Search results for: two speed asynchronous machine
2024 Control Strategy of SRM Converters for Power Quality Improvement
Authors: Yogesh Pahariya, Rakesh Saxena, Biswaroop Sarkar
Abstract:
The selection of control strategy depends on the converters of the drive including power, speed, performance and the possible system costs. A number of attempts were therefore made in recent times to develop novel power electronic converter structures for SRM drives, based on the utilization. Many of the converters with variable speed drives have no input power factor correction circuits. This results in harmonic pollution of the utility supply, which should be avoided. The effect of power factor variation in terms of harmonic content is also analyzed in this study. The proposed topologies were simulated using MATLAB / Simulink software package and the results are obtained.
Keywords: Harmonic Pollution, Power Electronic Converter, Power Quality, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25542023 Consumer Load Profile Determination with Entropy-Based K-Means Algorithm
Authors: Ioannis P. Panapakidis, Marios N. Moschakis
Abstract:
With the continuous increment of smart meter installations across the globe, the need for processing of the load data is evident. Clustering-based load profiling is built upon the utilization of unsupervised machine learning tools for the purpose of formulating the typical load curves or load profiles. The most commonly used algorithm in the load profiling literature is the K-means. While the algorithm has been successfully tested in a variety of applications, its drawback is the strong dependence in the initialization phase. This paper proposes a novel modified form of the K-means that addresses the aforementioned problem. Simulation results indicate the superiority of the proposed algorithm compared to the K-means.
Keywords: Clustering, load profiling, load modeling, machine learning, energy efficiency and quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12112022 Motor Imagery Signal Classification for a Four State Brain Machine Interface
Authors: Hema C. R., Paulraj M. P., S. Yaacob, A. H. Adom, R. Nagarajan
Abstract:
Motor imagery classification provides an important basis for designing Brain Machine Interfaces [BMI]. A BMI captures and decodes brain EEG signals and transforms human thought into actions. The ability of an individual to control his EEG through imaginary mental tasks enables him to control devices through the BMI. This paper presents a method to design a four state BMI using EEG signals recorded from the C3 and C4 locations. Principle features extracted through principle component analysis of the segmented EEG are analyzed using two novel classification algorithms using Elman recurrent neural network and functional link neural network. Performance of both classifiers is evaluated using a particle swarm optimization training algorithm; results are also compared with the conventional back propagation training algorithm. EEG motor imagery recorded from two subjects is used in the offline analysis. From overall classification performance it is observed that the BP algorithm has higher average classification of 93.5%, while the PSO algorithm has better training time and maximum classification. The proposed methods promises to provide a useful alternative general procedure for motor imagery classification
Keywords: Motor Imagery, Brain Machine Interfaces, Neural Networks, Particle Swarm Optimization, EEG signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24562021 The Pitch Diameter of Pipe Taper Thread Measurement and Uncertainty Using Three-Wire Probe
Authors: J. Kloypayan, W. Pimpakan
Abstract:
The pipe taper thread measurement and uncertainty normally used the four-wire probe according to the JIS B 0262. Besides, according to the EA-10/10 standard, the pipe thread could be measured using the three-wire probe. This research proposed to use the three-wire probe measuring the pitch diameter of the pipe taper thread. The measuring accessory component was designed and made, then, assembled to one side of the ULM 828 CiM machine. Therefore, this machine could be used to measure and calibrate both the pipe thread and the pipe taper thread. The equations and the expanded uncertainty for pitch diameter measurement were formulated. After the experiment, the results showed that the pipe taper thread had the pitch diameter equal to 19.165mm and the expanded uncertainty equal to 1.88µm. Then, the experiment results were compared to the results from the National Institute of Metrology Thailand. The equivalence ratio from the comparison showed that both results were related. Thus, the proposed method of using the three-wire probe measured the pitch diameter of the pipe taper thread was acceptable.
