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Abstract—We present a deterministic model which describes
the dynamics of tuberculosis in Algerian population where the
vaccination program with BCG is in place since 1969 and where
the WHO recommendations regarding the DOTS (directly-observed
treatment, short course) strategy are in application. The impact
of an intervention program, targeting recently infected people
among all close contacts of active cases and their treatment to
prevent endogenous reactivation, on the incidence of tuberculosis,
is investigated. We showed that a widespread treatment of latently
infected individuals for some years is recommended to shift from
higher to lower equilibrium state and thereafter relaxation is
recommended.
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I. INTRODUCTION

HUNDRED and thirty-one years after the identification by
Robert Koch in 1882 of the Mycobacterium tuberculosis,

pathogenic of tuberculosis (TB), the disease is still a problem
of public health world. In 2012, an estimated 8.6 million
people developed TB and 1.3 million died from the disease.
The number of TB deaths is unacceptably large given that
most are preventable [7].

As many countries, Algeria is concerned by TB; the annual
number of new cases of TB is around 21, 000 cases of which
more than 48% are cases of contagious pulmonary TB. In spite
of a relatively significant medical cover for the country, more
than 180 patients died yearly of smear positive pulmonary TB.
Since 1969, vaccination by Bacille Calmette Guerin (BCG)
is compulsory. Tuberculosis is a notifiable disease in Algeria
and benefit from the total exemption from payment of cares;
individuals with TB disease get their drugs from special centre
implanted in each area of the country. A national program
based on WHO recommendations was set up and several
efforts were made in order to take charge of individuals with
TB disease [5]. The various actions undertaken allowed a
significant reduction of the incidence of the disease and this
from the Seventies. In Fig. 1, the recorded pulmonary TB
and extra-pulmonary cases per 100, 000 inhabitants in Algeria
extracted from [6] are plotted from 2001 to 2009.

An understanding of the dynamics of TB at the population
level will lead to a better revitalization of the control program
of this disease [1]. Since people with TB infection are
considered at highest risk of developing TB disease in the 2
years which follow the infection, during which approximately
5 to 10 percent develop TB disease, an intervention that targets
people with recent latent TB infection could be effective as
control measure. Nevertheless to provide treatment for a large
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fraction of the population is costly and not feasible besides
which the identification of LTBI individuals is not an easy
task. We propose then to quantify how much treatment of
recent TB infection individuals, of all close contacts of smear
positive pulmonary cases, reduces the incidence of TB; an
intervention would consist in keeping a watch on these close
contacts.

The paper is organized as follows : In section III
a deterministic model which describes the dynamics of
tuberculosis is proposed. The dynamic of the model is
governed by ordinary differential equations; therefore the
analysis of the disease free equilibrium and the endemic
equilibrium and conditions for local and global stability of
these points is investigated in this section. Intervention that
alter reactivation and re-infection as well as treatment of
carries and the impact of treatment of TB infection on the
incidence of TB over time are examined in this section. Section
IV includes some numerical simulations of the proposed model
and discusses the obtained results.

II. TUBERCULOSIS

Tuberculosis is an infectious disease caused by bacteria
called Mycobacterium Tuberculosis (MTB). The bacteria
usually attack the lungs (pulmonary TB), but can also affect
other parts of the body through the blood (extra-pulmonary
TB). The MTB is transmitted quasi exclusively by air. The
infecting droplets are produced in the form of aerosol by the
contagious patients at the time of cough, speech or sneezes.
These droplets remain in suspension in the ambient air; ninety
percent of them are inactivated as soon as their emission and
only a fraction of 1% survive for few hours. The inhalation
into the lungs of some bacteria suspended in the air constitutes,

Fig. 1 Incidence of tuberculosis in Algeria 2001− 2009
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in practice, the only mode of contamination. The individual
becomes infected by breathing in the bacteria. The immune
system is sometimes able to kill TB bacteria. If not, either,
the bacteria remain alive but inactive in the body and the
person contracts a TB infection, or, they become active and
begin to multiply in the body and cause TB disease. Infected
individuals who did not progress to TB disease may remain
infected, non-infectious, for their lifetime unless endogenous
reactivation or exogenous re-infection occurs [4]. Note that
only the contamination by smear positive TB individuals has
an epidemiologic importance.

