Search results for: flow around buildings
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2786

Search results for: flow around buildings

2156 Comparison of Experimental Relationships to Determine Flow Discharge in Meandering Compound Channels Using M5 Decision Tree Model

Authors: Mehdi Kheradmand, Mehdi Azhdary Moghaddam, Abdolreza Zahiri, Khalil Ghorbani

Abstract:

This research compares results of major methods of determining the flow discharge using experimental relationships with results from the M5 decision tree model in meandering compound sections in several laboratory channels. It was found that the M5 decision tree model enjoyed greater accuracy of statistical parameters compared to methods to the said methods. This suggested that the M5 decision tree model has highly improved the calculated accuracy of the flow discharge in meandering compound channels.

Keywords: Stage-discharge relationship, M5 decision tree model, compound section, meandering compound channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 189
2155 Effect of Reynolds Number on Flow past a Square Cylinder in Presence of Upstream and Downstream Flat Plate at Small Gap Spacing

Authors: Shams-ul-Islam, Raheela Manzoor, Zhou Chao Ying

Abstract:

A two-dimensional numerical study for flow past a square cylinder in presence of flat plate both at upstream and downstream position is carried out using the single-relaxation-time lattice Boltzmann method for gap spacing 0.5 and 1. We select Reynolds numbers from 80 to 200. The wake structure mechanism within gap spacing and near wake region, vortex structures around and behind the main square cylinder in presence of flat plate are studied and compared with flow pattern around a single square cylinder. The results are obtained in form of vorticity contour, streamlines, power spectra analysis, time trace analysis of drag and lift coefficients. Four different types of flow patterns were observed in both configurations, named as (i) Quasi steady flow (QSF), (ii) steady flow (SF), (iii) shear layer reattachment (SLR), (iv) single bluff body (SBB). It is observed that upstream flat plate plays a vital role in significant drag reduction. On the other hand, rate of suppression of vortex shedding is high for downstream flat plate case at low Reynolds numbers. The reduction in mean drag force and root mean square value of drag force for upstream flat plate case are89.1% and 86.3% at (Re, g) = (80, 0.5d) and (120, 1d) and reduction for downstream flat plate case for mean drag force and root mean square value of drag force are 11.10% and 97.6% obtained at (180, 1d) and (180, 0.5d).

Keywords: Detached flat plates, drag and lift coefficients, Reynolds numbers, square cylinder, Strouhal number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2151
2154 Modeling of Surface Roughness for Flow over a Complex Vegetated Surface

Authors: Wichai Pattanapol, Sarah J. Wakes, Michael J. Hilton, Katharine J.M. Dickinson

Abstract:

Turbulence modeling of large-scale flow over a vegetated surface is complex. Such problems involve large scale computational domains, while the characteristics of flow near the surface are also involved. In modeling large scale flow, surface roughness including vegetation is generally taken into account by mean of roughness parameters in the modified law of the wall. However, the turbulence structure within the canopy region cannot be captured with this method, another method which applies source/sink terms to model plant drag can be used. These models have been developed and tested intensively but with a simple surface geometry. This paper aims to compare the use of roughness parameter, and additional source/sink terms in modeling the effect of plant drag on wind flow over a complex vegetated surface. The RNG k-ε turbulence model with the non-equilibrium wall function was tested with both cases. In addition, the k-ω turbulence model, which is claimed to be computationally stable, was also investigated with the source/sink terms. All numerical results were compared to the experimental results obtained at the study site Mason Bay, Stewart Island, New Zealand. In the near-surface region, it is found that the results obtained by using the source/sink term are more accurate than those using roughness parameters. The k-ω turbulence model with source/sink term is more appropriate as it is more accurate and more computationally stable than the RNG k-ε turbulence model. At higher region, there is no significant difference amongst the results obtained from all simulations.

Keywords: CFD, canopy flow, surface roughness, turbulence models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2918
2153 The Importance of Zenithal Lighting Systems for Natural Light Gains and for Local Energy Generation in Brazil

Authors: Ana Paula Esteves, Diego S. Caetano, Louise L. B. Lomardo

Abstract:

