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Abstract—Audiograms detect hearing impairment, but missing
values pose problems. This work explores imputations in an attempt
to improve accuracy. This work implements Linear Regression,
Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest
Neighbors (KNN), and Random Forest machine learning techniques
to impute audiogram frequencies ranging from 125 Hz to 8000
Hz. The data contain patients who had or were candidates for
cochlear implants. Accuracy is compared across two different Nested
Cross-Validation k values. Over 4000 audiograms were used from
800 unique patients. Additionally, training on data combines and
compares left and right ear audiograms versus single ear side
audiograms. The accuracy achieved using Root Mean Square Error
(RMSE) values for the best models for Random Forest ranges from
4.74 to 6.37. The R2 values for the best models for Random Forest
ranges from .91 to .96. The accuracy achieved using RMSE values for
the best models for KNN ranges from 5.00 to 7.72. The R2 values for
the best models for KNN ranges from .89 to .95. The best imputation
models received R2 between .89 to .96 and RMSE values less than
8dB. We also show that the accuracy of classification predictive
models performed better with our imputation models versus constant
imputations by a two percent increase.

Keywords—Machine Learning, audiograms, data imputations,
single imputations.

I. INTRODUCTION

M ISSING data in a dataset denotes the lack of

information, presenting challenges in statistical

analyses and interpretation. A common strategy to tackle

this issue is employing single imputations, where a missing

value is replaced with a single estimated value. In the

context of audiograms, the absence of data poses a significant

hurdle, especially in predictive modeling within audiology.

Audiograms may have gaps due to factors like incomplete

testing or patients’ non-responsiveness to certain tones.

These data gaps hinder the development and precision

of predictive models aimed at anticipating hearing trends

or evaluating intervention effectiveness. The deficiency

of crucial information limits the model’s capacity for

reliable predictions, impeding progress in comprehending

and addressing hearing impairments. Effectively addressing

the missing data challenge in audiograms is paramount

for improving the effectiveness of predictive modeling in

audiology, a goal that can be achieved through the application

of machine learning techniques for single imputations.

The National Health and Nutrition Examination Surveys

(NHANES) conducted from 1999 to 2004 reported a

prevalence rate of 16.1% of the United States national
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population with hearing loss using audio metric testing [1].

Audiograms play a critical role in clinical diagnosis and

treatment of hearing loss [2]. Audiograms are the results of

hearing test that shows different frequencies and intensity

(decibels) levels that are usually portrayed in a graphical

format [3]. These frequencies can range from 125Hz up to

8000Hz with decibel ranges from 0 dB to 120 dB [4].

Many reasons for missing data in clinical settings include

but are not limited to human error with mistaken data

entry, incomplete features, and patient refusal: which are

typically identified by blanks, impossible values, nulls, and

more [5], [6]. Additionally, audiograms can have missing

values due to clinics having different protocols and prioritizing

different frequencies. Audiograms with missing values are

typically discarded or imputed using a basic mean of

adjacent frequencies [2]. Machine learning techniques used

for imputations are becoming more prevalent in clinical

settings. In this article, we present different machine learning

techniques that can be used for single imputation of

audiograms at different frequencies.

The remainder of this paper is split into six more

sections. Section II covers the background section, which

reviews existing literature. Section III covers the research

methodology, which includes discussions about the database

and data, machine learning, and imputation models. Section

IV discusses the results of the imputation models, Section V

considers threats to the validity of this paper, and Section VI

discusses the conclusion. Finally, Section VII discusses future

works.

II. BACKGROUND

Statistical imputation techniques versus machine learning

imputations on the breast cancer problem were compared

in [7]. Researchers used univariate mean imputations, hot

deck imputations, and multiple imputation software packages,

including SAS and MICE, for the statistical imputation

techniques, while the machine learning imputation techniques

include multi-layer perceptron and k nearest neighbor (KNN)

in [7]. They found that machine learning techniques were

the most suited for imputing missing values, which led to a

significant enhancement of prognosis accuracy compared to

imputation methods based on statistical procedures [7].

