Search results for: equilibrium equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1556

Search results for: equilibrium equations

956 A Study on the Condition Monitoring of Transmission Line by On-line Circuit Parameter Measurement

Authors: Il Dong Kim, Jin Rak Lee, Young Jun Ko, Young Taek Jin

Abstract:

An on-line condition monitoring method for transmission line is proposed using electrical circuit theory and IT technology in this paper. It is reasonable that the circuit parameters such as resistance (R), inductance (L), conductance (g) and capacitance (C) of a transmission line expose the electrical conditions and physical state of the line. Those parameters can be calculated from the linear equation composed of voltages and currents measured by synchro-phasor measurement technique at both end of the line. A set of linear voltage drop equations containing four terminal constants (A, B ,C ,D ) are mathematical models of the transmission line circuits. At least two sets of those linear equations are established from different operation condition of the line, they may mathematically yield those circuit parameters of the line. The conditions of line connectivity including state of connecting parts or contacting parts of the switching device may be monitored by resistance variations during operation. The insulation conditions of the line can be monitored by conductance (g) and capacitance(C) measurements. Together with other condition monitoring devices such as partial discharge, sensors and visual sensing device etc.,they may give useful information to monitor out any incipient symptoms of faults. The prototype of hardware system has been developed and tested through laboratory level simulated transmission lines. The test has shown enough evident to put the proposed method to practical uses.

Keywords: Transmission Line, Condition Monitoring, Circuit Parameters, Synchro- phasor Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3191
955 Lagrangian Flow Skeletons Captured in the Wake of a Swimming Nematode C. elegans Using an Immersed Boundary Fluid-Structure Interaction Approach

Authors: Arash Taheri

Abstract:

In this paper, Lagrangian coherent structure (LCS) concept is applied to wake flows generated in the up/down-stream of a swimming nematode C. elegans in an intermediate Re number range, i.e., 250-1200. It materializes Lagrangian hidden structures depicting flow transport barriers. To pursue the goals, nematode swimming in a quiescent fluid flow environment is numerically simulated by a two-way fluid-structure interaction (FSI) approach with the aid of immersed boundary method (IBM). In this regard, incompressible Navier-Stokes equations, fully-coupled with Lagrangian deformation equations for the immersed body, are solved using IB2d code. For all simulations, nematode’s body is modeled with a parametrized spring-fiber built-in case available in the computational code. Reverse von-Kármán vortex street formation and vortex shedding characteristics are studied and discussed in details via LCS approach, including grid resolution, integration time and Reynolds number effects. Results unveil presence of different flow regions with distinct fluid particle fates in the swimming animal’s wake and formation of so-called ‘mushroom-shaped’ structures in attracting LCS identities.

Keywords: Lagrangian coherent structure, nematode swimming, fluid-structure interaction, immersed boundary method, bionics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 976
954 A Model to Study the Effect of Excess Buffers and Na+ Ions on Ca2+ Diffusion in Neuron Cell

Authors: Vikas Tewari, Shivendra Tewari, K. R. Pardasani

Abstract:

Calcium is a vital second messenger used in signal transduction. Calcium controls secretion, cell movement, muscular contraction, cell differentiation, ciliary beating and so on. Two theories have been used to simplify the system of reaction-diffusion equations of calcium into a single equation. One is excess buffer approximation (EBA) which assumes that mobile buffer is present in excess and cannot be saturated. The other is rapid buffer approximation (RBA), which assumes that calcium binding to buffer is rapid compared to calcium diffusion rate. In the present work, attempt has been made to develop a model for calcium diffusion under excess buffer approximation in neuron cells. This model incorporates the effect of [Na+] influx on [Ca2+] diffusion,variable calcium and sodium sources, sodium-calcium exchange protein, Sarcolemmal Calcium ATPase pump, sodium and calcium channels. The proposed mathematical model leads to a system of partial differential equations which have been solved numerically using Forward Time Centered Space (FTCS) approach. The numerical results have been used to study the relationships among different types of parameters such as buffer concentration, association rate, calcium permeability.