This paper presents an approach on the advantages of using adequate coverage in the zenithal lighting typology in various areas of architectural production, while at the same time to encourage to the design concerns inherent in this choice of roofing in Brazil. Understanding that sustainability needs to cover several aspects, a roofing system such as zenithal lighting system can contribute to the provision of better quality natural light for the interior of the building, which is related to the good health and welfare; it will also be able to contribute for the sustainable aspects and environmental needs, when it allows the generation of energy in semitransparent or opacity photovoltaic solutions and economize the artificial lightning. When the energy balance in the building is positive, that is, when the building generates more energy than it consumes, it may fit into the Net Zero Energy Building concept. The zenithal lighting systems could be an important ally in Brazil, when solved the burden of heat gains, participate in the set of pro-efficiency actions in search of "zero energy buildings". The paper presents comparative three cases of buildings that have used this feature in search of better environmental performance, both in light comfort and sustainability as a whole. Two of these buildings are examples in Europe: the Notley Green School in the UK and the Isofóton factory in Spain. The third building with these principles of shed´s roof is located in Brazil: the Ipel´s factory in São Paulo.

Keywords: Natural lightning, net zero energy building, sheds, semi-transparent photovoltaics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1011
2152 Oscillatory Electroosmotic Flow of Power-Law Fluids in a Microchannel

Authors: Rubén Bãnos, José Arcos, Oscar Bautista, Federico Méndez

Abstract:

The Oscillatory electroosmotic flow (OEOF) in power law fluids through a microchannel is studied numerically. A time-dependent external electric field (AC) is suddenly imposed at the ends of the microchannel which induces the fluid motion. The continuity and momentum equations in the x and y direction for the flow field were simplified in the limit of the lubrication approximation theory (LAT), and then solved using a numerical scheme. The solution of the electric potential is based on the Debye-H¨uckel approximation which suggest that the surface potential is small,say, smaller than 0.025V and for a symmetric (z : z) electrolyte. Our results suggest that the velocity profiles across the channel-width are controlled by the following dimensionless parameters: the angular Reynolds number, Reω, the electrokinetic parameter, ¯κ, defined as the ratio of the characteristic length scale to the Debye length, the parameter λ which represents the ratio of the Helmholtz-Smoluchowski velocity to the characteristic length scale and the flow behavior index, n. Also, the results reveal that the velocity profiles become more and more non-uniform across the channel-width as the Reω and ¯κ are increased, so oscillatory OEOF can be really useful in micro-fluidic devices such as micro-mixers.

Keywords: Oscillatory electroosmotic flow, Non-Newtonian fluids, power-law model, low zeta potentials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 862
2151 Study on Optimization of Air Infiltration at Entrance of a Commercial Complex in Zhejiang Province

Authors: Yujie Zhao, Jiantao Weng

Abstract:

In the past decade, with the rapid development of China's economy, the purchasing power and physical demand of residents have been improved, which results in the vast emergence of public buildings like large shopping malls. However, the architects usually focus on the internal functions and streamlines of these buildings, ignoring the impact of the environment on the subjective feelings of building users. Only in Zhejiang province, the infiltration of cold air in winter frequently occurs at the entrance of sizeable commercial complex buildings that have been in operation, which will affect the environmental comfort of the building lobby and internal public spaces. At present, to reduce these adverse effects, it is usually adopted to add active equipment, such as setting air curtains to block air exchange or adding heating air conditioners. From the perspective of energy consumption, the infiltration of cold air into the entrance will increase the heat consumption of indoor heating equipment, which will indirectly cause considerable economic losses during the whole winter heating stage. Therefore, it is of considerable significance to explore the suitable entrance forms for improving the environmental comfort of commercial buildings and saving energy. In this paper, a commercial complex with apparent cold air infiltration problem in Hangzhou is selected as the research object to establish a model. The environmental parameters of the building entrance, including temperature, wind speed, and infiltration air volume, are obtained by Computational Fluid Dynamics (CFD) simulation, from which the heat consumption caused by the natural air infiltration in the winter and its potential economic loss is estimated as the objective metric. This study finally obtains the optimization direction of the building entrance form of the commercial complex by comparing the simulation results of other local commercial complex projects with different entrance forms. The conclusions will guide the entrance design of the same type of commercial complex in this area.

Keywords: Air infiltration, commercial complex, heat consumption, CFD simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 736
2150 Creating Streamribbons Based on Mass Conservative Streamlines

Authors: Zhenquan Li, Niharika Singh

Abstract:

Streamribbon is used to visualize the rotation of the fluid flow. The rotation of flow is useful in fluid mechanics, engineering and geophysics. This paper introduces the construction technique of streamribbon using the streamline which is generated based on the law of mass conservation. The accuracy of constructed streamribbons is shown through two examples.