TB control program in Algeria

The priorities for TB control program in Algeria are :
• The vaccination at birth in order to reduce the incidence

of childhood TB knowing that is relatively ineffective in
protecting against adult TB and does not prevent MTB
infection.

• The identification in a permanent way of active TB cases
and their treatment in order to break the transmission
chain of the MTB and thus the sterilization of the
sources of infection.

The cases of TB are only detected in the infectious stage; this
is due to a lack of efficient system of detection at early stages
of infection. People living under the same roof as a contagious
tuberculous (the national average being of 10 individuals by
household) are examined in order to identify among them the
possible cases of TB disease. It is requested to the adults a
radiological examination and from children of less than 14
years a tuberculinic test. If the examination is negative, they
are informed of the possibility of late appearance of the disease
and informed of the clinical signs which will have to lead them
to consult as soon as possible [5].

III. MODEL DESCRIPTION AND ANALYSIS

A. Model description

Although the population is vaccinated, this does not
avoid infection. Susceptible (S), individuals who have never
encountered the natural mycobacterium, can be infected
only through contact with individuals having smear positive
pulmonary TB disease. Latent TB infection (LTBI) is divided
into two stages : (1) an early stage at high risk of developing
active TB, referred as recent LTBI (L1) , and (2) later
stage at low risk of developing active TB, referred as
persistent LTBI (L2) . Likewise, we consider two classes
of infectious individuals : smear positive pulmonary TB
individuals, referred as (Ip) , they can infect others and smear
negative pulmonary TB individuals, referred as (In), who have
TB disease and can not transmit it.

Infected individuals initially progress through recent LTBI,
either, to active TB at rate φδ, or, to persistent LTBI at rate
(1− φ) δ. From persistent LTBI class, individual can progress
at low risk and slowly to infectious class either, by endogenous
reactivation at rate ω, or, by exogenous re-infection at rate
σLβI . All detected infectious individuals receive 6 months
treatment; 90% have a full recovery and the remaining 10%

including 1% for disease-induced death and 9%, gathering
the relapses, the failures and those which fail to comply
with the treatment, return to infectious class at rate ρ; they
receive a treatment of second line. Treated (T) individuals
acquire some immunity not fully which reduces the risk
of re-infection. They can return to the recent LTBI class
only by exogenous re-infection at rate σTβI . The factor
reducing the risk of infection, as a result of acquired immunity
to a previous infection, is taken fixed for persistent latent
individuals, σL = 0.5 (any value between 0 and 1 would
lead to the same conclusions), contrary to that for treated
individuals where it was considered variable.

We incorporate into the model treatment of recent LTBI at a
variable rate τ1 and persistent LTBI at a variable rate τ2. The
model is schematically illustrated in Fig. 2. and the interactions
of the compartments are specified by the following system (I)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

•
S = μ− βIpS − μS
•
L1 = βIpS + σTβIpT + σLβIpL2 − (δ + τ1 + μ)L1
•
L2 = (1− φ) δL1 − σLβIpL2 − (ω + τ2 + μ)L2
•
Ip = α1φδL1 + α2ωL2 + αT ρT − (τp + μ) Ip
•
In = (1− α1)φδL1 + (1− α2)ωL2 + (1− αT ) ρT

− (τn + μ) In
•
T = τ1L1 + τ2L2 + τpIp + τnIn − σTβIpT − (ρ+ μ)T

where the rate of infection λ = βIp depends on the number of
cases of smear positive pulmonary TB in the population and
where

S + L1 + L2 + Ip + In + T = 1.

so that the total population size is constant. The natural death
term (μ) represents the per capita rate at which individuals
die of causes other than TB.