Keywords: Excess buffer approximation, Na+ influx, sodium calcium exchange protein, sarcolemmal calcium atpase pump, forward time centred space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
953 The Non-Stationary BINARMA(1,1) Process with Poisson Innovations: An Application on Accident Data

Authors: Y. Sunecher, N. Mamode Khan, V. Jowaheer

Abstract:

This paper considers the modelling of a non-stationary bivariate integer-valued autoregressive moving average of order one (BINARMA(1,1)) with correlated Poisson innovations. The BINARMA(1,1) model is specified using the binomial thinning operator and by assuming that the cross-correlation between the two series is induced by the innovation terms only. Based on these assumptions, the non-stationary marginal and joint moments of the BINARMA(1,1) are derived iteratively by using some initial stationary moments. As regards to the estimation of parameters of the proposed model, the conditional maximum likelihood (CML) estimation method is derived based on thinning and convolution properties. The forecasting equations of the BINARMA(1,1) model are also derived. A simulation study is also proposed where BINARMA(1,1) count data are generated using a multivariate Poisson R code for the innovation terms. The performance of the BINARMA(1,1) model is then assessed through a simulation experiment and the mean estimates of the model parameters obtained are all efficient, based on their standard errors. The proposed model is then used to analyse a real-life accident data on the motorway in Mauritius, based on some covariates: policemen, daily patrol, speed cameras, traffic lights and roundabouts. The BINARMA(1,1) model is applied on the accident data and the CML estimates clearly indicate a significant impact of the covariates on the number of accidents on the motorway in Mauritius. The forecasting equations also provide reliable one-step ahead forecasts.

Keywords: Non-stationary, BINARMA(1, 1) model, Poisson Innovations, CML

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 582
952 Performance Prediction of a 5MW Wind Turbine Blade Considering Aeroelastic Effect

Authors: Dong-Hyun Kim, Yoo-Han Kim

Abstract:

In this study, aeroelastic response and performance analyses have been conducted for a 5MW-Class composite wind turbine blade model. Advanced coupled numerical method based on computational fluid dynamics (CFD) and computational flexible multi-body dynamics (CFMBD) has been developed in order to investigate aeroelastic responses and performance characteristics of the rotating composite blade. Reynolds-Averaged Navier-Stokes (RANS) equations with k-ω SST turbulence model were solved for unsteady flow problems on the rotating turbine blade model. Also, structural analyses considering rotating effect have been conducted using the general nonlinear finite element method. A fully implicit time marching scheme based on the Newmark direct integration method is applied to solve the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems. Detailed dynamic responses and instantaneous velocity contour on the blade surfaces which considering flow-separation effects were presented to show the multi-physical phenomenon of the huge rotating wind- turbine blade model.

Keywords: Computational Fluid Dynamics (CFD), Computational Multi-Body Dynamics (CMBD), Reynolds-averageNavier-Stokes (RANS), Fluid Structure Interaction (FSI), FiniteElement Method (FEM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2913
951 Sustainable Hydrogel Nanocomposites Based on Grafted Chitosan and Clay for Effective Adsorption of Cationic Dye

Authors: H. Ferfera-Harrar, T. Benhalima, D. Lerari

Abstract:

Contamination of water, due to the discharge of untreated industrial wastewaters into the ecosystem, has become a serious problem for many countries. In this study, bioadsorbents based on chitosan-g-poly(acrylamide) and montmorillonite (MMt) clay (CTS-g-PAAm/MMt) hydrogel nanocomposites were prepared via free‐radical grafting copolymerization and crosslinking of acrylamide monomer (AAm) onto natural polysaccharide chitosan (CTS) as backbone, in presence of various contents of MMt clay as nanofiller. Then, they were hydrolyzed to obtain highly functionalized pH‐sensitive nanomaterials with uppermost swelling properties. Their structure characterization was conducted by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) analyses. The adsorption performances of the developed nanohybrids were examined for removal of methylene blue (MB) cationic dye from aqueous solutions. The factors affecting the removal of MB, such as clay content, pH medium, adsorbent dose, initial dye concentration and temperature were explored. The adsorption process was found to be highly pH dependent. From adsorption kinetic results, the prepared adsorbents showed remarkable adsorption capacity and fast adsorption rate, mainly more than 88% of MB removal efficiency was reached after 50 min in 200 mg L-1 of dye solution. In addition, the incorporating of various content of clay has enhanced adsorption capacity of CTS-g-PAAm matrix from 1685 to a highest value of 1749 mg g-1 for the optimized nanocomposite containing 2 wt.% of MMt. The experimental kinetic data were well described by the pseudo-second-order model, while the equilibrium data were represented perfectly by Langmuir isotherm model. The maximum Langmuir equilibrium adsorption capacity (qm) was found to increase from 2173 mg g−1 until 2221 mg g−1 by adding 2 wt.% of clay nanofiller. Thermodynamic parameters revealed the spontaneous and endothermic nature of the process. In addition, the reusability study revealed that these bioadsorbents could be well regenerated with desorption efficiency overhead 87% and without any obvious decrease of removal efficiency as compared to starting ones even after four consecutive adsorption/desorption cycles, which exceeded 64%. These results suggest that the optimized nanocomposites are promising as low cost bioadsorbents.