Keywords: Mass conservation, streamline, streamtube, streamribbon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1181
2149 A Multi-Level GA Search with Application to the Resource-Constrained Re-Entrant Flow Shop Scheduling Problem

Authors: Danping Lin, C.K.M. Lee

Abstract:

Re-entrant scheduling is an important search problem with many constraints in the flow shop. In the literature, a number of approaches have been investigated from exact methods to meta-heuristics. This paper presents a genetic algorithm that encodes the problem as multi-level chromosomes to reflect the dependent relationship of the re-entrant possibility and resource consumption. The novel encoding way conserves the intact information of the data and fastens the convergence to the near optimal solutions. To test the effectiveness of the method, it has been applied to the resource-constrained re-entrant flow shop scheduling problem. Computational results show that the proposed GA performs better than the simulated annealing algorithm in the measure of the makespan

Keywords: Resource-constrained, re-entrant, genetic algorithm (GA), multi-level encoding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764
2148 Performance of a Transcritical CO2 Heat Pump for Simultaneous Water Cooling and Heating

Authors: J. Sarkar, Souvik Bhattacharyya, M. Ramgopal

Abstract:

This paper presents the experimental as well as the simulated performance studies on the transcritical CO2 heat pumps for simultaneous water cooling and heating; effects of water mass flow rates and water inlet temperatures of both evaporator and gas cooler on the cooling and heating capacities, system COP and water outlets temperatures are investigated. Study shows that both the water mass flow rate and inlet temperature have significant effect on system performances. Test results show that the effect of evaporator water mass flow rate on the system performances and water outlet temperatures is more pronounced (COP increases 0.6 for 1 kg/min) compared to the gas cooler water mass flow rate (COP increases 0.4 for 1 kg/min) and the effect of gas cooler water inlet temperature is more significant (COP decreases 0.48 for given ranges) compared to the evaporator water inlet temperature (COP increases 0.43 for given ranges). Comparisons of experimental values with simulated results show the maximum deviation of 5% for cooling capacity, 10% for heating capacity, 16% for system COP. This study offers useful guidelines for selecting appropriate water mass flow rate to obtain required system performance.

Keywords: CO2 heat pump, experiment, simulation, performance characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2704
2147 Pushover Analysis of Reinforced Concrete Buildings Using Full Jacket Technics: A Case Study on an Existing Old Building in Madinah

Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail

Abstract:

The retrofitting of existing buildings to resist the seismic loads is very important to avoid losing lives or financial disasters. The aim at retrofitting processes is increasing total structure strength by increasing stiffness or ductility ratio. In addition, the response modification factors (R) have to satisfy the code requirements for suggested retrofitting types. In this study, two types of jackets are used, i.e. full reinforced concrete jackets and surrounding steel plate jackets. The study is carried out on an existing building in Madinah by performing static pushover analysis before and after retrofitting the columns. The selected model building represents nearly all-typical structure lacks structure built before 30 years ago in Madina City, KSA. The comparison of the results indicates a good enhancement of the structure respect to the applied seismic forces. Also, the response modification factor of the RC building is evaluated for the studied cases before and after retrofitting. The design of all vertical elements (columns) is given. The results show that the design of retrofitted columns satisfied the code's design stress requirements. However, for some retrofitting types, the ductility requirements represented by response modification factor do not satisfy KSA design code (SBC- 301).

Keywords: Concrete jackets, steel jackets, RC buildings pushover analysis, non-linear analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
2146 Best Combination of Design Parameters for Buildings with Buckling-Restrained Braces

Authors: Ángel de J. López-Pérez, Sonia E. Ruiz, Vanessa A. Segovia

Abstract:

Buildings vulnerability due to seismic activity has been highly studied since the middle of last century. As a solution to the structural and non-structural damage caused by intense ground motions, several seismic energy dissipating devices, such as buckling-restrained braces (BRB), have been proposed. BRB have shown to be effective in concentrating a large portion of the energy transmitted to the structure by the seismic ground motion. A design approach for buildings with BRB elements, which is based on a seismic Displacement-Based formulation, has recently been proposed by the coauthors in this paper. It is a practical and easy design method which simplifies the work of structural engineers. The method is used here for the design of the structure-BRB damper system. The objective of the present study is to extend and apply a methodology to find the best combination of design parameters on multiple-degree-of-freedom (MDOF) structural frame – BRB systems, taking into account simultaneously: 1) initial costs and 2) an adequate engineering demand parameter. The design parameters considered here are: the stiffness ratio (α = Kframe/Ktotal), and the strength ratio (γ = Vdamper/Vtotal); where K represents structural stiffness and V structural strength; and the subscripts "frame", "damper" and "total" represent: the structure without dampers, the BRB dampers and the total frame-damper system, respectively. The selection of the best combination of design parameters α and γ is based on an initial costs analysis and on the structural dynamic response of the structural frame-damper system. The methodology is applied to a 12-story 5-bay steel building with BRB, which is located on the intermediate soil of Mexico City. It is found the best combination of design parameters α and γ for the building with BRB under study.

