
 

 

  
Abstract—Clusters of Microcalcifications (MCCs) are most 

frequent symptoms of Ductal Carcinoma in Situ (DCIS) recognized 

by mammography. Least-Square Support Vector Machine (LS-SVM) 

is a variant of the standard SVM. In the paper, LS-SVM is proposed 

as a classifier for classifying MCCs as benign or malignant based on 

relevant extracted features from enhanced mammogram. To establish 

the credibility of LS-SVM classifier for classifying MCCs, a 

comparative evaluation of the relative performance of LS-SVM 

classifier for different kernel functions is made. For comparative 

evaluation, confusion matrix and ROC analysis are used. 

Experiments are performed on data extracted from mammogram 

images of DDSM database. A total of 380 suspicious areas are 

collected, which contain 235 malignant and 145 benign samples, 

from mammogram images of DDSM database. A set of 50 features is 

calculated for each suspicious area. After this, an optimal subset of 

23 most suitable features is selected from 50 features by Particle 

Swarm Optimization (PSO). The results of proposed study are quite 

promising. 

 

Keywords—Clusters of Microcalcifications, Ductal Carcinoma in 

Situ, Least-Square Support Vector Machine, Particle Swarm 

Optimization. 

I. INTRODUCTION 

REAST cancer is the major occurrence of cancer among 

women in both developed and developing countries. Still, 

there is no known way of preventing it but early detection of 

breast cancer is the key to improving breast cancer prognosis. 

Mammography is one of the most effective tools in early 

detection of breast cancer [1]. It is reliable, low cost and 

highly sensitive method. Mammography offers high quality 

images at low x-rays radiation doses. Mammography uses low 

energy x-rays that pass through the compressed breast of 

patient and are absorbed by film during an examination. 

Mammography is the only widely accepted imaging method 

for routine breast cancer screening. It is recommended that 

women at the ages of 40 or above should have a mammogram 

every one to two years [2]. Although mammography is widely 

used around the world for breast cancer detection, there are 

some difficulties when mammograms are searched for signs of 

abnormality by expert radiologists. One of the difficulties is 

that some anomalies may be missed due to human error or as a 

result of fatigue. This is one of the main reasons of false 
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positive and false negative readings of mammogram. False 

positive detection causes unnecessary biopsy. It has been 

estimated that only 15-30% of breast biopsy cases are proved 

to be cancerous [3]. On the other hand, in a false negative 

detection, an actual tumor remains undetected. Retrospective 

studies [4] have shown that 10-30% of the visible cancers are 

undetected. So, false positive and false negative have caused a 

high proportion of women without cancer to undergo breast 

biopsies or miss the best treatment time. Thus, there is a 

significant necessity to improve the correct diagnosis rate of 

cancer. Several solutions were proposed in the past to increase 

accuracy and sensitivity of mammography and reduce 

unnecessary biopsies. Independent double reading of 

mammograms by two radiologists is one of the solutions and 

has proved effective in significantly increasing the sensitivity 

of mammographic screening [5]. The basic idea of 

independent double reading is for the mammograms to be read 

by two radiologists independently. However, this solution is 

both highly costly and time consuming. Instead of double 

reading, radiologists have an opportunity to improve their 

diagnosis with the aid of computer system. It might provide a 

useful second opinion to radiologists during mammographic 

interpretation.  

The classifier plays an important role in the implementation 

of Computer-Aided Diagnosis (CAD) of mammography. It is 

last phase of a CAD scheme that is aimed at assisting 

radiologists in making more accurate diagnosis of breast 

cancer on mammograms [6]. The classifier makes the decision 

regarding the region of suspicion. The aim of the classification 

stage of CAD system is the characterization of each cluster as 

malignant or benign using the selected features. To evaluate 

the performance of classifier for classifying MCCs as benign 

and malignant, confusion matrix and Receiving Operating 

Characteristics (ROC) analysis are used.  