Keywords: Pipe taper thread, Three-wire probe, Measure and Calibration, The Universal length measuring machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 71052020 A Novel Digital Implementation of AC Voltage Controller for Speed Control of Induction Motor
Authors: Ali M. Eltamaly, A. I. Alolah, R. Hamouda, M. Y. Abdulghany
Abstract:
In this paper a novel, simple and reliable digital firing scheme has been implemented for speed control of three-phase induction motor using ac voltage controller. The system consists of three-phase supply connected to the three-phase induction motor via three triacs and its control circuit. The ac voltage controller has three modes of operation depending on the shape of supply current. The performance of the induction motor differs in each mode where the speed is directly proportional with firing angle in two modes and inversely in the third one. So, the control system has to detect the current mode of operation to choose the correct firing angle of triacs. Three sensors are used to feed the line currents to control system to detect the mode of operation. The control strategy is implemented using a low cost Xilinx Spartan-3E field programmable gate array (FPGA) device. Three PI-controllers are designed on FPGA to control the system in the three-modes. Simulation of the system is carried out using PSIM computer program. The simulation results show stable operation for different loading conditions especially in mode 2/3. The simulation results have been compared with the experimental results from laboratory prototype.Keywords: FPGA, Induction motor, PSIM, triac, Voltage controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29182019 Comprehensive Analysis of Data Mining Tools
Authors: S. Sarumathi, N. Shanthi
Abstract:
Due to the fast and flawless technological innovation there is a tremendous amount of data dumping all over the world in every domain such as Pattern Recognition, Machine Learning, Spatial Data Mining, Image Analysis, Fraudulent Analysis, World Wide Web etc., This issue turns to be more essential for developing several tools for data mining functionalities. The major aim of this paper is to analyze various tools which are used to build a resourceful analytical or descriptive model for handling large amount of information more efficiently and user friendly. In this survey the diverse tools are illustrated with their extensive technical paradigm, outstanding graphical interface and inbuilt multipath algorithms in which it is very useful for handling significant amount of data more indeed.
Keywords: Classification, Clustering, Data Mining, Machine learning, Visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24392018 Least-Squares Support Vector Machine for Characterization of Clusters of Microcalcifications
Authors: Baljit Singh Khehra, Amar Partap Singh Pharwaha
Abstract:
Clusters of Microcalcifications (MCCs) are most frequent symptoms of Ductal Carcinoma in Situ (DCIS) recognized by mammography. Least-Square Support Vector Machine (LS-SVM) is a variant of the standard SVM. In the paper, LS-SVM is proposed as a classifier for classifying MCCs as benign or malignant based on relevant extracted features from enhanced mammogram. To establish the credibility of LS-SVM classifier for classifying MCCs, a comparative evaluation of the relative performance of LS-SVM classifier for different kernel functions is made. For comparative evaluation, confusion matrix and ROC analysis are used. Experiments are performed on data extracted from mammogram images of DDSM database. A total of 380 suspicious areas are collected, which contain 235 malignant and 145 benign samples, from mammogram images of DDSM database. A set of 50 features is calculated for each suspicious area. After this, an optimal subset of 23 most suitable features is selected from 50 features by Particle Swarm Optimization (PSO). The results of proposed study are quite promising.
Keywords: Clusters of Microcalcifications, Ductal Carcinoma in Situ, Least-Square Support Vector Machine, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18122017 AGHAZ : An Expert System Based approach for the Translation of English to Urdu
Authors: Uzair Muhammad, Kashif Bilal, Atif Khan, M. Nasir Khan
Abstract:
Machine Translation (MT 3) of English text to its Urdu equivalent is a difficult challenge. Lot of attempts has been made, but a few limited solutions are provided till now. We present a direct approach, using an expert system to translate English text into its equivalent Urdu, using The Unicode Standard, Version 4.0 (ISBN 0-321-18578-1) Range: 0600–06FF. The expert system works with a knowledge base that contains grammatical patterns of English and Urdu, as well as a tense and gender-aware dictionary of Urdu words (with their English equivalents).