Machine learning based imputation method KNN can be

seen used in [8] where they use different KNN impute methods

on clustering for missing gene values. A second machine

learning based imputation method linear regression can be

seen used in [9], where they worked on missing data from
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Fig. 1 Correlation between frequencies of Audiograms conducted by Spearman correlation

higher education institutions and looked at the accuracy of

the imputation by comparing imputed and original values.

The assumption was made that data should keep the same

distribution.

Imputation methods have also been done on hearing data,

as seen in [10], where they work on missing data from

adolescents in a comprehensive leisure noise exposure study

using multiple imputations. Future studies would include

comparing multiple imputation techniques and expanding to

include speech and word recognition tests. The use of a

machine learning imputation technique on speech and word

recognition tests can be seen in the next paragraph.

Imputation techniques have been performed on HERMES

dataset previously, where linear regression was used to impute

for the speech recognition test of CNCw and AZBio. These

researchers had 430 cochlear implanted ears with an average

absolute difference between observed and imputed CNCw was

10.5% in [11].

An example of machine learning techniques used with

audiograms, where a Gaussian regression process is used to

provide a real-time estimate of pure tone detection in humans.

The real-time estimate can produce continuous audiograms

accurately. Researchers used 21 patients with a mean absolute

difference on the threshold of 5dBHL which can be seen in

[12] and [13]. These works do not work for imputing missing

data in existing audiograms.

A common approach to handling missing data in

audiograms is to use the slope of completed audiograms

similar to the audiogram with the missing value as seen in [14],

[15]. The standard deviation levels greater than 15 decibels of

hearing level (dBHL), considered a high standard deviation

for audiograms [15], demonstrate the common approach for

missing audiogram data is poor.

Imputations have been worked on in audiograms before,

as seen with [16]. In this work, the authors compare KNN,

Decision Tree, Random Forest, and multi-layer perceptron

imputation for audiograms for children. The authors indicated

three problems as follows. The most significant problem is

regarding the small size of their data set. They only have 206

audiograms, which makes it hard to train machine learning

algorithms. One reason they have such a small number of

audiograms is that they focus on children under five with

sensorineural hearing loss. The small number of audiograms

leads to the second problem: their machine learning imputation
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techniques are only good for children of this age group with

sensorineural hearing loss. Lastly, the children’s audiograms

could have been completed at later visits to the clinic instead of

during one session. Having an audiogram result from multiple

sessions could cause variability from unknown events between

sessions. The machine learning’s average absolute threshold

differences were up to 10 dBHL.

A KNN approach has been used to impute audiogram values

for 3000 Hz and 6000 Hz. Researchers used a Gaussian

Mixture Model (GMM) and a KNN model, which showed an

improvement of imputation for 6000Hz over simple averaging

method [2].

Imputations on audiogram data sets have also been studied

which can be seen in [4]. These researchers have shown

and discussed the importance of imputations in audiograms.

The authors tested multiple imputation techniques on the

audiograms, such as multiple imputations by chained equations

(MICE), KNN, Neural Networks, univariate imputation, and

gradient boosted trees.

Our work expands by increasing the number of machine

learning imputation techniques we compare. Additionally,

we have a few thousand audiograms, which is a much

better number for training the machine learning models. Our

audiograms come from adults with hearing loss, but the

hearing loss type is not limited to sensorineural as in [16].

Since our data set contains adult patients, we do not have

the issue of a lack of cooperation that these authors had

with children; most adults can sit through an entire session

quietly and calmly. Our work does single imputations for each

frequency instead of taking them all simultaneously, as seen

in [4]. Additionally, we compare the accuracy of classifier

models where data were imputed with constant imputations

versus imputing with our top two performing machine learning

imputation models.

III. RESEARCH METHODOLOGY

A. Data and Pre-processing

The data were provided by HIPAA-secure, Encrypted,

Research, Management, and Evaluation Solution (HERMES).