A number of classifiers have been proposed for CAD 

system to classify MCCs as benign or malignant. Kramer and 

Aghdasi [7] used K-Nearest Neighbor (KNN) classifier to 

classify MCs in digitized mammograms using multi-scale 

statistical texture analysis. Bruce and Adhami [8] used Linear 

Discriminant Analysis (LDA) to classify mammographic 

masses into three classes: stellate, nodular and round. Bottema 

and Slavotinek [9] used decision trees for classification of 

lobular and DCIS (small cell) MCs in digital mammograms. In 

2007, Nicandro et al. [10] used Bayesian network classifiers 

for the diagnosis of breast cancer. Hassanien [11] used fuzzy 

rough sets hybrid scheme for breast cancer detection. Artificial 

Neural Networks (ANNs) have also been widely used for 

classification of MCs as benign or malignant [12]–[14]. SVM 
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is a supervised learning two-class classifier derived from 

statistical learning theory. It is developed by Vapnik [15]. It is 

based on the principle of structural risk minimization. SVM 

has been most recently used in many applications [16]–[20]. 

LS-SVM is a variant of the standard SVM. It is proposed by 

Suykens and Vandewalle [21]. In the proposed research work, 

LS-SVM is explored for classifying MCCs as benign or 

malignant task from various kernel function point of view.  

II. DESCRIPTION OF LS-SVM FOR CLASSIFICATION OF MCCS 

When SVM is used for classification of the two-class 

pattern classification problem, the aim is to find the optimal 

separating hyperplane that separates these two classes [22]. 

Classification of MCCs as benign or malignant is a two-class 

pattern classification problem. To begin, let {(Xj, Yj), j=1, 2, 

…………, L} be a set of L training data samples, where Xj 

∈ R
d
 are L data points, each of which belong to class Yj ∈

{+1, -1}. In classification of MCCs as benign or malignant 

problem, vector X∈ {xi, i=1, 2,………..,n} denotes a cluster 

of MCs to be classified, where { xi, i=1, 2,………..,n} denotes 

a set of n features of the cluster of MCs, and Y ∈ {+1, -1} 

denotes its class label i.e. ‘+1’ denotes malignant cluster of 

MCs and ‘-1’ denotes benign cluster of MCs. An optimal 

separating hyperplane is a hyperplane that correctly separates 

the positive and negative classes. An optimization problem for 

optimal separating hyperplane can be formulated as 
 

 

Objective function: Minimize 
2

ww T

 

 

Subject to the constraints: 

 

( ) jforbXwY j

T

j ∀≥+ 1
 

 

where w
T
X denotes dot product between w and X; parameter w 

is the norm to the hyperplane; 

w

b  is the perpendicular 

distance from the hyperplane to the origin and w
 
is the 

Euclidean norm of w. Hence, the goal is to find w and b such 

that 
2

ww T

 

is minimized and ( )bXwY j

T

j +
 
is greater than 

or equal to 1 for all j. The optimal solution w
*
, b

*
 enables 

classification of a test example Z as follows:  

 

( )**)( bZwsignZclass
T
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The above said optimization problem is a Quadratic 

Programming (QP) optimization problem with linear 

constraints. To solve this, it is necessary to switch on 

Lagrangian formulation of the problem [23] because when 

constraints are replaced by constraints on the Lagrange 

multipliers, then it is much easier to handle. To obtain 

Lagrangian formulation of the problem, first take positive 

Lagrange multipliers αj, j=1,2,……..,L. After this, the 

constraint equations are multiplied by positive Lagrange 

multipliers and subtracted from the objective function. Thus, 

the following objective function is obtained: 
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Objective function: Minimize LP w. r. t w, b 

Subject to the constraints:  

(a) Derivatives of LP w. r. t all αj vanish 

(b) αj ≥ 0
 

Dual problem can be formulated from the above primal 

problem as follows: 

Objective function: Maximize LP  

Subject to the constraints:  

(a) Gradient of LP w. r. t w and b vanish 

(b) αj ≥ 0      
   

Now, Gradient of LP w. r. t w and b vanish gives the 

following conditions:      

              

∑
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By substituting (3) and (4) into (2), the following equation 

is obtained: 
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In this case, the problem is formulated as  

Objective function: Maximize LD  

Subject to the constraints:  
 

(a). 
0

1

=∑
=

j

L

j

jYα
 

 

(b). αj ≥ 0         

 

Thus, the goal is to find α1, α2,…….,αL such that LD is 

maximized along with ∑
=

L

j

jjY
1

α
 
is equal to zero and αj is greater 

than or equal to 0 for all j. For non-zero
sj Lj ,,.........2,1,* =α , 

the optimal values of w
*
 and b

*
 are obtained as follows: 