Keywords: Chitosan, clay, dye adsorption, hydrogels nanocomposites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 999
950 Equilibrium Modeling of Carbon Dioxide Adsorption on Zeolites

Authors: Alireza Behvandi, Somayeh Tourani

Abstract:

High pressure adsorption of carbon dioxide on zeolite 13X was investigated in the pressure range (0 to 4) Mpa and temperatures 298, 308 and 323K. The data fitting is accomplished with the Toth, UNILAN, Dubinin-Astakhov and virial adsorption models which are generally used for micro porous adsorbents such as zeolites. Comparison with experimental data from the literature indicated that the virial model would best determine results. These results may be partly attributed to the flexibility of the virial model which can accommodate as many constants as the data warrants.

Keywords: adsorption models, zeolite, carbon dioxide

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2875
949 Bifurcations for a FitzHugh-Nagumo Model with Time Delays

Authors: Changjin Xu, Peiluan Li

Abstract:

In this paper, a FitzHugh-Nagumo model with time delays is investigated. The linear stability of the equilibrium and the existence of Hopf bifurcation with delay τ is investigated. By applying Nyquist criterion, the length of delay is estimated for which stability continues to hold. Numerical simulations for justifying the theoretical results are illustrated. Finally, main conclusions are given.

Keywords: FitzHugh-Nagumo model, Time delay, Stability, Hopf bifurcation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686
948 Study of Rayleigh-Bénard-Brinkman Convection Using LTNE Model and Coupled, Real Ginzburg-Landau Equations

Authors: P. G. Siddheshwar, R. K. Vanishree, C. Kanchana

Abstract:

A local nonlinear stability analysis using a eight-mode expansion is performed in arriving at the coupled amplitude equations for Rayleigh-Bénard-Brinkman convection (RBBC) in the presence of LTNE effects. Streamlines and isotherms are obtained in the two-dimensional unsteady finite-amplitude convection regime. The parameters’ influence on heat transport is found to be more pronounced at small time than at long times. Results of the Rayleigh-Bénard convection is obtained as a particular case of the present study. Additional modes are shown not to significantly influence the heat transport thus leading us to infer that five minimal modes are sufficient to make a study of RBBC. The present problem that uses rolls as a pattern of manifestation of instability is a needed first step in the direction of making a very general non-local study of two-dimensional unsteady convection. The results may be useful in determining the preferred range of parameters’ values while making rheometric measurements in fluids to ascertain fluid properties such as viscosity. The results of LTE are obtained as a limiting case of the results of LTNE obtained in the paper.

Keywords: Rayleigh-Bénard convection, heat transport, porous media, generalized Lorenz model, coupled Ginzburg-Landau model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920
947 MHD Chemically Reacting Viscous Fluid Flow towards a Vertical Surface with Slip and Convective Boundary Conditions

Authors: Ibrahim Yakubu Seini, Oluwole Daniel Makinde

Abstract:

MHD chemically reacting viscous fluid flow towards a vertical surface with slip and convective boundary conditions has been conducted. The temperature and the chemical species concentration of the surface and the velocity of the external flow are assumed to vary linearly with the distance from the vertical surface. The governing differential equations are modeled and transformed into systems of ordinary differential equations, which are then solved numerically by a shooting method. The effects of various parameters on the heat and mass transfer characteristics are discussed. Graphical results are presented for the velocity, temperature, and concentration profiles whilst the skin-friction coefficient and the rate of heat and mass transfers near the surface are presented in tables and discussed. The results revealed that increasing the strength of the magnetic field increases the skin-friction coefficient and the rate of heat and mass transfers toward the surface. The velocity profiles are increased towards the surface due to the presence of the Lorenz force, which attracts the fluid particles near the surface. The rate of chemical reaction is seen to decrease the concentration boundary layer near the surface due to the destructive chemical reaction occurring near the surface.