Keywords: Machine Translation, Multiword Expressions, Urdulanguage processing, POS12 Tagging for Urdu, Expert Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23532016 Analysis of Effects of Magnetic Slot Wedges on Characteristics of Permanent Magnet Synchronous Machine
Authors: B. Ladghem Chikouche
Abstract:
The influence of slot wedges permeability on the electromagnetic performance of three-phase permanent magnet synchronous machine is investigated in this paper. It is shown that the back-EMF waveform, electromagnetic torque and electromagnetic torque ripple are all significantly affected by slot wedges permeability. The paper presents an accurate analytical subdomain model and confirmed by finite-element analyses.Keywords: Exact analytical calculation, finite-element method, magnetic field distribution, permanent magnet machines performance, stator slot wedges permeability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20052015 Achieving Shear Wave Elastography by a Three-element Probe for Wearable Human-machine Interface
Authors: Jipeng Yan, Xingchen Yang, Xiaowei Zhou, Mengxing Tang, Honghai Liu
Abstract:
Shear elastic modulus of skeletal muscles can be obtained by shear wave elastography (SWE) and has been linearly related to muscle force. However, SWE is currently implemented using array probes. Price and volumes of these probes and their driving equipment prevent SWE from being used in wearable human-machine interfaces (HMI). Moreover, beamforming processing for array probes reduces the real-time performance. To achieve SWE by wearable HMIs, a customized three-element probe is adopted in this work, with one element for acoustic radiation force generation and the others for shear wave tracking. In-phase quadrature demodulation and 2D autocorrelation are adopted to estimate velocities of tissues on the sound beams of the latter two elements. Shear wave speeds are calculated by phase shift between the tissue velocities. Three agar phantoms with different elasticities were made by changing the weights of agar. Values of the shear elastic modulus of the phantoms were measured as 8.98, 23.06 and 36.74 kPa at a depth of 7.5 mm respectively. This work verifies the feasibility of measuring shear elastic modulus by wearable devices.Keywords: Shear elastic modulus, skeletal muscle, ultrasound, wearable human-machine interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7932014 Early Installation Effect on the Vibration Generated by Machines
Authors: Maitham Al-Safwani
Abstract:
Motor vibration issues were analyzed and correlated to poor equipment installation. We had a water injection pump tested in the factory and exceeded the pump vibration limit. Once the pump was brought to the site, its half-size shim plates were replaced with full-size shims plate that drastically reduced the vibration. In this study, vibration data were recorded for several and similar motors run at the same and different speeds. The vibration values were recorded — for two and a half hours — and the vibration readings analyzed to determine when the readings become consistent. This was as well supported by recording the audio noises produced by some machines seeking a relationship between changes in machine noises and machine abnormalities, such as vibration.
Keywords: Vibration, noise, shaft unbalance, shaft misalignment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4362013 Fault Zone Detection on Advanced Series Compensated Transmission Line using Discrete Wavelet Transform and SVM
Authors: Renju Gangadharan, G. N. Pillai, Indra Gupta
Abstract:
In this paper a novel method for finding the fault zone on a Thyristor Controlled Series Capacitor (TCSC) incorporated transmission line is presented. The method makes use of the Support Vector Machine (SVM), used in the classification mode to distinguish between the zones, before or after the TCSC. The use of Discrete Wavelet Transform is made to prepare the features which would be given as the input to the SVM. This method was tested on a 400 kV, 50 Hz, 300 Km transmission line and the results were highly accurate.Keywords: Flexible ac transmission system (FACTS), thyristorcontrolled series-capacitor (TCSC), discrete wavelet transforms(DWT), support vector machine (SVM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17322012 A Systematic Approach for Identifying Turning Center Capabilities with Vertical Machining Center in Milling Operation
Abstract:
Conventional machining is a form of subtractive manufacturing, in which a collection of material-working processes utilizing power-driven machine tools are used to remove undesired material to achieve a desired geometry. This paper presents an approach for comparison between turning center and vertical machining center by optimization of cutting parameters at cylindrical workpieces leading to minimum surface roughness by using taguchi methodology. Aluminum alloy was taken to conduct experiments due to its unique high strength-weight ratio that is maintained at elevated temperatures and their exceptional corrosion resistance. During testing, the effects of the cutting parameters on the surface roughness were investigated. Additionally, by using taguchi methodology for each of the cutting parameters (spindle speed, depth of cut, insert diameter, and feed rate) minimum surface roughness for the process of turn-milling was determined according to the cutting parameters. A confirmation experiment demonstrates the effectiveness of taguchi method.