 

∑
=

=
sL

j

jjj XYw
1
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where non-zero Lagrange multipliers,

sj Lj ,,.........2,1,* =α , indicate their corresponding 
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support vectors ( )
jjj YXS ,∈ . Thus, classification of a 

test example Z is done as  
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A. Soft-Margin SVM   

For soft-margin classification [24], slack variables 
jζ can 

be added to allow misclassification of difficult or noisy 

examples. Thus, modified formulation of the primal problem 

is as follows: 

Objective function: Minimize ∑
=

+
L

j

j

T Cww
12

1
ζ                                          

Subject to the constraints:   
 

( ) 01 ≥∀−≥+ jjj

T

j andjforbXwY ζζ
 

 

where C is a soft-margin parameter that controls the penalty 

for misclassifying the training samples. Now, modified 

formulation of the dual problem is as follows:  

Objective function: Maximize LD  

Subject to the constraints:  

 

(a) 0
1

=∑
=

j

L

j

j Yα  

 

(b) 
jj forC αα ∀≤≤0  

 

Similarly as mentioned in the dual problem, now, the goal is 

to find α1, α2,…….,αL such that LD is maximized along with 

∑
=

L

j

jjY
1

α
 

is equal to zero and 

jj forC αα ∀≤≤0 .  

For non-zero
sj Lj ,,.........2,1,* =α , w

*
 is obtained 

from (6) and b
*
 is calculated as follows: 
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1
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B. Non-Linear SVM   

Non-linear SVM classifier is used to solve non-linear 

classification problems through a kernel function. Kernel 

function uses transformation operator (.)φ to map two 

classes of training data points in an input space R
d
 onto a 

higher dimensional feature space H so that the two classes of 

training data points can be separated by a hyperplane [25].   

 

HR d →:φ                  (10)                                                                                                                

 

Mainly, kernel function is used to convert non-linear 

classification problems into linear classification problems. 

Relation between kernel function K (Xj , Xi) and mapping 

operator (.)φ
 
[26] is shown as  
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Thus, dual formulation of problem is as follows: 

Find α1, α2,…….,αL such that 
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For non-zero
sj Lj ,,.........2,1,* =α , w

*
 is obtained 

from (6) and b
*
 is calculated as follows: 
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Thus, classification of a test example Z is done as  
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Most commonly used kernel functions in SVM [27], [28] 

are defined as follows:  

i. Linear kernel function  

 

( ) yxyxK T=,                          (14) 

 

ii. Quadratic kernel function 

 

( ) ( )2
1, yxyxK T+=                 

(15) 

 

iii. Gaussian RBF kernel function    

 

( )












 −
−=

2

2

2
exp,

σ
yx

yxK            (16)                                                               

 

where σ is the kernel width 

C. Least-Squares SVM   

In LS-SVM, QP problem of the standard soft-margin SVM 

is transformed into linear problem. This transform is 

performed [29] as  

(i) Slack variables 
jζ

 
of the inequality constraints 

( ) 01 ≥∀−≥+ jjj

T

j andjforbXwY ζζ
are replaced with error variables ej;  
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(ii) the term ∑
=

L

j

jC
1

ζ in the objective function 

∑
=

+
L

j

j

T Cww
12

1
ζ is replaced by ∑

=

L

j

je
1

2

2

1
γ , 

where γ is a tuning parameter. Thus, the formulation of 

the classification problem for LS-SVM is as follows: 

 

Objective function: Minimize ∑
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2
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Subject to the constraints:   
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Lagrangian formulation of the above said problem is 

expressed by 
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According to Karush-Kuhn-Tucker condition [30], the 

following conditions for optimality [31] are obtained:  
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The above set of linear equations is used to find the solution 

of the problem. 

III. CLASSIFIER PERFORMANCE MEASURES 

For evaluating the performance of classifier to classify 

MCCs as benign and malignant, mainly confusion matrix [32] 

and ROC analysis [33] are used. A confusion matrix is a table 

that contains information about actual and predicted 

classifications done by a classifier. Table I shows confusion 

matrix.   