Keywords: Boundary layer, surface slip, MHD flow, chemical reaction, heat transfer, mass transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2231
946 Comparative Study on Status and Development of Transient Flow Analysis Including Simple Surge Tank

Authors: I. Abuiziah, A. Oulhaj, K. Sebari, D. Ouazar

Abstract:

This paper presents the problem of modeling and simulating of transient phenomena in conveying pipeline systems based on the rigid column and full elastic methods. Transient analysis is important and one of the more challenging and complicated flow problem in the design and the operation of water pipeline systems. Transient can produce large pressure forces and rapid fluid acceleration into a water pipeline system, these disturbances may result in device failures, system fatigue or pipe ruptures, and even the dirty water intrusion. Several methods have been introduced and used to analyze transient flow, an accurate analysis and suitable protection devices should be used to protect water pipeline systems. The fourth-order Runge-Kutta method has been used to solve the dynamic and continuity equations in the rigid column method, while the characteristics method used to solve these equations in the full elastic method. The results obtained provide that the model is an efficient tool for flow transient analysis and provide approximately identical results by using these two methods. Moreover; using the simple surge tank ”open surge tank” reduces the unfavorable effects of transients.

Keywords: Elastic method, Flow transient, Open surge tank, Pipeline, Protection devices, Numerical model, Rigid column method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2985
945 Calculation of the Thermal Stresses in an Elastoplastic Plate Heated by Local Heat Source

Authors: M. Khaing, A. V. Tkacheva

Abstract:

The work is devoted to solving the problem of temperature stresses, caused by the heating point of the round plate. The plate is made of elastoplastic material, so the Prandtl-Reis model is used. A piecewise-linear condition of the Ishlinsky-Ivlev flow is taken as the loading surface, in which the yield stress depends on the temperature. Piecewise-linear conditions (Treska or Ishlinsky-Ivlev), in contrast to the Mises condition, make it possible to obtain solutions of the equilibrium equation in an analytical form. In the problem under consideration, using the conditions of Tresca, it is impossible to obtain a solution. This is due to the fact that the equation of equilibrium ceases to be satisfied when the two Tresca conditions are fulfilled at once. Using the conditions of plastic flow Ishlinsky-Ivlev allows one to solve the problem. At the same time, there are also no solutions on the edge of the Ishlinsky-Ivlev hexagon in the plane-stressed state. Therefore, the authors of the article propose to jump from the edge to the edge of the mine edge, which gives an opportunity to obtain an analytical solution. At the same time, there is also no solution on the edge of the Ishlinsky-Ivlev hexagon in a plane stressed state; therefore, in this paper, the authors of the article propose to jump from the side to the side of the mine edge, which gives an opportunity to receive an analytical solution. The paper compares solutions of the problem of plate thermal deformation. One of the solutions was obtained under the condition that the elastic moduli (Young's modulus, Poisson's ratio) which depend on temperature. The yield point is assumed to be parabolically temperature dependent. The main results of the comparisons are that the region of irreversible deformation is larger in the calculations obtained for solving the problem with constant elastic moduli. There is no repeated plastic flow in the solution of the problem with elastic moduli depending on temperature. The absolute value of the irreversible deformations is higher for the solution of the problem in which the elastic moduli are constant; there are also insignificant differences in the distribution of the residual stresses.

Keywords: Temperature stresses, elasticity, plasticity, Ishlinsky-Ivlev condition, plate, annular heating, elastic moduli.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 722
944 Finite Element Prediction of Multi-Size Particulate Flow through Two-Dimensional Pump Casing

Authors: K. V. Pagalthivarthi, R. J. Visintainer

Abstract:

Two-dimensional Eulerian (volume-averaged) continuity and momentum equations governing multi-size slurry flow through pump casings are solved by applying a penalty finite element formulation. The computational strategy validated for multi-phase flow through rectangular channels is adapted to the present study.   The flow fields of the carrier, mixture and each solids species, and the concentration field of each species are determined sequentially in an iterative manner. The eddy viscosity field computed using Spalart-Allmaras model for the pure carrier phase is modified for the presence of particles. Streamline upwind Petrov-Galerkin formulation is used for all the momentum equations for the carrier, mixture and each solids species and the concentration field for each species. After ensuring mesh-independence of solutions, results of multi-size particulate flow simulation are presented to bring out the effect of bulk flow rate, average inlet concentration, and inlet particle size distribution. Mono-size computations using (1) the concentration-weighted mean diameter of the slurry and (2) the D50 size of the slurry are also presented for comparison with multi-size results.