Keywords: Surface roughness, taguchi parameter design, turning center, turn-milling operations, vertical machining center.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25232011 Study on Plasma Creation and Propagation in a Pulsed Magnetoplasmadynamic Thruster
Authors: Tony Schönherr, Kimiya Komurasaki, Georg Herdrich
Abstract:
The performance and the plasma created by a pulsed magnetoplasmadynamic thruster for small satellite application is studied to understand better the ablation and plasma propagation processes occurring during the short-time discharge. The results can be applied to improve the quality of the thruster in terms of efficiency, and to tune the propulsion system to the needs required by the satellite mission. Therefore, plasma measurements with a high-speed camera and induction probes, and performance measurements of mass bit and impulse bit were conducted. Values for current sheet propagation speed, mean exhaust velocity and thrust efficiency were derived from these experimental data. A maximum in current sheet propagation was found by the high-speed camera measurements for a medium energy input and confirmed by the induction probes. A quasilinear tendency between the mass bit and the energy input, the current action integral respectively, was found, as well as a linear tendency between the created impulse and the discharge energy. The highest mean exhaust velocity and thrust efficiency was found for the highest energy input.Keywords: electric propulsion, low-density plasma, pulsed magnetoplasmadynamicthruster, space engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25252010 The Effect of Dynamic Eccentricity on Induction Machine Stator Currents (Part A)
Authors: Saleh S. Hamad Elawgali
Abstract:
Current spectrums of a high power induction machine was calculated for the cases of full symmetry, static and dynamic eccentricity. The calculations involve integration of 93 electrical plus four mechanical ordinary differential equations. Electrical equations account for variable inductances affected by slotting and eccentricities. The calculations were followed by Fourier analysis of the stator currents in steady state operation. The paper presents the stator current spectrums in full symmetry, static and dynamic eccentricity cases, and demonstrates the harmonics present in each case. The effect of dynamic eccentricity is demonstrating via comparing the current spectrums related to dynamic eccentricity cases with the full symmetry one. The paper includes one case study, refers to dynamic eccentricity, to present the spectrum of the measured current and demonstrate the existence of the harmonics related to dynamic eccentricity. The zooms of current spectrums around the main slot harmonic zone are included to simplify the comparison and prove the existence of the dynamic eccentricity harmonics in both calculated and measured current spectrums.
Keywords: Current spectrum, diagnostics, harmonics, Induction machine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22972009 Mixed Traffic Speed–Flow Behavior under Influence of Road Side Friction and Non-Motorized Vehicles: A Comparative Study of Arterial Roads in India
Authors: Chetan R. Patel, G. J. Joshi
Abstract:
Present study is carried out on six lane divided urban arterial road in Patna and Pune city of India. Both the road having distinct differences in terms of the vehicle composition and the road side parking. Arterial road in Patan city has 33% of non-motorized mode, whereas Pune arterial road dominated by 65% of Two wheeler. Also road side parking is observed in Patna city. The field studies using videography techniques are carried out for traffic data collection. Data are extracted for one minute duration for vehicle composition, speed variation and flow rate on selected arterial road of the two cities. Speed flow relationship is developed and capacity is determine. Equivalency factor in terms of dynamic car unit is determine to represent the vehicle is single unit. The variation in the capacity due to side friction, presence of non motorized traffic and effective utilization of lane width is compared at concluding remarks.Keywords: Arterial Road, Capacity, Dynamic Equivalency Factor, Effect of Non motorized mode, Side friction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32122008 Bandwidth, Area Efficient and Target Device Independent DDR SDRAM Controller
Authors: T. Mladenov, F. Mujahid, E. Jung, D. Har
Abstract:
The application of the synchronous dynamic random access memory (SDRAM) has gone beyond the scope of personal computers for quite a long time. It comes into hand whenever a big amount of low price and still high speed memory is needed. Most of the newly developed stand alone embedded devices in the field of image, video and sound processing take more and more use of it. The big amount of low price memory has its trade off – the speed. In order to take use of the full potential of the memory, an efficient controller is needed. Efficient stands for maximum random accesses to the memory both for reading and writing and less area after implementation. This paper proposes a target device independent DDR SDRAM pipelined controller and provides performance comparison with available solutions.Keywords: DDR SDRAM, controller, effective implementation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15542007 Dynamic Analyses for Passenger Volume of Domestic Airline and High Speed Rail
Authors: Shih-Ching Lo
Abstract:
Discrete choice model is the most used methodology for studying traveler-s mode choice and demand. However, to calibrate the discrete choice model needs to have plenty of questionnaire survey. In this study, an aggregative model is proposed. The historical data of passenger volumes for high speed rail and domestic civil aviation are employed to calibrate and validate the model. In this study, different models are compared so as to propose the best one. From the results, systematic equations forecast better than single equation do. Models with the external variable, which is oil price, are better than models based on closed system assumption.