Keywords: Best combination of design parameters, BRB, buildings with energy dissipating devices, buckling-restrained braces, initial costs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1159
2145 Seismic Retrofitting of RC Buildings with Soft Storey and Floating Columns

Authors: Vinay Agrawal, Suyash Garg, Ravindra Nagar, Vinay Chandwani

Abstract:

Open ground storey with floating columns is a typical feature in the modern multistory constructions in urban India. Such features are very much undesirable in buildings built in seismically active areas. The present study proposes a feasible solution to mitigate the effects caused due to non-uniformity of stiffness and discontinuity in load path and to simultaneously hold the functional use of the open storey particularly under the floating column, through a combination of various lateral strengthening systems. An investigation is performed on an example building with nine different analytical models to bring out the importance of recognising the presence of open ground storey and floating columns. Two separate analyses on various models of the building namely, the equivalent static analysis and the response spectrum analysis as per IS: 1893-2002 were performed. Various measures such as incorporation of Chevron bracings and shear walls, strengthening the columns in the open ground storey, and their different combinations were examined. The analysis shows that, in comparison to two short ones separated by interconnecting beams, the structural walls are most effective when placed at the periphery of the buildings and used as one long structural wall. Further, it can be shown that the force transfer from floating columns becomes less horizontal when the Chevron Bracings are placed just below them, thereby reducing the shear forces in the beams on which the floating column rests.

Keywords: Equivalent static analysis, floating column, open ground storey, response spectrum analysis, shear wall, stiffness irregularity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501
2144 Flow Acoustics in Solid-Fluid Structures

Authors: Morten Willatzen, Mikhail Vladimirovich Deryabin

Abstract:

The governing two-dimensional equations of a heterogeneous material composed of a fluid (allowed to flow in the absence of acoustic excitations) and a crystalline piezoelectric cubic solid stacked one-dimensionally (along the z direction) are derived and special emphasis is given to the discussion of acoustic group velocity for the structure as a function of the wavenumber component perpendicular to the stacking direction (being the x axis). Variations in physical parameters with y are neglected assuming infinite material homogeneity along the y direction and the flow velocity is assumed to be directed along the x direction. In the first part of the paper, the governing set of differential equations are derived as well as the imposed boundary conditions. Solutions are provided using Hamilton-s equations for the wavenumber vs. frequency as a function of the number and thickness of solid layers and fluid layers in cases with and without flow (also the case of a position-dependent flow in the fluid layer is considered). In the first part of the paper, emphasis is given to the small-frequency case. Boundary conditions at the bottom and top parts of the full structure are left unspecified in the general solution but examples are provided for the case where these are subject to rigid-wall conditions (Neumann boundary conditions in the acoustic pressure). In the second part of the paper, emphasis is given to the general case of larger frequencies and wavenumber-frequency bandstructure formation. A wavenumber condition for an arbitrary set of consecutive solid and fluid layers, involving four propagating waves in each solid region, is obtained again using the monodromy matrix method. Case examples are finally discussed.

Keywords: Flow, acoustics, solid-fluid structures, periodicity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566
2143 Burning Rate Response of Solid Fuels in Laminar Boundary Layer

Authors: A. M. Tahsini

Abstract:

Solid fuel transient burning behavior under oxidizer gas flow is numerically investigated. It is done using analysis of the regression rate responses to the imposed sudden and oscillatory variation at inflow properties. The conjugate problem is considered by simultaneous solution of flow and solid phase governing equations to compute the fuel regression rate. The advection upstream splitting method is used as flow computational scheme in finite volume method. The ignition phase is completely simulated to obtain the exact initial condition for response analysis. The results show that the transient burning effects which lead to the combustion instabilities and intermittent extinctions could be observed in solid fuels as the solid propellants.