Keywords: Eulerian-Eulerian model, Multi-size particulate flow, Penalty finite elements, Pump casing, Spalart-Allmaras.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
943 Investigation of Flame and Soot Propagation in Non-Air Conditioned Railway Locomotives

Authors: Abhishek Agarwal, Manoj Sarda, Juhi Kaushik, Vatsal Sanjay, Arup Kumar Das

Abstract:

Propagation of fire through a non-air conditioned railway compartment is studied by virtue of numerical simulations. Simultaneous computational fire dynamics equations, such as Navier-Stokes, lumped species continuity, overall mass and energy conservation, and heat transfer are solved using finite volume based (for radiation) and finite difference based (for all other equations) solver, Fire Dynamics Simulator (FDS). A single coupe with an eight berth occupancy is used to establish the numerical model, followed by the selection of a three coupe system as the fundamental unit of the locomotive compartment. Heat Release Rate Per Unit Area (HRRPUA) of the initial fire is varied to consider a wide range of compartmental fires. Parameters, such as air inlet velocity relative to the locomotive at the windows, the level of interaction with the ambiance and closure of middle berth are studied through a wide range of numerical simulations. Almost all the loss of lives and properties due to fire breakout can be attributed to the direct or indirect exposure to flames or to the inhalation of toxic gases and resultant suffocation due to smoke and soot. Therefore, the temporal stature of fire and smoke are reported for each of the considered cases which can be used in the present or extended form to develop guidelines to be followed in case of a fire breakout.

Keywords: Fire dynamics, flame propagation, locomotive fire, soot flow pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1133
942 The Impact of Treatment of Latent Tuberculosis on the Incidence : The Case of Algeria

Authors: Schehrazad Selmane

Abstract:

We present a deterministic model which describes the dynamics of tuberculosis in Algerian population where the vaccination program with BCG is in place since 1969 and where the WHO recommendations regarding the DOTS (directly-observed treatment, short course) strategy are in application. The impact of an intervention program, targeting recently infected people among all close contacts of active cases and their treatment to prevent endogenous reactivation, on the incidence of tuberculosis, is investigated. We showed that a widespread treatment of latently infected individuals for some years is recommended to shift from higher to lower equilibrium state and thereafter relaxation is recommended.

Keywords: Deterministic model, reproduction number, stability, tuberculosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997
941 A New Sufficient Conditions of Stability for Discrete Time Non-autonomous Delayed Hopfield Neural Networks

Authors: Adnene Arbi, Chaouki Aouiti, Abderrahmane Touati

Abstract:

In this paper, we consider the uniform asymptotic stability, global asymptotic stability and global exponential stability of the equilibrium point of discrete Hopfield neural networks with delays. Some new stability criteria for system are derived by using the Lyapunov functional method and the linear matrix inequality approach, for estimating the upper bound of Lyapunov functional derivative.

Keywords: Hopfield neural networks, uniform asymptotic stability, global asymptotic stability, exponential stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1961
940 An Optimal Control Method for Reconstruction of Topography in Dam-Break Flows

Authors: Alia Alghosoun, Nabil El Moçayd, Mohammed Seaid

Abstract:

Modeling dam-break flows over non-flat beds requires an accurate representation of the topography which is the main source of uncertainty in the model. Therefore, developing robust and accurate techniques for reconstructing topography in this class of problems would reduce the uncertainty in the flow system. In many hydraulic applications, experimental techniques have been widely used to measure the bed topography. In practice, experimental work in hydraulics may be very demanding in both time and cost. Meanwhile, computational hydraulics have served as an alternative for laboratory and field experiments. Unlike the forward problem, the inverse problem is used to identify the bed parameters from the given experimental data. In this case, the shallow water equations used for modeling the hydraulics need to be rearranged in a way that the model parameters can be evaluated from measured data. However, this approach is not always possible and it suffers from stability restrictions. In the present work, we propose an adaptive optimal control technique to numerically identify the underlying bed topography from a given set of free-surface observation data. In this approach, a minimization function is defined to iteratively determine the model parameters. The proposed technique can be interpreted as a fractional-stage scheme. In the first stage, the forward problem is solved to determine the measurable parameters from known data. In the second stage, the adaptive control Ensemble Kalman Filter is implemented to combine the optimality of observation data in order to obtain the accurate estimation of the topography. The main features of this method are on one hand, the ability to solve for different complex geometries with no need for any rearrangements in the original model to rewrite it in an explicit form. On the other hand, its achievement of strong stability for simulations of flows in different regimes containing shocks or discontinuities over any geometry. Numerical results are presented for a dam-break flow problem over non-flat bed using different solvers for the shallow water equations. The robustness of the proposed method is investigated using different numbers of loops, sensitivity parameters, initial samples and location of observations. The obtained results demonstrate high reliability and accuracy of the proposed techniques.