   
TABLE I 

CONFUSION MATRIX 

Predicted 

Actual 

 Positive Negative  

Positive TPs FPs 
Positive 

Predictive Value 

Negative FNs TNs 
Negative 

Predictive Value 

 Sensitivity Specificity Accuracy 

In confusion matrix, Sensitivity, Specificity, Positive 

Predictive Value, Negative Predictive Value and Accuracy are 

defined as  

 

Sensitivity =
FNsTPs

TPs

+
                        (22)  

 

Specificity =
FPsTNs

TNs

+
                                                (23)  

 

Positive Predictive Value =
FPsTPs

TPs

+
                          (24)  

 

Negative Predictive Value =
FNsTNs

TNs

+
                       (25)  

 

Accuracy = 
FNsTNsFPsTPs

TNsTPs

+++
+                       (26)  

 

where, TPs, TNs, FNs and FPs are number of true positive 

decisions, number of true negative decisions, number of false 

negative decisions and number of false positive decisions 

taken by a classifier respectively.  

ROC analysis is based on statistical decision theory that has 

been widely used in medical decision making. In ROC 

analysis, ROC curve is a popular tool to measure classifier 

performance in CAD system. ROC curve is a plot of 

classifier’s Sensitivity versus its 1- Specificity at all possible 

threshold values. To draw ROC curve, x-axis is 1-Specificity 

and y-axis is Sensitivity. The terms Sensitivity, Specificity and 

1- Specificity are synonymous with True Positive Rate, True 

Negative Rate and False Positive Rate respectively. ROC 

curve depicts the tradeoffs between True Positive Rate and 

False Positive Rate to describe the inherent discrimination 

capacity of CAD system. Area under the ROC curve (AZ) is an 

important criterion for evaluating diagnostic performance [34]. 

The ROC curve is in the range between 0.0 and 1.0. So, AZ lies 

between 0.0 and 1.0. The value of AZ is equal to 1.0 when 

CAD system has perfect performance i.e. True Positive Rate is 

100% and False Positive Rate is 0%. The value of AZ can be 

computed by Trapezoidal rule or Simpson’s rule.  

Hosmer and Lemeshow [35] gave the following general rule 

to measure the discrimination power of a classifier based on 

ROC curve: 

• If 0.5≤Az<0.6 : This means no discrimination i.e. fail 

classifier 

• If 0.6≤Az<0.7 : This means poor discrimination i.e. poor 

classifier 

• If 0.7≤Az<0.8 : This means fair discrimination i.e. fair 

classifier 

• If 0.8≤Az<0.9 : This means good discrimination i.e. good 

classifier 

• If 0.9≤Az≤1.0 : This means excellent discrimination i.e. 

excellent classifier 
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IV. EXPERIMENTAL RESULTS AND DISCUSSION  

In order to establish the credibility of LS-SVM classifier for 

classifying MCCs as benign or malignant, a comparative 

evaluation of the relative performance of LS-SVM classifier 

for different kernel functions is made. For this comparative 

evaluation, experiments are performed on data extracted from 

mammogram images of DDSM database [36]. All experiments 

are conducted on MATLAB 7.7 software. Confusion matrix 

and ROC analysis are used to measure the performance of 

classifier. In this study, a total of 380 suspicious areas are 

collected, which contain 235 malignant and 145 benign 

samples, from mammogram images of DDSM database. It is a 

standard benchmark database for mammographic image 

analysis research community that is maintained at the 

University of South Florida. 50 features are extracted for each 

suspicious region of mammograms. Such features are shown 

in Appendix. After this, an optimal subset of 23 features is 

selected by Particle Swarm Optimization (PSO) method [37]. 

In this study, linear, quadratic and Gaussian radial basis kernel 

functions are considered. 191 samples are randomly selected 

from 380 samples for training purpose and the remaining 

samples are used for testing. The training samples are not used 

during the testing stage. 