Keywords: Extinction, Oscillation, Regression rate, Response, Transient burning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2345
2142 Detailed Mapping of Pyroclastic Flow Deposits by SAR Data Processing for an Active Volcano in the Torrid Zone

Authors: Asep Saepuloh, Katsuaki Koike

Abstract:

Field mapping activity for an active volcano mainly in the Torrid Zone is usually hampered by several problems such as steep terrain and bad atmosphere conditions. In this paper we present a simple solution for such problem by a combination Synthetic Aperture Radar (SAR) and geostatistical methods. By this combination, we could reduce the speckle effect from the SAR data and then estimate roughness distribution of the pyroclastic flow deposits. The main purpose of this study is to detect spatial distribution of new pyroclastic flow deposits termed as P-zone accurately using the β°data from two RADARSAT-1 SAR level-0 data. Single scene of Hyperion data and field observation were used for cross-validation of the SAR results. Mt. Merapi in central Java, Indonesia, was chosen as a study site and the eruptions in May-June 2006 were examined. The P-zones were found in the western and southern flanks. The area size and the longest flow distance were calculated as 2.3 km2 and 6.8 km, respectively. The grain size variation of the P-zone was mapped in detail from fine to coarse deposits regarding the C-band wavelength of 5.6 cm.

Keywords: Geostatistical Method, Mt. Merapi, Pyroclastic, RADARSAT-1.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1287
2141 A Simple Approach of Three phase Distribution System Modeling for Power Flow Calculations

Authors: J. B. V. Subrahmanyam, C. Radhakrishna

Abstract:

This paper presents a simple three phase power flow method for solution of three-phase unbalanced radial distribution system (RDN) with voltage dependent loads. It solves a simple algebraic recursive expression of voltage magnitude, and all the data are stored in vector form. The algorithm uses basic principles of circuit theory and can be easily understood. Mutual coupling between the phases has been included in the mathematical model. The proposed algorithm has been tested with several unbalanced radial distribution networks and the results are presented in the article. 8- bus and IEEE 13 bus unbalanced radial distribution system results are in agreements with the literature and show that the proposed model is valid and reliable.

Keywords: radial distribution networks, load flow, circuitmodel, three-phase four-wire, unbalance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3967
2140 Optimization of CO2 Emissions and Cost for Composite Building Design with NSGA-II

Authors: Ji Hyeong Park, Ji Hye Jeon, Hyo Seon Park

Abstract:

Environmental pollution problems have been globally main concern in all fields including economy, society and culture into the 21st century. Beginning with the Kyoto Protocol, the reduction on the emissions of greenhouse gas such as CO2 and SOX has been a principal challenge of our day. As most buildings unlike durable goods in other industries have a characteristic and long life cycle, they consume energy in quantity and emit much CO2. Thus, for green building construction, more research is needed to reduce the CO2 emissions at each stage in the life cycle. However, recent studies are focused on the use and maintenance phase. Also, there is a lack of research on the initial design stage, especially the structure design. Therefore, in this study, we propose an optimal design plan considering CO2 emissions and cost in composite buildings simultaneously by applying to the structural design of actual building.

Keywords: Multi-objective optimization, CO2 emissions, structural cost, encased composite structure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
2139 Momentum and Heat Transfer in the Flow of a Viscoelastic Fluid Past a Porous Flat Plate Subject to Suction or Blowing

Authors: Motahar Reza, Anadi Sankar Gupta

Abstract:

An analysis is made of the flow of an incompressible viscoelastic fluid (of small memory) over a porous plate subject to suction or blowing. It is found that velocity at a point increases with increase in the elasticity in the fluid. It is also shown that wall shear stress depends only on suction and is also independent of the material of fluids. No steady solution for velocity distribution exists when there is blowing at the plate. Temperature distribution in the boundary layer is determined and it is found that temperature at a point decreases with increase in the elasticity in the fluid.

Keywords: Viscoelastic fluid, Flow past a porous plate, Heat transfer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313
2138 Influence of the Flow Rate Ratio in a Jet Pump on the Size of Air Bubbles

Authors: L. Grinis, N. Lubashevsky, Y. Ostrovski

Abstract:

In wastewater treatment processes, aeration introduces air into a liquid. In these systems, air is introduced by different devices submerged in the wastewater. Smaller bubbles result in more bubble surface area per unit of volume and higher oxygen transfer efficiency. Jet pumps are devices that use air bubbles and are widely used in wastewater treatment processes. The principle of jet pumps is their ability to transfer energy of one fluid, called primary or motive, into a secondary fluid or gas. These pumps have no moving parts and are able to work in remote areas under extreme conditions. The objective of this work is to study experimentally the characteristics of the jet pump and the size of air bubbles in the laboratory water tank. The effect of flow rate ratio on pump performance is investigated in order to have a better understanding about pump behavior under various conditions, in order to determine the efficiency of receiving air bubbles different sizes. The experiments show that we should take care when increasing the flow rate ratio while seeking to decrease bubble size in the outlet flow. This study will help improve and extend the use of the jet pump in many practical applications.