It is a web-based Cochlear Implant (CI) database created

by the nonprofit Auditory Implant Initiative (AII) [17]. Data

include demographics (age, sex, ethnicity, geographic

location), otologic history (etiology and duration of

Hearing Loss (HL) preimplantation, chronic ear conditions,

previous hearing aid use), relevant medical/surgical history,

preoperative and implantation history (audiological results

during candidacy evaluation, preoperative tinnitus, and

vertigo, imaging, CI manufacturer and electrode type,

operative technique, duration of electrode insertion, surgeon

experience, intraoperative complications, antibiotics, and

steroid use) and postoperative outcome data (postoperative

audiological results and complications). The HERMES

data set includes patients who have undergone cochlear

implantation, CI candidates awaiting implantation, and

patients with HL who may not yet be candidates [18].

The missing data can be summarized into three types [19],

[5], [6]:

TABLE I
DATASET SUMMARIZATION

Male 2530

Female 2082

Age of visit range 18 years old - 91 years old

Right 2337

Left 2281

Number of Unique Patients 803

1) Missing Completely At Random (MCAR): is when

there is missing data randomly because the data do

not exhibit an identifiable pattern. The more uniform

the data distribution is, the less bias is expected to be

introduced in the database.

2) Missing At Random (MAR): is when the missing data

does have an identifiable pattern. MAR data means we

can find a common factor with the missing data in the

database.

3) Missing Not At Random (MNAR): is comparable to

MAR, but the values causing others to be missing are

not known.

For the HERMES data set, we can assume MAR because of

the high correlation among frequencies of audiograms, which

can be seen in Fig. 1. The reason for missing data can be

explained by different clinics testing different frequencies,

having different protocols for each doctor or clinic, and human

error.

Data were selected if each of the ten frequencies for 125

HZ, 250 HZ, 500 HZ, 750 HZ, 1000 HZ, 2000 HZ, 3000 HZ,

4000 HZ, 6000 HZ, 8000 HZ did not have a missing value

for training and testing the machine learning models, age at

the visit was greater than 18 years, and if the conduction for

the testing used was air. Conduction type was limited to air

because there exist few audiograms with a conduction type of

bone (n ¡ 100). The selection criteria gave 4618 audiograms to

train and test machine learning imputation techniques. Other

data included were the age at the visit, which ear was tested,

hearing conditions of the ears (such as plugged, hearing aid,

cochlear implant, and unaided), and gender. A table describing

the data can be seen in Table I.

Outliers were removed based on box-plots interquartile

range (IQR). This technique considers anything outside the

range of Q1-1.5*(Q3-Q1) and Q3+1.5*(Q3-Q1) to be an

outlier, where Q1 is the first quartile, and Q3 is the third

quartile. The IQR outlier detection method is not as affected by

extreme anomalies, as discussed in [20]. After removing values

outside the IQR range, we were left with 3468 audiograms.

The correlation between frequencies among the rows can be

seen in Fig. 1, conducted using Spearman on the remaining

3468 audiograms data after converting categorical data into

individual columns. The Spearman correlation shows that

frequencies close to each other have a high correlation,

implying that these highly correlated features can be used to

create machine learning techniques for imputing missing or

invalid data points. An example is that the frequency 500 Hz
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TABLE II
MODEL GRID SEARCH PARAMETERS