First, linear kernel function is chosen and 10 experiments 

are run to measure the performance of LS-SVM with it for 

classifying MCCs. Tabular results of 10 random experimental 

runs of LS-SVM with linear kernel function are shown in 

Table II. Due to page constraint, confusion matrices and ROC 

curves of only 1
st
 and last experimental runs are shown in 

Figs. 1 and 2, respectively. The average accuracy from 

confusion matrices is 0.8884 while average accuracy from 

ROC curves is 0.8867 with a sensitivity of 0.9274 and a 

specificity of 0.8250. A common ROC curve of 10 random 

experimental trials is plotted by logarithmic function. Such 

curve is shown in Fig. 3. Area under this ROC curve is 

0.9398. Thus, the overall accuracy of LS-SVM with linear 

kernel function is 0.9050 that is shown in Table V.  
 

 
 

 

 
 

 

 
 

 

 
 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 
 

 

TABLE II  
TABULAR RESULTS OF 10 RANDOM EXPERIMENTAL TRIALS OF LS-SVM WITH LINEAR KERNEL FUNCTION FOR CLASSIFYING MCCS AS BENIGN OR MALIGNANT 

Random Experimental Trial No. Confusion Matrix Accuracy from Confusion Matrix Accuracy from AZ Sensitivity Specificity 

1 
105 10 

0.8836 0.8754 0.8974 0.8611 
12 62 

2 
110 15 

0.8836 0.8853 0.9402 0.7917 
7 57 

3 
110 9 

0.9153 0.9122 0.9402 0.8750 
7 63 

4 
109 17 

0.8677 0.8690 0.9316 0.7639 
8 55 

5 
110 17 

0.8730 0.8766 0.9402 0.7639 
7 55 

6 
111 15 

0.8889 0.8929 0.9487 0.7917 
6 57 

7 
110 12 

0.8995 0.8986 0.9402 0.8333 
7 60 

8 
108 10 

0.8995 0.8942 0.9231 0.8611 
9 62 

9 
102 8 

0.8783 0.8687 0.8718 0.8889 
15 64 

10 
110 13 

0.8942 0.8941 0.9402 0.8194 
7 59 

Mean   0.8884 0.8867 0.9274 0.8250 

S. D.   0.0142 0.0142 0.0243 0.0459 
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Fig. 1 Confusion matrices for 1st and last experimental trials of LS-

SVM with Linear Kernel function to differentiate benign and 

malignant MCCs 

 

  

Fig. 2 ROC curves for 1st and last experimental trials illustrate the 

performance of LS-SVM with Linear Kernel function to differentiate 

benign and malignant MCCs 

 

 

Fig. 3 Common ROC curve for 10 random experimental trials 

illustrates the performance of LS-SVM with Linear Kernel function 

to differentiate benign and malignant MCCs 

 

After the performance analysis of linear kernel function LS-

SVM, quadratic kernel function is considered. Tabular results 

of 10 random experimental runs of this classifier are shown in 

Table III. Confusion matrices and ROC curves of 1
st
 and last 

experimental runs are shown in Figs. 4 and 5, respectively. 

The average accuracy from confusion matrices is 0.8371 while 

average accuracy from ROC curves is 0.8270 with a 

sensitivity of 0.8521 and a specificity of 0.8125. A common 

ROC curve obtained from 10 random experimental trials is 

shown in Fig. 6. Area under this ROC curve is 0.8769. Thus, 

the overall accuracy of LS-SVM with quadratic kernel 

function is 0.8470 that is shown in Table V. 

 

TABLE III  

TABULAR RESULTS OF 10 RANDOM EXPERIMENTAL TRIALS OF LS-SVM WITH QUADRATIC KERNEL FUNCTION FOR CLASSIFYING MCCS AS BENIGN OR 

MALIGNANT  

Random Experimental Trial No. Confusion Matrix Accuracy from Confusion Matrix Accuracy from AZ Sensitivity Specificity 

1 100 14 0.8360 0.8253 0.8547 0.8056 

17 58 

2 98 11 0.8413 0.8308 0.8376 0.8472 

19 61 

3 102 15 0.8413 0.8317 0.8718 0.7917 

15 57 

4 101 16 0.8307 0.8205 0.8632 0.7778 

16 56 

5 100 14 0.8360 0.8253 0.8547 0.8056 

17 58 

6 99 14 0.8307 0.8196 0.8462 0.8056 

18 58 

7 97 11 0.8360 0.8256 0.8291 0.8472 

20 61 

8 95 10 0.8307 0.8214 0.8120 0.8611 

22 62 

9 104 16 0.8466 0.8391 0.8889 0.7778 

13 56 

10 101 14 0.8413 0.8310 0.8632 0.8056 

16 58 

Mean   0.8371 0.8270 0.8521 0.8125 

S. D.   0.0055 0.0061 0.0221 0.0294 
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Fig. 4 Confusion matrices for 1st and last experimental trials of SVM 

with Quadratic Kernel function and LS method to differentiate 

benign and malignant MCCs 

 