Keywords: Jet pump, air bubbles size, retention time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2972
2137 Numerical Analysis of Laminar Flow around Square Cylinders with EHD Phenomenon

Authors: M. Salmanpour, O. Nourani Zonouz

Abstract:

In this research, a numerical simulation of an Electrohydrodynamic (EHD) actuator’s effects on the flow around a square cylinder by using a finite volume method has been investigated. This is one of the newest ways for controlling the fluid flows. Two plate electrodes are flush-mounted on the surface of the cylinder and one wire electrode is placed on the line with zero angle of attack relative to the stagnation point and excited with DC power supply. The discharge produces an electric force and changes the local momentum behaviors in the fluid layers. For this purpose, after selecting proper domain and boundary conditions, the electric field relating to the problem has been analyzed and then the results in the form of electrical body force have been entered in the governing equations of fluid field (Navier-Stokes equations). The effect of ionic wind resulted from the Electrohydrodynamic actuator, on the velocity, pressure and the wake behind cylinder has been considered. According to the results, it is observed that the fluid flow accelerates in the nearest wall of the frontal half of the cylinder and the pressure difference between frontal and hinder cylinder is increased.

Keywords: CFD, corona discharge, electro hydrodynamics, flow around square cylinders.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855
2136 Effect of Rotation Rate on Chemical Segragation during Phase Change

Authors: Nouri Sabrina, Benzeghiba Mohamed, Ghezal Abderrahmane

Abstract:

Numerical parametric study is conducted to study the effects of ampoule rotation on the flows and the dopant segregation in vertical bridgman (vb) crystal growth. Calculations were performed in unsteady state. The extended darcy model, which includes the time derivative and coriolis terms, has been employed in the momentum equation. It’s found that the convection, and dopant segregation can be affected significantly by ampoule rotation, and the effect is similar to that by an axial magnetic field. Ampoule rotation decreases the intensity of convection and stretches the flow cell axially. When the convection is weak, the flow can be suppressed almost completely by moderate ampoule rotation and the dopant segregation becomes diffusion-controlled. For stronger convection, the elongated flow cell by ampoule rotation may bring dopant mixing into the bulk melt reducing axial segregation at the early stage of the growth. However, if the cellular flow cannot be suppressed completely, ampoule rotation may induce larger radial segregation due to poor mixing.

Keywords: Numerical Simulation, Heat and mass transfer, vertical solidification, chemical segregation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
2135 Parametric Study of Confined Turbulent Impinging Slot Jets upon a Flat Plate

Authors: A. M. Tahsini, S. Tadayon Mousavi

Abstract:

In the present paper, a numerical investigation has been carried out to classify and clarify the effects of paramount parameters on turbulent impinging slot jets. The effects of nozzle-s exit turbulent intensity, distance between nozzle and impinging plate are studied at Reynolds number 5000 and 20000. In addition, the effect of Mach number that is varied between 0.3-0.8 at a constant Reynolds number 133000 is investigated to elucidate the effect of compressibility in impinging jet upon a flat plate. The wall that is located at the same level with nozzle-s exit confines the flow. A compressible finite volume solver is implemented for simulation the flow behavior. One equation Spalart-Allmaras turbulent model is used to simulate turbulent flow at this study. Assessment of the Spalart-Allmaras turbulent model at high nozzle to plate distance, and giving enough insights to characterize the effect of Mach number at high Reynolds number for the complex impinging jet flow are the remarkable results of this study.

Keywords: Impinging jet, Numerical simulation, Turbulence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2452
2134 Study on Electrohydrodynamic Capillary Instability with Heat and Mass Transfer

Authors: D. K. Tiwari, Mukesh Kumar Awasthi, G. S. Agrawal

Abstract:

The effect of an axial electric field on the capillary instability of a cylindrical interface in the presence of heat and mass transfer has been investigated using viscous potential flow theory. In viscous potential flow, the viscous term in Navier-Stokes equation vanishes as vorticity is zero but viscosity is not zero. Viscosity enters through normal stress balance in the viscous potential flow theory and tangential stresses are not considered. A dispersion relation that accounts for the growth of axisymmetric waves is derived and stability is discussed theoretically as well as numerically. Stability criterion is given by critical value of applied electric field as well as critical wave number. Various graphs have been drawn to show the effect of various physical parameters such as electric field, heat transfer capillary number, conductivity ratio, permittivity ratio on the stability of the system. It has been observed that the axial electric field and heat and mass transfer both have stabilizing effect on the stability of the system.