Model Parameter Options

Linear Regression
Fitting Intercept True, False

Coefficient Forced Positive True, False

Ridge Regression

Alpha 0.5, 1, 2, 5, 10, 50

Fitting Intercept True, False

Reuse Previous Run Solution True, False

Max Iterations 1000, 1500, 2000, 2500, 5000

Coefficient Selection cyclic, random

Precomputed Gram Matrix True, False

LASSO

Alpha 0.5, 1, 2, 5, 10, 50

Fitting Intercept True, False

Coefficient Selection cyclic, random

Precomputed Gram Matrix True, False

Max Iterations 1000, 1500, 2000, 2500, 5000

Reuse Previous Run Solution True, False

Bayesian Ridge

First Alpha 1e-6, 5e-6, 1e-5, 5e-5, 1e-7, 5e-7

Second Alpha 1e-6, 5e-6, 1e-5, 5e-5, 1e-7, 5e-7

Fitting Intercept True, False

First Lambda 1e-6, 5e-6, 1e-5, 5e-5, 1e-7, 5e-7

Second Lambda 1e-6, 5e-6, 1e-5, 5e-5, 1e-7, 5e-7

Number of Iterations 200, 250, 300, 400, 500

Linear Support Vector Regression

Tolerance 1e-3, 1e-4, 1e-5

Fitting Intercept True, False

C Parameter 0.001, 0.01, 0.1, 1, 10, 100, 1000

Loss Function L1

Dual Optimization False since number of samples greater than number of features

K Nearest Neighbors

Weight uniform, distance based on list (auto, ball tree, KD tree, brute)

Leaf Size for Ball Tree 1 to 50 (Increment of 1)

Distance Manhattan, Euclidean

Number of Neighbors 1 to 50 (Increment of 1)

Random Forest Regression

Number of Estimators 50, 100, 200, 250

Error Criterion Squared, Absolute, Poisson

Max Depth None, 3, 9, 12

Max feature Auto, Sq. root, Log 2, 2, 3, None

Bootstrap Yes, No

has a correlation of 0.86 to the frequency 250 Hz and 0.87

to the frequency 750 Hz, while it has a correlation of 0.35

to the frequency 2000 Hz. Upper frequencies have a lower

correlation to adjacent frequencies, which can be seen with

frequency 6000 Hz’s correlation of 0.36 to frequency 8000

Hz.

B. Machine Learning

Python version 3.8 was used as the programming language,

and Scikit-learn library [21] was used for models. The models

created were Linear regression, Ridge Regression, Lasso,

Bayesian Ridge, Linear Support Vector Regression, KNN, and

Random Forest regression.

Linear regression: A statistical technique known as linear

regression can be implemented to simulate the linear

connection between a dependent variable and at least one

independent variable. The premise of linear regression is

that there is a straight line that can be drawn to represent

the connection between the dependent and independent

variable(s). Finding the best-fit line that minimizes the

difference between the predicted values and the actual values

of the dependent variable is the objective of linear regression.

Ridge regression: Ridge regression is a type of linear

regression used when the data suffer from multicollinearity,

which occurs when the independent variables are highly

correlated. In ridge regression, a penalty term is added to the
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sum of squared residuals, which helps to prevent overfitting

by reducing the magnitude of the regression coefficients. This

penalty term is controlled by a hyperparameter called the

regularization parameter or lambda, which determines the

amount of shrinkage applied to the coefficients.
LASSO: LASSO, which stands for Least Absolute Shrinkage

and Selection Operator, is a type of linear regression that adds

a penalty to the cost function to shrink the input variables’

coefficients toward zero. This penalty encourages sparsity in

the solution, meaning it can be used for feature selection and

prediction.
Bayesian Ridge: Bayesian Ridge is a linear regression

model that uses Bayesian methods for regularization. It

is a regularized linear regression version that can handle

multicollinearity and overfitting. In Bayesian Ridge, a prior

distribution is placed on the model coefficients, which helps

to regularize the model and prevent overfitting. The prior

distribution is assumed to be Gaussian, with zero mean

and a precision parameter. The precision parameter is a

hyperparameter that controls the strength of the regularization.
Linear Support Vector Regression: Linear Support Vector

Regression (SVR) is a regression algorithm that uses Support

Vector Machines (SVMs) to perform regression analysis. Like

other SVM-based algorithms, SVR finds a linear function that

best fits the data by maximizing the margin between predicted

and actual values. The margin is the distance between the

nearest data points and the hyperplane.
KNN: KNN is a non-parametric regression algorithm for

classification and regression tasks. In KNN, the output is a

class membership or a real value prediction based on the

k-nearest examples in the training data set. The algorithm

calculates the distance between the new data point and all the

training examples. Then, the k-nearest training examples are

selected based on the shortest distance to the new data point.