Keywords: Optimal control, ensemble Kalman Filter, topography reconstruction, data assimilation, shallow water equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 671
939 Modeling of CO2 Removal from Gas Mixtureby 2-amino-2-methyl-1-propanol (AMP) Using the Modified Kent Eisenberg Model

Authors: H. Pahlavanzadeh, A.R.Jahangiri, I. Noshadi

Abstract:

In this paper, the solubility of CO2 in AMP solution have been measured at temperature range of ( 293, 303 ,313,323) K.The amine concentration ranges studied are (2.0, 2.8, and 3.4) M. A solubility apparatus was used to measure the solubility of CO2 in AMP solution on samples of flue gases from Thermal and Central Power Plants of Esfahan Steel Company. The modified Kent Eisenberg model was used to correlate and predict the vapor-liquid equilibria of the (CO2 + AMP + H2O) system. The model predicted results are in good agreement with the experimental vapor-liquid equilibrium measurements.

Keywords: AMP, Carbon dioxide; loading, Flue gases, Modified Kent Eisenberg model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2471
938 Stability and Bifurcation Analysis of a Discrete Gompertz Model with Time Delay

Authors: Yingguo Li

Abstract:

In this paper, we consider a discrete Gompertz model with time delay. Firstly, the stability of the equilibrium of the system is investigated by analyzing the characteristic equation. By choosing the time delay as a bifurcation parameter, we prove that Neimark- Sacker bifurcations occur when the delay passes a sequence of critical values. The direction and stability of the Neimark-Sacker are determined by using normal forms and centre manifold theory. Finally, some numerical simulations are given to verify the theoretical analysis.

Keywords: Gompertz system, Neimark-Sacker bifurcation, stability, time delay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935
937 The Effect of Modification and Initial Concentration on Ammonia Removal from Leachate by Zeolite

Authors: Fulya Aydın, Ayşe Kuleyin

Abstract:

The purpose of this study is to investigate the capacity of natural Turkish zeolite for NH4-N removal from landfill leachate. The effects of modification and initial concentration on the removal of NH4-N from leachate were also investigated. The kinetics of adsorption of NH4-N has been discussed using three kinetic models, i.e., the pseudo-second order model, the Elovich equation, the intraparticle diffuion model. Kinetic parameters and correlation coefficients were determined. Equilibrium isotherms for the adsorption of NH4-N were analyzed by Langmuir, Freundlich and Tempkin isotherm models. Langmuir isotherm model was found to best represent the data for NH4-N.

Keywords: Leachate, Ammonium, zeolite

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2360
936 Depth-Averaged Modelling of Erosion and Sediment Transport in Free-Surface Flows

Authors: Thomas Rowan, Mohammed Seaid

Abstract:

A fast finite volume solver for multi-layered shallow water flows with mass exchange and an erodible bed is developed. This enables the user to solve a number of complex sediment-based problems including (but not limited to), dam-break over an erodible bed, recirculation currents and bed evolution as well as levy and dyke failure. This research develops methodologies crucial to the under-standing of multi-sediment fluvial mechanics and waterway design. In this model mass exchange between the layers is allowed and, in contrast to previous models, sediment and fluid are able to transfer between layers. In the current study we use a two-step finite volume method to avoid the solution of the Riemann problem. Entrainment and deposition rates are calculated for the first time in a model of this nature. In the first step the governing equations are rewritten in a non-conservative form and the intermediate solutions are calculated using the method of characteristics. In the second stage, the numerical fluxes are reconstructed in conservative form and are used to calculate a solution that satisfies the conservation property. This method is found to be considerably faster than other comparative finite volume methods, it also exhibits good shock capturing. For most entrainment and deposition equations a bed level concentration factor is used. This leads to inaccuracies in both near bed level concentration and total scour. To account for diffusion, as no vertical velocities are calculated, a capacity limited diffusion coefficient is used. The additional advantage of this multilayer approach is that there is a variation (from single layer models) in bottom layer fluid velocity: this dramatically reduces erosion, which is often overestimated in simulations of this nature using single layer flows. The model is used to simulate a standard dam break. In the dam break simulation, as expected, the number of fluid layers utilised creates variation in the resultant bed profile, with more layers offering a higher deviation in fluid velocity . These results showed a marked variation in erosion profiles from standard models. The overall the model provides new insight into the problems presented at minimal computational cost.