 

Fig. 5 ROC curves for 1st and last experimental trials illustrate the 

performance of LS-SVM with Quadratic Kernel function to 

differentiate benign and malignant MCCs 

 

 

Fig. 6 Common ROC curve for 10 random experimental trials 

illustrates the performance of LS-SVM with Quadratic Kernel 

function to differentiate benign and malignant MCCs 

 

At the end, Gaussian radial basis kernel function is 

considered. In Gaussian radial basis kernel function, the value 

of sigma (σ) is set to 2. Tabular results of 10 random 

experimental runs of this classifier are shown in Table IV. 

Confusion matrices and ROC curves of 1
st
 and last 

experimental runs are shown in Figs. 7 and 8, respectively. 

The average accuracy from confusion matrices is 0.8656 while 

average accuracy from ROC curves is 0.8676 with a 

sensitivity of 0.9282 and a specificity of 0.7639. A common 

ROC curve obtained from 10 random experimental trials is 

shown in Fig. 9. Area under this ROC curve is 0.8717. Thus, 

the overall accuracy of SVM with Gaussian radial basis kernel 

function is 0.8683 that is shown in Table V. 

 

TABLE IV  
TABULAR RESULTS OF 10 RANDOM EXPERIMENTAL TRIALS OF LS-SVM WITH GAUSSIAN RADIAL BASIS KERNEL FUNCTION FOR CLASSIFYING MCCS AS BENIGN 

OR MALIGNANT 

Random Experimental Trial No. Confusion Matrix Accuracy from Confusion Matrix Accuracy from AZ  Sensitivity Specificity 

1 108 15 0.8730 0.8708 0.9231 0.7917 

9 57 

2 108 19 0.8519 0.8526 0.9231 0.7361 

9 53 

3 111 20 0.8624 0.8719 0.9487 0.7222 

6 52 

4 108 15 0.8730 0.8708 0.9231 0.7917 

9 57 

5 110 17 0.8730 0.8766 0.9402 0.7639 

7 55 

6 107 16 0.8624 0.8592 0.9145 0.7778 

10 56 

7 113 21 0.8677 0.8853 0.9658 0.7083 

4 51 

8 111 19 0.8677 0.8761 0.9487 0.7361 

6 53 

9 103 12 0.8624 0.8532 0.8803 0.8333 

14 60 

10 107 16 0.8624 0.8592 0.9145 0.7778 

10 56 

Mean   0.8656 0.8676 0.9282 0.7639 

S. D.   0.0067 0.0109 0.0239 0.0382 
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Fig. 7 Confusion matrices for 1st and last experimental trials of LS-

SVM with Gaussian Radial Basis Kernel function to differentiate 

benign and malignant MCCs 

 

   

Fig. 8 ROC curves for 1st and last experimental trials illustrate the 

performance of LS-SVM with Gaussian Radial Basis Kernel function 

to differentiate benign and malignant MCCs 

 

 

Fig. 9 Common ROC curve for 10 random experimental trials 

illustrates the performance of LS-SVM with Gaussian Radial Basis 

Kernel function to differentiate benign and malignant MCCs 
 

TABLE V  

PERFORMANCE OF LS-SVM WITH DIFFERENT KERNEL FUNCTIONS FOR 

DIFFERENTIATING BENIGN AND MALIGNANT MCCS 

Kernel 

Function 

Average 

Accuracy from 
Confusion 

Matrices 

Average 

Accuracy 
from ROC 

Curves 

Accuracy 

from 
Common 

ROC Curve 

Overall 

Accuracy 

Linear 0.8884 0.8867 0.9398 0.9050 

Quadratic 0.8371 0.8270 0.8769 0.8470 

Gaussian 

Radial Basis 

0.8656 0.8676 0.8717 0.8683 

 