Finally, the output value is computed by averaging the values

of the k-nearest neighbors for regression or by a majority vote

for classification. The value of k is the number of neighbors to

be considered, a hyperparameter that must be set beforehand.
Random Forest Regression: Random Forest regression is

a popular ensemble learning method for regression tasks. It

involves creating multiple decision trees and aggregating their

predictions to make a final prediction. Each tree is built on a

random subset of the data and features, which helps to reduce

overfitting. Each tree produces a prediction during prediction,

and the final prediction is the average of all the predictions.

C. Imputation Models
Imputation models were created for each frequency

for each ML technique tested on the audiogram.

Nested Cross-Validation was used, as discussed in [22].

Hyperparameter optimization will pick the model that has

the best accuracy, which can cause overfitting. Nested

Cross-Validation helps find a good trade-off between bias

and variance to prevent overfitting, as discussed in [22]. An

example of a possible pseudo-code for nested cross-validation

is shown in algorithm 1.
Two variations of nested cross-validation were used. The

first was with the outer cross-validation using a split of 10,

Algorithm 1 Nested Cross-Validation Pseudo Code

Require: Dataset D
Require: Number of outer folds kout
Require: Number of inner folds kin
Require: Model M
Require: Evaluation metric E

1: Divide D into kout outer folds of D1, D2, . . . , Dkout

2: for i ← 1 to kout do
3: Set aside Di as the test set

4: Combine the remaining outer folds into the training

set T
5: Divide T into kin inner folds of T1, T2, . . . , Tkin

6: for j ← 1 to kin do
7: Set aside Tj as the validation set

8: Combine the remaining inner folds into the training

set t
9: Train the model M on t

10: Evaluate M on Tj using evaluation metric E and

record the performance

11: end for
12: Choose the best hyperparameters for M based on the

inner cross-validation

13: Train M on the combined inner folds T
14: Evaluate M on the test set Di using evaluation metric

E and record the performance

15: end for
16: Compute the overall performance of M based on the kout

test folds

and the inner cross-validation used a split of 5. The second

is the reverse, with the outer cross-validation using a split

of 5 and the inner using a split of 10. Models were created

using both ears together, left ear only or right ear only, which

gives a total of six models per frequency per ML technique.

A grid search was performed on each model to find the best

parameters per model per frequency, as shown in Table II.

D. Performance Evaluation

We compare the regression of the models in two parts.

The first is R2, (also known as R-squared or coefficient

of determination), hereafter referred to as R2, which gives

a measure of variance between dependent and independent

variables. The mathematical properties of why R2 is a

standard metric for regression models and explanations of the

interpretability can be seen in [23]. The equation for R2 can

be seen in (1):

R2 = 1−
∑m

i=1(Yi − Ŷi)
2

∑m
i=1(Yi − Ȳi)2

(1)

where Yi = the actual value; Ŷi = the predicted value; Ȳi =

mean of the actual values.

The second measure was using the root-mean-squared error

(RMSE) score. The good thing about RMSE is that we can

see the metrics in the same unit as our prediction; in the case

of our works, that would be decibels. Many papers, including

[24] and [25], discussed cases where RMSE is a useful metric
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Fig. 2 Test R2 Scores For Both Ears with nested

cross-validation of 10,5
Fig. 5 Test RMSE Scores For Both Ears with nested

cross-validation of 10,5

Fig. 3 Test R2 Scores For Left Ear with nested

cross-validation of 10,5 Fig. 6 Test RMSE Scores For Left Ear with nested

cross-validation of 10,5

Fig. 4 Test R2 Scores For Right Ear with nested

cross-validation of 10,5
Fig. 7 Test RMSE Scores For Right Ear with nested

cross-validation of 10,5
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Fig. 8 Test R2 Scores For Both Ears with nested

cross-validation of 5,10
Fig. 11 Test RMSE Scores For Both Ears with nested

cross-validation of 5,10

Fig. 9 Test R2 Scores For Left Ear with nested

cross-validation of 5,10
Fig. 12 Test RMSE Scores For Left Ear with nested

cross-validation of 5,10

Fig. 10 Test R2 Scores For Right Ear with nested

cross-validation of 5,10
Fig. 13 Test RMSE Scores For Right Ear with nested

cross-validation of 5,10
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but state it should be used in combination with other metrics,

which we are doing here with R2. The equation to RMSE can

be seen in (2):

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2)

where Yi = the actual value; Ŷi = the predicted value.