Keywords: forecasting, passenger volume, dynamic competition model, external variable, oil price
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14632006 Application of Granular Computing Paradigm in Knowledge Induction
Authors: Iftikhar U. Sikder
Abstract:
This paper illustrates an application of granular computing approach, namely rough set theory in data mining. The paper outlines the formalism of granular computing and elucidates the mathematical underpinning of rough set theory, which has been widely used by the data mining and the machine learning community. A real-world application is illustrated, and the classification performance is compared with other contending machine learning algorithms. The predictive performance of the rough set rule induction model shows comparative success with respect to other contending algorithms.
Keywords: Concept approximation, granular computing, reducts, rough set theory, rule induction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8342005 A Genetic Algorithm to Schedule the Flow Shop Problem under Preventive Maintenance Activities
Authors: J. Kaabi, Y. Harrath
Abstract:
This paper studied the flow shop scheduling problem under machine availability constraints. The machines are subject to flexible preventive maintenance activities. The nonresumable scenario for the jobs was considered. That is, when a job is interrupted by an unavailability period of a machine it should be restarted from the beginning. The objective is to minimize the total tardiness time for the jobs and the advance/tardiness for the maintenance activities. To solve the problem, a genetic algorithm was developed and successfully tested and validated on many problem instances. The computational results showed that the new genetic algorithm outperforms another earlier proposed algorithm.
Keywords: Flow shop scheduling, maintenance, genetic algorithm, priority rules.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19222004 Active and Reactive Power Control of a DFIG with MPPT for Variable Speed Wind Energy Conversion using Sliding Mode Control
Authors: Youcef Bekakra, Djilani Ben attous
Abstract:
This paper presents the study of a variable speed wind energy conversion system based on a Doubly Fed Induction Generator (DFIG) based on a sliding mode control applied to achieve control of active and reactive powers exchanged between the stator of the DFIG and the grid to ensure a Maximum Power Point Tracking (MPPT) of a wind energy conversion system. The proposed control algorithm is applied to a DFIG whose stator is directly connected to the grid and the rotor is connected to the PWM converter. To extract a maximum of power, the rotor side converter is controlled by using a stator flux-oriented strategy. The created decoupling control between active and reactive stator power allows keeping the power factor close to unity. Simulation results show that the wind turbine can operate at its optimum energy for a wide range of wind speed.Keywords: Doubly fed induction generator, wind energy, wind turbine, sliding mode control, maximum power point tracking (MPPT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41072003 Comparison of Machine Learning Techniques for Single Imputation on Audiograms
Authors: Sarah Beaver, Renee Bryce
Abstract:
Audiograms detect hearing impairment, but missing values pose problems. This work explores imputations in an attempt to improve accuracy. This work implements Linear Regression, Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest Neighbors (KNN), and Random Forest machine learning techniques to impute audiogram frequencies ranging from 125 Hz to 8000 Hz. The data contain patients who had or were candidates for cochlear implants. Accuracy is compared across two different Nested Cross-Validation k values. Over 4000 audiograms were used from 800 unique patients. Additionally, training on data combines and compares left and right ear audiograms versus single ear side audiograms. The accuracy achieved using Root Mean Square Error (RMSE) values for the best models for Random Forest ranges from 4.74 to 6.37. The R2 values for the best models for Random Forest ranges from .91 to .96. The accuracy achieved using RMSE values for the best models for KNN ranges from 5.00 to 7.72. The R2 values for the best models for KNN ranges from .89 to .95. The best imputation models received R2 between .89 to .96 and RMSE values less than 8dB. We also show that the accuracy of classification predictive models performed better with our imputation models versus constant imputations by a two percent increase.