Keywords: Erosion, finite volume method, sediment transport, shallow water equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 985
935 Study of Coupled Lateral-Torsional Free Vibrations of Laminated Composite Beam: Analytical Approach

Authors: S.H. Mirtalaie, M.A. Hajabasi

Abstract:

In this paper, an analytical approach is used to study the coupled lateral-torsional vibrations of laminated composite beam. It is known that in such structures due to the fibers orientation in various layers, any lateral displacement will produce a twisting moment. This phenomenon is modeled by the bending-twisting material coupling rigidity and its main feature is the coupling of lateral and torsional vibrations. In addition to the material coupling, the effects of shear deformation and rotary inertia are taken into account in the definition of the potential and kinetic energies. Then, the governing differential equations are derived using the Hamilton-s principle and the mathematical model matches the Timoshenko beam model when neglecting the effect of bending-twisting rigidity. The equations of motion which form a system of three coupled PDEs are solved analytically to study the free vibrations of the beam in lateral and rotational modes due to the bending, as well as the torsional mode caused by twisting. The analytic solution is carried out in three steps: 1) assuming synchronous motion for the kinematic variables which are the lateral, rotational and torsional displacements, 2) solving the ensuing eigenvalue problem which contains three coupled second order ODEs and 3) imposing different boundary conditions related to combinations of simply, clamped and free end conditions. The resulting natural frequencies and mode shapes are compared with similar results in the literature and good agreement is achieved.

Keywords: Free vibration, laminated composite beam, material coupling, state space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2286
934 Mechanical Buckling of Engesser-Timoshenko Beams with a Pair of Piezoelectric Layers

Authors: A. R. Nezamabadi, M. Karami Khorramabadi

Abstract:

This paper presents the elastic buckling of homogeneous beams with a pair of piezoelectric layers surface bonded on both sides of the beams. The displacement field of beam is assumed based on the Engesser-Timoshenko beam theory. Applying the Hamilton's principle, the equilibrium equation is established. The influences of applied voltage, dimensionless geometrical parameter and piezoelectric thickness on the critical buckling load of beam are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: Mechanical Buckling, Engesser-Timoshenko beam theory - Piezoelectric layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2231
933 Boundary Layer Flow of a Casson Nanofluid past a Vertical Exponentially Stretching Cylinder in the Presence of a Transverse Magnetic Field with Internal Heat Generation/Absorption

Authors: G. Sarojamma, K. Vendabai

Abstract:

An analysis is carried out to investigate the effect of magnetic field and heat source on the steady boundary layer flow and heat transfer of a Casson nanofluid over a vertical cylinder stretching exponentially along its radial direction. Using a similarity transformation, the governing mathematical equations, with the boundary conditions are reduced to a system of coupled, non –linear ordinary differential equations. The resulting system is solved numerically by the fourth order Runge – Kutta scheme with shooting technique. The influence of various physical parameters such as Reynolds number, Prandtl number, magnetic field, Brownian motion parameter, thermophoresis parameter, Lewis number and the natural convection parameter are presented graphically and discussed for non – dimensional velocity, temperature and nanoparticle volume fraction. Numerical data for the skin – friction coefficient, local Nusselt number and the local Sherwood number have been tabulated for various parametric conditions. It is found that the local Nusselt number is a decreasing function of Brownian motion parameter Nb and the thermophoresis parameter Nt.

Keywords: Casson nanofluid, Boundary layer flow, Internal heat generation/absorption, Exponentially stretching cylinder, Heat transfer, Brownian motion, Thermophoresis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2816
932 Ψ-Eventual Stability of Differential System with Impulses

Authors: Bhanu Gupta

Abstract:

In this paper, the criteria of Ψ-eventual stability have been established for generalized impulsive differential systems of multiple dependent variables. The sufficient conditions have been obtained using piecewise continuous Lyapunov function. An example is given to support our theoretical result.