IV. RESULTS

The results are split into four sections, with the first two

sections based on the two different nested cross-validation

parameters and based on comparing RMSE and R2 scores.

The first section contains results with nested cross-validation

as 10 for the outer loop and 5 for the inner loop for R2

scores followed by RMSE scores. The second set has nested

cross-validation results of 5 for the outer loop and 10 for

the inner loop for R2, followed by RMSE scores. The third

section shows the results of the top two imputation models.

The fourth section compares the top two model imputations

to a constant imputation technique for accuracy on simple

prediction models.

The first set of results is shown with the cross-validation

having an outer loop of 10 and an inner loop of 5. There are

three results for using both ears, the left ear only, or the right

ear only, based on RMSE scores, and three for both ears, the

left ear only, or the right ear only, based on R2 score. The

RMSE results show the score for each frequency, which can

be seen in Figs. 5, 6, 7 and the R2 results can be seen in Figs.

2, 3, 4 for each frequency.

The second set of results is shown with the cross-validation

having an outer loop of 5 and an inner loop of 10. There are

three results for using both ears, the left ear only, or the right

ear only, based on RMSE scores, and three for both ears, left

ear only, or right ear only, based on R2 score. The RMSE

results show the score for each frequency, which can be seen

in Figs. 11, 12, 13 and the R2 results can be seen in Figs. 8,

9, 10 for each frequency.

The third section shows that the graphs show KNN and

Random Forest have the highest R2 and lowest RMSE scores

across frequencies. As the frequencies increase, the R2 scores

decrease, but the RMSE scores increase. The smaller ranges

can explain the scores discrepancies in values and less variance

for upper frequencies starting with 4000 Hz. The range of

4000 Hz is 80 decibels to 125 decibels, the range of 6000 Hz

is 95 decibels to 110 decibels and the range of 8000 Hz is 85

decibels to 100 decibels. Since the ranges are getting smaller,

it means there is less variance in the upper frequencies, thus

giving us higher RMSE scores. Even though there are high

RMSE scores in upper frequencies, there are also very low R2

scores, which means that the model cannot predict the outcome

well for that frequency. Therefore, the models for the upper

frequencies are not fitting well, while the rest are performing

effectively.

We can see that KNN and Random Forest perform

the best across audiogram frequencies and cross-validation

combinations. A closer look at the results of Random Forest

models can be seen in Tables III and IV. The results of the

KNN models can be seen in Tables V and VI. The best for

each frequency for each technique has been bolded. The best

models were decided by selecting the model with the highest

R2 score and the lowest RMSE score, even though the results

are mostly similar across each result. Since decibels increase

in increments of 5, seeing RMSE scores averaging 5 points

shows that the models can predict within one shift of the actual

value. These make the models great for imputation in these

frequencies using models with high R2 score. In KNN, the R2

score drops by less than or equal to 0.05 in frequencies 125 Hz

to 3000 Hz in comparable models, and RMSE scores have a

variance of 1.5 from the best model. Random Forest’s R2 score

also shows a drop less than or equal to 0.05 in frequencies 125

Hz to 3000 Hz, and RMSE scores show a variance range of 1.5

from the best model. Random Forest performs slightly better

when compared to KNN but is still comparable. Depending on

time, KNN could be used because of its faster training time

if some sensitivity on data imputation can be given up.