Keywords: Capillary instability, Viscous potential flow, Heat and mass transfer, Axial electric field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
2133 Dynamic Soil Structure Interaction in Buildings

Authors: Shreya Thusoo, Karan Modi, Ankit Kumar Jha, Rajesh Kumar

Abstract:

Since the evolution of computational tools and simulation software, there has been considerable increase in research on Soil Structure Interaction (SSI) to decrease the computational time and increase accuracy in the results. To aid the designer with a proper understanding of the response of structure in different soil types, the presented paper compares the deformation, shear stress, acceleration and other parameters of multi-storey building for a specific input ground motion using Response-spectrum Analysis (RSA) method. The response of all the models of different heights have been compared in different soil types. Finite Element Simulation software, ANSYS, has been used for all the computational purposes. Overall, higher response is observed with SSI, while it increases with decreasing stiffness of soil.

Keywords: Soil-structure interaction, response-spectrum analysis, finite element method, multi-storey buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258
2132 Numerical Investigation into Mixing Performance of Electrokinetically-Driven Power-Law Fluids in Microchannel with Patterned Trapezoid Blocks

Authors: Cha’o-Kuang Chen, Ching-Chang Cho

Abstract:

The study investigates the mixing performance of electrokinetically-driven power-law fluids in a microchannel containing patterned trapezoid blocks. The effects of the geometry parameters of the patterned trapezoid blocks and the flow behavior index in the power-law model on the mixing efficiency within the microchannel are explored. The results show that the mixing efficiency can be improved by increasing the width of the blocks and extending the length of upper surface of the blocks. In addition, the results show that the mixing efficiency increases with an increasing flow behavior index. Furthermore, it is shown that a heterogeneous patterning of the zeta potential on the upper surfaces of the trapezoid blocks prompts the formation of local flow recirculations, and therefore improves the mixing efficiency. Consequently, it is shown that the mixing performance improves with an increasing magnitude of the heterogeneous surface zeta potential.

Keywords: Non-Newtonian fluid, Power-law fluid, Electroosmotic flow, Passive mixer, Mixing, Micromixer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
2131 Effect of Operating Conditions on Forward Osmosis for Nutrient Rejection Using Magnesium Chloride as a Draw Solution

Authors: Yatnanta Padma Devia, Tsuyoshi Imai, Takaya Higuchi, Ariyo Kanno, Koichi Yamamoto, Masahiko Sekine

Abstract:

Advanced treatments such as forward osmosis (FO) can be used to separate or reject nutrients from secondary treated effluents. Forward osmosis uses the chemical potential across the membrane, which is the osmotic pressure gradient, to induce water to flow through the membrane from a feed solution (FS) into a draw solution (DS). The performance of FO is affected by the membrane characteristics, composition of the FS and DS, and operating conditions. The aim of this study was to investigate the optimum velocity and temperature for nutrient rejection and water flux performance in FO treatments. MgCl2 was used as the DS in the FO process. The results showed that higher cross flow velocities yielded higher water fluxes. High rejection of nutrients was achieved by using a moderate cross flow velocity at 0.25 m/s. Nutrient rejection was insensitive to temperature variation, whereas water flux was significantly impacted by it. A temperature of 25°C was found to be good for nutrient rejection.

Keywords: Cross flow velocity, forward osmosis, magnesium chloride, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2647
2130 MHD Falkner-Skan Boundary Layer Flow with Internal Heat Generation or Absorption

Authors: G.Ashwini, A.T.Eswara

Abstract:

This paper examines the forced convection flow of incompressible, electrically conducting viscous fluid past a sharp wedge in the presence of heat generation or absorption with an applied magnetic field. The system of partial differential equations governing Falkner - Skan wedge flow and heat transfer is first transformed into a system of ordinary differential equations using similarity transformations which is later solved using an implicit finite - difference scheme, along with quasilinearization technique. Numerical computations are performed for air (Pr = 0.7) and displayed graphically to illustrate the influence of pertinent physical parameters on local skin friction and heat transfer coefficients and, also on, velocity and temperature fields. It is observed that the magnetic field increases both the coefficients of skin friction and heat transfer. The effect of heat generation or absorption is found to be very significant on heat transfer, but its effect on the skin friction is negligible. Indeed, the occurrence of overshoot is noticed in the temperature profiles during heat generation process, causing the reversal in the direction of heat transfer.