Keywords: impulsive differential equations, Lyapunov function, eventual stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4044
931 Frequency Domain Analysis for Hopf Bifurcation in a Delayed Competitive Web-site Model

Authors: Changjin Xu, Yusen Wu

Abstract:

In this paper, applying frequency domain approach, a delayed competitive web-site system is investigated. By choosing the parameter α as a bifurcation parameter, it is found that Hopf bifurcation occurs as the bifurcation parameter α passes a critical values. That is, a family of periodic solutions bifurcate from the equilibrium when the bifurcation parameter exceeds a critical value. Some numerical simulations are included to justify the theoretical analysis results. Finally, main conclusions are given.

Keywords: Web-site system, stability, Nyquist criterion, Hopf bifurcation, frequency domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460
930 Identification of an Unstable Nonlinear System: Quadrotor

Authors: Mauricio Pe˜na, Adriana Luna, Carol Rodr´ıguez

Abstract:

In the following article we begin from a multi-parameter unstable nonlinear model of a Quadrotor. We design a control to stabilize and assure the attitude of the device, starting off a linearized system at the equilibrium point of the null angles of Euler (hover), which provides us a control with limited capacities at small angles of rotation of the vehicle in three dimensions. In order to clear this obstacle, we propose the identification of models in different angles by means of simulations and the design of a controller specifically implemented for the identification task, that in future works will allow the development of controllers according to fast and agile angles of Euler for Quadrotor.

Keywords: Quadrotor, model, control, identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2733
929 Removal of Vanadium from Industrial Effluents by Natural Ion Exchanger

Authors: Shashikant R. Kuchekar, Haribhau R. Aher, Priti M. Dhage

Abstract:

The removal vanadium from aqueous solution using natural exchanger was investigated. The effects of pH, contact time and exchanger dose were studied at ambient temperature (25 0C ± 2 0C). The equilibrium process was described by the Langmuir isotherm model with adsorption capacity for vanadium. The natural exchanger i.e. tamarindus seeds powder was treated with formaldehyde and sulpuric acid to increase the adsorptivity of metals. The maximum exchange level was attained as 80.1% at pH 3 with exchanger dose 5 g and contact time 60 min. Method is applied for removal of vanadium from industrial effluents.

Keywords: Industrial effluent, natural ion exchange, Tamarindus indica, vanadium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 725
928 A Study of Indentation Energy in Three Points Bending of Sandwich beams with Composite Laminated Faces and Foam Core

Authors: M. Sadighi, H. Pouriayevali, M. Saadati

Abstract:

This paper deals with analysis of flexural stiffness, indentation and their energies in three point loading of sandwich beams with composite faces from Eglass/epoxy and cores from Polyurethane or PVC. Energy is consumed in three stages of indentation in laminated beam, indentation of sandwich beam and bending of sandwich beam. Theory of elasticity is chosen to present equations for indentation of laminated beam, then these equations have been corrected to offer better results. An analytical model has been used assuming an elastic-perfectly plastic compressive behavior of the foam core. Classical theory of beam is used to describe three point bending. Finite element (FE) analysis of static indentation sandwich beams is performed using the FE code ABAQUS. The foam core is modeled using the crushable foam material model and response of the foam core is experimentally characterized in uniaxial compression. Three point bending and indentation have been done experimentally in two cases of low velocity and higher velocity (quasi-impact) of loading. Results can describe response of beam in terms of core and faces thicknesses, core material, indentor diameter, energy absorbed, and length of plastic area in the testing. The experimental results are in good agreement with the analytical and FE analyses. These results can be used as an introduction for impact loading and energy absorbing of sandwich structures.

Keywords: Three point Bending, Indentation, Foams, Composite laminated beam, Sandwich beams, Finite element

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2578
927 Lagrangian Geometrical Model of the Rheonomic Mechanical Systems

Authors: Camelia Frigioiu, Katica (Stevanovic) Hedrih, Iulian Gabriel Birsan

Abstract:

In this paper we study the rheonomic mechanical systems from the point of view of Lagrange geometry, by means of its canonical semispray. We present an example of the constraint motion of a material point, in the rheonomic case.

Keywords: Lagrange's equations, mechanical system, non-linear connection, rheonomic Lagrange space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673