The last section discusses how we compared Random Forest

and KNN imputation models on improved accuracy against

constant imputation. We used the hyperparameters found for

both ears from nested cross-validation of an outer loop of 5

and an inner loop of 10. The models were fitted on the dataset

without missing data. For the constant imputation, null values

were imputed with negative ones. After that, we group audio

conditions to form a binary label that the predictive models

predicted. The label was created with the first group containing

patients if their hearing condition was plugged for the left

ear and unaided for the right ear, or unaided for the left ear

and plugged for the right ear. The second group contained

patients whose hearing condition has a Cochlear Implant for

the left ear and plugged for the right ear, or plugged for

the right ear and has a Cochlear Implant for the left ear.

In other words, the label was based on whether a patient’s

hearing condition had a cochlear implant in the tested ear and

plugged in the untested ear during the pure-tone testing for

the audiogram. The data set was expanded to 6825 rows after

imputing rows where one frequency of the ten was missing

and if the hearing conditions only included plugged, unaided,

or Cochlear Implant combinations to build the groups. Other

data include audiogram frequencies, gender, hearing condition,

and age at the visit.

The two models that were built were a KNN Classifier and

a Logistic Regression with a hyperparameter of max iteration

of 1500. Cross-validation was performed with stratified k =

10 to keep an equal portion when training. We computed the

mean score and standard deviation for the predictive models

after running each model 50 times. These results can be

seen in Table VII. For the KNN Classifier, there is a two

percent increase in accuracy greater than 1.5 the standard

deviation meaning this small increase is indeed significant.

Further model tuning could lead to an even bigger accuracy

difference between the imputations types. The improvement

in accuracy shows that proper imputation models can be used

to improve other predictive models’ accuracy while increasing

dataset size.
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TABLE III
RANDOM FOREST IMPUTATIONS RMSE AND R2 SCORES ACROSS FREQUENCIES FOR 5,10 NESTED CROSS-VALIDATION

Random Forest 5,10 cross-validation

Both Ears 5,10 cross-validation Left Ear 5,10 cross-validation Right Ear 5,10 cross-validation

RMSE R2 RMSE R2 RMSE R2

Hz125 6.27 0.91 7.14 0.90 8.69 0.82

Hz250 4.90 0.96 4.79 0.96 4.97 0.96

Hz500 5.70 0.94 5.91 0.94 5.87 0.94

Hz750 4.88 0.95 5.57 0.94 5.27 0.95

Hz1000 4.88 0.95 5.21 0.93 4.84 0.95

Hz2000 4.89 0.89 5.49 0.87 4.7 0.90

Hz3000 4.16 0.85 4.39 0.87 4.36 0.84

Hz4000 4.02 0.81 4.78 0.76 3.44 0.86

Hz6000 2.43 0.52 2.62 0.50 2.17 0.55

Hz8000 2.47 0.39 2.47 0.31 2.53 0.41

TABLE IV
RANDOM FOREST IMPUTATIONS RMSE AND R2 SCORES ACROSS FREQUENCIES FOR 10,5 NESTED CROSS-VALIDATION

Random Forest 10,5 cross-validation

Both Ears 10,5 cross-validation Left Ear 10,5 cross-validation Right Ear 10,5 cross-validation

RMSE R2 RMSE R2 RMSE R2

Hz125 6.37 .92 6.53 0.90 10.02 0.77

Hz250 5.04 0.95 4.97 0.96 5.28 0.96

Hz500 5.40 0.94 5.52 0.90 5.90 0.95

Hz750 4.92 0.95 6.31 0.92 5.08 0.95

Hz1000 4.92 0.94 4.76 0.95 4.83 0.95

Hz2000 4.74 0.91 5.48 0.85 4.71 0.89

Hz3000 3.97 0.86 4.07 0.88 4.28 0.84

Hz4000 3.85 0.83 4.38 0.78 3.31 0.89

Hz6000 2.47 0.49 2.84 0.40 2.38 0.57

Hz8000 2.50 0.37 2.58 0.35 2.21 0.47

TABLE V
KNN IMPUTATIONS RMSE AND R2 SCORES ACROSS FREQUENCIES FOR 5,10 NESTED CROSS-VALIDATION

KNN 5,10 cross-validation

Both Ears 5,10 cross-validation Left Ear 5,10 cross-validation Right Ear 5,10 cross-validation