Keywords: Machine Learning, audiograms, data imputations, single imputations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612002 Optimization of Surface Roughness and Vibration in Turning of Aluminum Alloy AA2024 Using Taguchi Technique
Authors: Vladimir Aleksandrovich Rogov, Ghorbani Siamak
Abstract:
Determination of optimal conditions of machining parameters is important to reduce the production cost and achieve the desired surface quality. This paper investigates the influence of cutting parameters on surface roughness and natural frequency in turning of aluminum alloy AA2024. The experiments were performed at the lathe machine using two different cutting tools made of AISI 5140 and carbide cutting insert coated with TiC. Turning experiments were planned by Taguchi method L9 orthogonal array.Three levels for spindle speed, feed rate, depth of cut and tool overhang were chosen as cutting variables. The obtained experimental data has been analyzed using signal to noise ratio and analysis of variance. The main effects have been discussed and percentage contributions of various parameters affecting surface roughness and natural frequency, and optimal cutting conditions have been determined. Finally, optimization of the cutting parameters using Taguchi method was verified by confirmation experiments.
Keywords: Turning, Cutting conditions, Surface roughness, Natural frequency, Taguchi method, ANOVA, S/N ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46152001 A New Recognition Scheme for Machine- Printed Arabic Texts based on Neural Networks
Authors: Z. Shaaban
Abstract:
This paper presents a new approach to tackle the problem of recognizing machine-printed Arabic texts. Because of the difficulty of recognizing cursive Arabic words, the text has to be normalized and segmented to be ready for the recognition stage. The new scheme for recognizing Arabic characters depends on multiple parallel neural networks classifier. The classifier has two phases. The first phase categories the input character into one of eight groups. The second phase classifies the character into one of the Arabic character classes in the group. The system achieved high recognition rate.
Keywords: Neural Networks, character recognition, feature extraction, multiple networks, Arabic text.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14782000 Improved Computational Efficiency of Machine Learning Algorithms Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK
Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick
Abstract:
The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning (ML) archetypal that could forecast the COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID-19 cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organization (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data are split into 8:2 ratio for training and testing purposes to forecast future new COVID-19 cases. Support Vector Machine (SVM), Random Forest (RF), and linear regression (LR) algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID-19 cases is evaluated. RF outperformed the other two ML algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n = 30. The mean square error obtained for RF is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis, RF algorithm can perform more effectively and efficiently in predicting the new COVID-19 cases, which could help the health sector to take relevant control measures for the spread of the virus.
Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721999 Real-time Network Anomaly Detection Systems Based on Machine-Learning Algorithms
Authors: Zahra Ramezanpanah, Joachim Carvallo, Aurelien Rodriguez
Abstract:
This paper aims to detect anomalies in streaming data using machine learning algorithms. In this regard, we designed two separate pipelines and evaluated the effectiveness of each separately. The first pipeline, based on supervised machine learning methods, consists of two phases. In the first phase, we trained several supervised models using the UNSW-NB15 data set. We measured the efficiency of each using different performance metrics and selected the best model for the second phase. At the beginning of the second phase, we first, using Argus Server, sniffed a local area network. Several types of attacks were simulated and then sent the sniffed data to a running algorithm at short intervals. This algorithm can display the results of each packet of received data in real-time using the trained model. The second pipeline presented in this paper is based on unsupervised algorithms, in which a Temporal Graph Network (TGN) is used to monitor a local network. The TGN is trained to predict the probability of future states of the network based on its past behavior. Our contribution in this section is introducing an indicator to identify anomalies from these predicted probabilities.