V. CONCLUSION AND FUTURE SCOPE 

In this paper, an attempt is made to establish the credibility 

of LS-SVM classifier with different kernel functions for 

classifying MCCs as benign or malignant. For this purpose, 

three kernel functions: linear, quadratic and Gaussian radial 

basis are used. For this study, experiments are conducted on 

MATLAB 7.7 software. Experiments are performed on 380 

suspicious areas collected from mammogram images of 

DDSM database. A set of 23 most suitable features selected by 

PSO is used. The performance of the classifier is measured 

from confusion matrix and ROC analysis. From the 

experimental results, it is observed that the overall correct 

classification rate of LS-SVM with linear, quadratic and 

Gaussian radial basis kernel functions is 90.50%, 84.70% and 

86.83%, respectively. From these experimental results, it is 

observed that LS-SVM with linear kernel function belongs to 

excellent classifiers category according to Hosmer and 

Lemeshow’s rule, while LS-SVM with quadratic and Gaussian 

radial basis kernel functions belongs to good classifiers 

category. Results of this study are quite promising. The 

proposed work can be a part of developing a CAD system for 

early detection of breast cancer. Thus, this research work 

could, in a way, significantly contribute towards eventually 

detecting DCIS type breast cancer which is the main challenge 

for radiologists.  

Although the achieved performance is satisfactory for 

mammogram images of DDSM databases, further testing can 

also be performed on the mammogram images of other 

standard databases.  

APPENDIX 

TABLE VI 
EXTRACTED FEATURES FROM MAMMOGRAM 

Feature No. Feature 

1 Mean from Gray Level Histogram Moments Method 

2 Standard Deviation from Gray Level Histogram Moments 

Method 
3 Relative Smoothness from Gray Level Histogram Moments 

Method 

4 3rd Moment from Gray Level Histogram Moments Method 

5 4th Moment from Gray Level Histogram Moments Method 

6 Uniformity from Gray Level Histogram Moments Method 

7 Havrda and Charvat Entropy from Gray Level Histogram 

Moments Method 
8 Maximum Probability from Gray Level Co-occurrence Matrix 

(GLCM) 

9 Contrast from GLCM 

10 Energy from GLCM 

11 Homogeneity from GLCM 

12 Correlation from GLCM 

13 Sum Average from GLCM 

14 Sum of Squares: Variance from GLCM 

15 Sum Variance from GLCM 

16 Difference Variance from GLCM 

17 Information Measure of Correlation 1st from GLCM 

18 Information Measure of Correlation 2nd from GLCM 

19 Havrda and Charvat Entropy for GLCM from GLCM 

20 Havrda and Charvat Sum Entropy from GLCM 
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21 Havrda and Charvat Difference Entropy from GLCM 

22 Average from Window based Statistical Texture Feature 

Extraction Method 

23 Stand Deviation from Window based Statistical Texture 
Feature Extraction Method 

24 Relative Smoothness from Window based Statistical Texture 

Feature Extraction Method 
25 Skewness from Window based Statistical Texture Feature 

Extraction Method 

26 Kurtosis from Window based Statistical Texture Feature 
Extraction Method 

27 Bussyness from Window based Statistical Texture Feature 

Extraction Method 
28 Potential of a point from Window based Statistical Texture 

Feature Extraction Method 
29 Point Mask from Window based Statistical Texture Feature 

Extraction Method 

30 Average Energy from Window based Statistical Texture 
Feature Extraction Method 

31 Energy Variance from Window based Statistical Texture 
Feature Extraction Method 

32 Volatility from Window based Statistical Texture Feature 

Extraction Method 

33 Mean from Wavelet Domain 

34 Standard Deviation from Wavelet Domain 

35 Spectral Entropy from Wavelet Domain 

36 Mean from Fourier Domain 

37 Standard Deviation from Fourier Domain 

38 Spectral Entropy from Fourier Domain 

39 Mean of Areas 

40 Standard Deviation of Areas 

41 Maximum Area 

42 Minimum Area 

43 Mean of Compactness 

44 Standard Deviation of Compactness 

45 Maximum Compactness 

46 Minimum Compactness 

47 Mean of 2nd Central Moment 

48 Standard Deviation of 2nd Central Moment 

49 Maximum 2nd Central Moment 

50 Minimum 2nd Central Moment 
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