RMSE R2 RMSE R2 RMSE R2

Hz125 7.72 0.87 6.50 0.90 6.85 0.89

Hz250 5.57 0.94 5.33 0.95 5.17 0.95

Hz500 6.33 0.93 6.49 0.93 6.17 0.94

Hz750 5.70 0.94 6.59 0.92 5.66 0.94

Hz1000 5.00 0.94 5.36 0.93 5.35 0.94

Hz2000 5.03 0.88 6.00 0.84 5.26 0.88

Hz3000 4.70 0.81 4.63 0.84 5.38 0.72

Hz4000 4.63 0.75 5.99 0.62 4.05 0.81

Hz6000 2.64 0.43 3.08 0.41 2.48 0.51

Hz8000 2.67 0.29 2.76 0.25 2.50 0.38
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TABLE VI
KNN IMPUTATIONS RMSE AND R2 SCORES ACROSS FREQUENCIES FOR 10,5 NESTED CROSS-VALIDATION

KNN 10,5 cross-validation

Both Ears 10,5 cross-validation Left Ear 10,5 cross-validation Right Ear 10,5 cross-validation

RMSE R2 RMSE R2 RMSE R2

Hz125 7.10 0.89 6.80 0.89 6.24 0.91

Hz250 5.68 0.94 5.26 0.95 5.38 0.95

Hz500 6.18 0.93 5.75 0.94 6.03 0.95

Hz750 6.05 0.93 7.03 0.90 5.77 0.94

Hz1000 5.29 0.93 5.71 0.91 5.39 0.94

Hz2000 5.00 0.89 6.13 0.82 5.38 0.85

Hz3000 4.58 0.82 4.7 0.84 4.85 0.80

Hz4000 4.28 0.79 5.08 0.70 4.14 0.83

Hz6000 2.52 0.40 3.09 0.39 2.35 0.58

Hz8000 2.65 0.29 3.00 0.13 2.60 0.20

TABLE VII
PREDICTIVE MODEL ACCURACY SCORES AFTER IMPUTATIONS

Imputation Technique KNN Classifier Logistic Regression

Mean Score Standard Deviation Mean Score Standard Deviation

Constant Imputation 86.40% 0.010 79.36% 0.0071

Random Forest Imputation 88.40% 0.009 80.25% 0.0067

KNN Imputation 88.52% 0.009 80.20% 0.0066

V. THREATS TO VALIDITY

Different data sets could lead to different results or have a

different machine learning technique perform better. Having

more data or data variety, such as data containing bone

conduction or hearing aids for ear configuration, could increase

the validity of the research. Cross-validation was used to help

prevent overfitting in the models, especially with Random

Forest. Two types of cross-validation were tested. Models were

run multiple times, getting similar results each time (for some

runs, KNN would perform closer to or slightly better than

Random Forest for a frequency). This paper shows one set of

those results.

VI. CONCLUSIONS

This work applies machine learning models to impute

missing frequency values of audiograms, which can impute

the missing frequencies with RMSE values of less the 7dB

for the best models while still having R2 greater than .90.

Imputed values have the potential to be used in machine

learning models to predict Unaided or Cochlear Implants for

patients. The imputation models in this work can be used as a

baseline to implement more complicated techniques for better

precision of imputation on audiograms and other medical data.

Our study’s best single imputation methods, KNN and

Random Forest, had RMSE values lower than seven compared

to [4] whose best multiple imputation method using MICE

that had RMSE values greater than 7. When comparing R2,

this study has comparable frequencies ranging from 125 Hz

to 1000 Hz.

VII. FUTURE WORK

Future work may examine a larger set of audiograms

or other medical data sets with missing data. For instance,

the imputation techniques may help with other missing

audiometric data, including AzBio, CNC, and BKB. There

is an opportunity to broaden the examination of parameters

used in this work, especially with Random Forest. Different

algorithms are another direction where improvements such as

boosting techniques may be possible. This work will be used

as a basis for creating a new data imputation technique which

will be tested on the HERMES dataset.
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