Keywords: Cyber-security, Intrusion Detection Systems, Temporal Graph Network, Anomaly Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5051998 Lean Production to Increase Reproducibility and Work Safety in the Laser Beam Melting Process Chain
Authors: C. Bay, A. Mahr, H. Groneberg, F. Döpper
Abstract:
Additive Manufacturing processes are becoming increasingly established in the industry for the economic production of complex prototypes and functional components. Laser beam melting (LBM), the most frequently used Additive Manufacturing technology for metal parts, has been gaining in industrial importance for several years. The LBM process chain – from material storage to machine set-up and component post-processing – requires many manual operations. These steps often depend on the manufactured component and are therefore not standardized. These operations are often not performed in a standardized manner, but depend on the experience of the machine operator, e.g., levelling of the build plate and adjusting the first powder layer in the LBM machine. This lack of standardization limits the reproducibility of the component quality. When processing metal powders with inhalable and alveolar particle fractions, the machine operator is at high risk due to the high reactivity and the toxic (e.g., carcinogenic) effect of the various metal powders. Faulty execution of the operation or unintentional omission of safety-relevant steps can impair the health of the machine operator. In this paper, all the steps of the LBM process chain are first analysed in terms of their influence on the two aforementioned challenges: reproducibility and work safety. Standardization to avoid errors increases the reproducibility of component quality as well as the adherence to and correct execution of safety-relevant operations. The corresponding lean method 5S will therefore be applied, in order to develop approaches in the form of recommended actions that standardize the work processes. These approaches will then be evaluated in terms of ease of implementation and their potential for improving reproducibility and work safety. The analysis and evaluation showed that sorting tools and spare parts as well as standardizing the workflow are likely to increase reproducibility. Organizing the operational steps and production environment decreases the hazards of material handling and consequently improves work safety.
Keywords: Additive manufacturing, lean production, reproducibility, work safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8461997 Modelling of a Direct Drive Industrial Robot
Authors: C. Perez, O. Reinoso, N. Garcia, J. M. Sabater, L. Gracia
Abstract:
For high-speed control of robots, a good knowledge of system modelling is necessary to obtain the desired bandwidth. In this paper, we present a cartesian robot with a pan/tilt unit in end-effector (5 dof). This robot is implemented with powerful direct drive AC induction machines. The dynamic model, parameter identification and model validation of the robot are studied (including actuators). This work considers the cartesian robot coupled and non linear (contrary to normal considerations for this type of robots). The mechanical and control architecture proposed in this paper is efficient for industrial and research application in which high speed, well known model and very high accuracy are required.
Keywords: Robot modelling, parameter identification and validation, AC servo-motors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15641996 Crude Oil Price Prediction Using LSTM Networks
Authors: Varun Gupta, Ankit Pandey
Abstract:
Crude oil market is an immensely complex and dynamic environment and thus the task of predicting changes in such an environment becomes challenging with regards to its accuracy. A number of approaches have been adopted to take on that challenge and machine learning has been at the core in many of them. There are plenty of examples of algorithms based on machine learning yielding satisfactory results for such type of prediction. In this paper, we have tried to predict crude oil prices using Long Short-Term Memory (LSTM) based recurrent neural networks. We have tried to experiment with different types of models using different epochs, lookbacks and other tuning methods. The results obtained are promising and presented a reasonably accurate prediction for the price of crude oil in near future.
Keywords: Crude oil price prediction, deep learning, LSTM, recurrent neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37131995 A Generic and Extensible Spidergon NoC
Authors: Abdelkrim Zitouni, Mounir Zid, Sami Badrouchi, Rached Tourki
Abstract:
The Globally Asynchronous Locally Synchronous Network on Chip (GALS NoC) is the most efficient solution that provides low latency transfers and power efficient System on Chip (SoC) interconnect. This study presents a GALS and generic NoC architecture based on a configurable router. This router integrates a sophisticated dynamic arbiter, the wormhole routing technique and can be configured in a manner that allows it to be used in many possible NoC topologies such as Mesh 2-D, Tree and Polygon architectures. This makes it possible to improve the quality of service (QoS) required by the proposed NoC. A comparative performances study of the proposed NoC architecture, Tore architecture and of the most used Mesh 2D architecture is performed. This study shows that Spidergon architecture is characterised by the lower latency and the later saturation. It is also shown that no matter what the number of used links is raised; the Links×Diameter product permitted by the Spidergon architecture remains always the lower. The only limitation of this architecture comes from it-s over cost in term of silicon area.
Keywords: Dynamic arbiter, Generic router, Spidergon NoC, SoC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570