Keywords: Heat generation / absorption, MHD Falkner- Skan flow, skin friction and heat transfer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2229
2129 Mixture Design Experiment on Flow Behaviour of O/W Emulsions as Affected by Polysaccharide Interactions

Authors: Nor Hayati Ibrahim, Yaakob B. Che Man, Chin Ping Tan, Nor Aini Idris

Abstract:

Interaction effects of xanthan gum (XG), carboxymethyl cellulose (CMC), and locust bean gum (LBG) on the flow properties of oil-in-water emulsions were investigated by a mixture design experiment. Blends of XG, CMC and LBG were prepared according to an augmented simplex-centroid mixture design (10 points) and used at 0.5% (wt/wt) in the emulsion formulations. An appropriate mathematical model was fitted to express each response as a function of the proportions of the blend components that are able to empirically predict the response to any blend of combination of the components. The synergistic interaction effect of the ternary XG:CMC:LBG blends at approximately 33-67% XG levels was shown to be much stronger than that of the binary XG:LBG blend at 50% XG level (p < 0.05). Nevertheless, an antagonistic interaction effect became significant as CMC level in blends was more than 33% (p < 0.05). Yield stress and apparent viscosity (at 10 s-1) responses were successfully fitted with a special quartic model while flow behaviour index and consistency coefficient were fitted with a full quartic model (R2 adjusted ≥ 0.90). This study found that a mixture design approach could serve as a valuable tool in better elucidating and predicting the interaction effects beyond the conventional twocomponent blends.

Keywords: O/W emulsions, flow behavior, polysaccharideinteraction, mixture design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190
2128 The Significance of Embodied Energy in Certified Passive Houses

Authors: Robert H. Crawford, André Stephan

Abstract:

Certifications such as the Passive House Standard aim to reduce the final space heating energy demand of residential buildings. Space conditioning, notably heating, is responsible for nearly 70% of final residential energy consumption in Europe. There is therefore significant scope for the reduction of energy consumption through improvements to the energy efficiency of residential buildings. However, these certifications totally overlook the energy embodied in the building materials used to achieve this greater operational energy efficiency. The large amount of insulation and the triple-glazed high efficiency windows require a significant amount of energy to manufacture. While some previous studies have assessed the life cycle energy demand of passive houses, including their embodied energy, these rely on incomplete assessment techniques which greatly underestimate embodied energy and can lead to misleading conclusions. This paper analyses the embodied and operational energy demands of a case study passive house using a comprehensive hybrid analysis technique to quantify embodied energy. Results show that the embodied energy is much more significant than previously thought. Also, compared to a standard house with the same geometry, structure, finishes and number of people, a passive house can use more energy over 80 years, mainly due to the additional materials required. Current building energy efficiency certifications should widen their system boundaries to include embodied energy in order to reduce the life cycle energy demand of residential buildings.

Keywords: Embodied energy, Hybrid analysis, Life cycle energy analysis, Passive house.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2856
2127 An Analysis of the Optimization Condition of Plasma Generator for Air Conditioner System

Authors: Arunrungrusmi S, Chaokamnerd W , Tanitteerapan T , Mungkung N., Yuji T.

Abstract:

This research aimed to develop plasma system used in air conditioners. This developed plasma system could be installed in the air conditioners - all split type. The quality of air could be improved to be equal to present plasma system. Development processes were as follows: 1) to study the plasma system used in the air conditioners, 2) to design a plasma generator, 3) to develop the plasma generator, and 4) to test its performance in many types of the air conditioners. This plasma system was developed by AC high voltage – 14 kv with a frequency of 50 kHz. Carbon was a conductor to generate arc in air purifier system. The research was tested by installing the plasma generator in the air conditioners - wall type. Whereas, there were 3 types of installations: air flow out, air flow in, and room center. The result of the plasma generator installed in the air conditioners, split type, revealed that the air flow out installation provided the highest average of o-zone at 223 mg/h. This type of installation provided the highest efficiency of air quality improvement. Moreover, the air flow in installation and the room center installation provided the average of the o-zone at 163 mg/h and 64 mg/h, respectively.

Keywords: Air Conditioner, Plasma generator, High voltage, Optimization, Installation position.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1343