496 Relative Mapping Errors of Linear Time Invariant Systems Caused By Particle Swarm Optimized Reduced Order Model
Authors: G. Parmar, S. Mukherjee, R. Prasad
Abstract:
The authors present an optimization algorithm for order reduction and its application for the determination of the relative mapping errors of linear time invariant dynamic systems by the simplified models. These relative mapping errors are expressed by means of the relative integral square error criterion, which are determined for both unit step and impulse inputs. The reduction algorithm is based on minimization of the integral square error by particle swarm optimization technique pertaining to a unit step input. The algorithm is simple and computer oriented. It is shown that the algorithm has several advantages, e.g. the reduced order models retain the steady-state value and stability of the original system. Two numerical examples are solved to illustrate the superiority of the algorithm over some existing methods.Keywords: Order reduction, Particle swarm optimization, Relative mapping error, Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15744495 A Formative Assessment Model within the Competency-Based-Approach for an Individualized E-learning Path
Authors: El Falaki Brahim, Khalidi Idrissi Mohammed, Bennani Samir
Abstract:
E-learning is not restricted to the use of new technologies for the online content, but also induces the adoption of new approaches to improve the quality of education. This quality depends on the ability of these approaches (technical and pedagogical) to provide an adaptive learning environment. Thus, the environment should include features that convey intentions and meeting the educational needs of learners by providing a customized learning path to acquiring a competency concerned In our proposal, we believe that an individualized learning path requires knowledge of the learner. Therefore, it must pass through a personalization of diagnosis to identify precisely the competency gaps to fill, and reduce the cognitive load To personalize the diagnosis and pertinently measure the competency gap, we suggest implementing the formative assessment in the e-learning environment and we propose the introduction of a pre-regulation process in the area of formative assessment, involving its individualization and implementation in e-learning.
Keywords: Competency-Based-Approach, E-learning, Formative assessment, learner model, Modeling, pre-regulation process
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21234494 Online Collaboration Learning: A Way to Enhance Students' Achievement at Kingdom of Bahrain
Authors: Jaflah H. Al-Ammary
Abstract:
The increasing recognition of the need for education to be closely aligned with team playing, project based learning and problem solving approaches has increase the interest in collaborative learning among university and college instructors. Using online collaboration learning in learning can enhance the outcome and achievement of students as well as improve their communication, critical thinking and personnel skills. The current research aims at examining the effect of OCL on the student's achievement at Kingdom of Bahrain. Numbers of objectives were set to achieve the aim of the research include: investigating the current situation regarding the collaborative learning and OCL at the Kingdom of Bahrain by identifying the advantages and effectiveness of OCL as a learning tool over traditional learning, examining the factors that affect OCL as well as examining the impact of OCL on the student's achievement. To achieve these objectives, quantitative method was adopted. Two hundred and thirty one questionnaires were distributed to students in different local and private universities at Kingdom of Bahrain. The findings of the research show that most of the students prefer to use FTFCL in learning and that OCL is already adopted in some universities especially in University of Bahrain. Moreover, the most factors affecting the adopted OCL are perceived readiness, and guidance and support.
Keywords: Collaborative learning, perceived readiness, student achievement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22994493 Improving Listening Comprehension for EFL Pre-Intermediate Students through a Blended Learning Strategy
Authors: Heba Mustafa Abdullah
Abstract:
The research aimed at examining the effect of using a suggested blended learning (BL) strategy on developing EFL pre- intermediate students. The study adopted the quasi-experimental design. The sample of the research consisted of a group of 26 EFL pre- intermediate students. Tools of the study included a listening comprehension checklist and a pre-post listening comprehension test. Results were discussed in relation to several factors that affected the language learning process. Finally, the research provided beneficial contributions in relation to manipulating BL strategy with respect to language learning process in general and oral language learning in particular.
Keywords: Blended learning, English as a foreign language, listening comprehension, oral language instruction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24044492 Investigating the Impact of Augmented and Virtual Reality on Learning in a Multivariable Calculus Classroom
Authors: Burcu Karabina, Lynn Long, Amanda Garcia
Abstract:
Augmented reality (AR) and virtual reality (VR) applications were offered as supplemental learning experiences to a second-year multivariable calculus class. A framework of research-informed best practices was used to guide selection and application of AR and VR learning technologies. Student feedback indicated that both AR and VR enhanced learning, both would be of value to future students, and learning may be most enhanced when AR and VR are used as complementary learning tools. The simpler technology, AR, was generally preferred, but for specific topics, students felt that the more immersive VR learning experience was especially beneficial. Immersion in the virtual learning environment minimized distractions, allowed students to feel more connected to their learning, and enhanced their ability to visualize and interact with 3D objects. Resolution of identified accessibility concerns could improve students’ overall experience with VR. Future research will explore ways to optimize the complementary effects of the two technologies. Application of research-informed framework of best practices was modelled throughout the study. Results and key resources informed revision and refinement of the framework.
Keywords: Accessibility, augmented reality, best practices, pedagogy, virtual reality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4314491 A Genetic-Algorithm-Based Approach for Audio Steganography
Authors: Mazdak Zamani , Azizah A. Manaf , Rabiah B. Ahmad , Akram M. Zeki , Shahidan Abdullah
Abstract:
In this paper, we present a novel, principled approach to resolve the remained problems of substitution technique of audio steganography. Using the proposed genetic algorithm, message bits are embedded into multiple, vague and higher LSB layers, resulting in increased robustness. The robustness specially would be increased against those intentional attacks which try to reveal the hidden message and also some unintentional attacks like noise addition as well.
Keywords: Artificial Intelligence, Audio Steganography, DataHiding, Genetic Algorithm, Substitution Techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31184490 Co-tier and Co-channel Interference Avoidance Algorithm for Femtocell Networks
Authors: S. Padmapriya, M. Tamilarasi
Abstract:
Femtocells are regarded as a milestone for next generation cellular networks. As femtocells are deployed in an unplanned manner, there is a chance of assigning same resource to neighboring femtocells. This scenario may induce co-channel interference and may seriously affect the service quality of neighboring femtocells. In addition, the dominant transmit power of a femtocell will induce co-tier interference to neighboring femtocells. Thus to jointly handle co-tier and co-channel interference, we propose an interference-free power and resource block allocation (IFPRBA) algorithm for closely located, closed access femtocells. Based on neighboring list, inter-femto-base station distance and uplink noise power, the IFPRBA algorithm assigns non-interfering power and resource to femtocells. The IFPRBA algorithm also guarantees the quality of service to femtouser based on the knowledge of resource requirement, connection type, and the tolerable delay budget. Simulation result shows that the interference power experienced in IFPRBA algorithm is below the tolerable interference power and hence the overall service success ratio, PRB efficiency and network throughput are maximum when compared to conventional resource allocation framework for femtocell (RAFF) algorithm.
Keywords: Co-channel interference, co-tier interference, femtocells, guaranteed QoS, power optimization, resource assignment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2466