B. Analysis of The model
1) Determination of the Basic Reproduction Number: The

basic reproduction number R0, which is defined as the average

Fig. 2 Flows between the compartments of the model
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number of secondary infections produced by an infected
individual in a completely susceptible and homogeneous
population [3], is computed with the help of the next
generation operator approach [2].
Letting X = (S, T ) (the number non-infected individuals),
Y = (L1, L2, In) (the number of infected individuals who
do not transmit the disease), Z = (Ip) (the number of
infected individuals capable of transmitting the disease), U0 =
(1, 0, 0, 0, 0, 0) ∈ R2+3+1 the disease free equilibrium and

g̃(X∗, Z) = (g̃1(X
∗, Z), g̃2(X

∗, Z), g̃3(X
∗, Z))

with

⎧⎪⎪⎨
⎪⎪⎩

g̃1(X
∗, Z) =

(σLβIp+c2)βIp
c1(σLβIp+c2)−(1−φ)δσLβIp

g̃2(X
∗, Z) =

(1−φ)δβIp
c1(σLβIp+c2)−(1−φ)δσLβIp

g̃3(X
∗, Z) =

δβIp[(1−α1)φ(σLβIp+c2)+(1−φ)(1−α2)ω]
cn[c1(σLβIp+c2)−(1−φ)δσLβIp]

gives

M =

(
α1φc2 + α2ω (1− φ)

c1c2
δβ

)
and D = (cp) .

Hence R0, defined as the spectral radius of the matrix MD−1

is
R0 = MD−1 =

α1φc2 + α2ω (1− φ)

c1c2cp
δβ.

2) Steady States: In qualitative analysis of the model, the
existence of steady states and their stability will be determined
and analyzed.
To find an equilibrium

(
S∗, L∗

1, L
∗
2, I

∗
p , I

∗
n, T

∗) of system (I)
we have to solve the following system on I∗p⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ− βI∗pS
∗ − μS∗ = 0 (1)

βI∗pS
∗ + σTβI

∗
pT

∗ + σLβI
∗
pL

∗
2 − c1L

∗
1 = 0 (2)

(1− φ) δL∗
1 − σLβI

∗
pL

∗
2 − c2L

∗
2 = 0 (3)

α1φδL
∗
1 + α2ωL

∗
2 + αT ρT

∗ − cpI
∗
p = 0 (4)

(1− α1)φδL
∗
3 + (1− α2)ωL

∗
2 + (1− αT ) ρT

∗

−cnI
∗
n = 0 (5)

τ1L
∗
1 + τ2L

∗
2 + τpI

∗
p + τnI

∗
n − σTβI

∗
pT

∗

−cTT
∗ = 0 (6)

where c1 = δ + τ1 + μ, c2 = ω + τ2 + μ, cp = τp + μ,
cn = τn + μ and cT = ρ+ μ.
Equations 1, 3, 4 and 5 give S∗, L∗

1, I
∗
n and T ∗ as function

of I∗p and L∗
2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗ = μ
(βIp+μ)

L∗
1 =

(σLβI∗
p+c2)

(1−φ)δ L∗
2

T ∗ =
cp

αT ρI
∗
p −

[
α1φσL

αT ρ(1−φ)βI
∗
p + (α1φc2+(1−φ)α2ω)

αT ρ(1−φ)

]
L∗
2

I∗n =
(1−α1)φ(σLβI∗

p+c2)
(1−φ)cn

L∗
2 +

(1−α2)ω
cn

L∗
2

− (1−αT )ρ
cn

(
α1φσLβI∗

p+(α1φc2+(1−φ)α2ω)

αT ρ(1−φ)

)
L∗
2

+ (1−αT )ρ
cn

cp
αT ρI

∗
p

From (2) we get L∗
2 as function of I∗p

L∗
2 =

a2βI
∗2
p + a1I

∗
p + μa0

b3β3I∗3p + b2β2I∗2p + b1βI∗p + μb0
βI∗p

where
bb = ραT c1σL − ρ (1− φ) δαTσL +
(φα1c2 + (1− φ)ωα2) δσT

a2 = (1− φ) δcpσT , a1 = a2μ, a0 = (1− φ) δαT ρ,
b3 = φδα1σLσT , b2 = bb+ μb3, b1 = b0 + μbb,
b0 = ραT c1c2 .

Finally, substituting L∗
1, L

∗
2, I

∗
n and T ∗ in (6) we get either

I∗p = 0, from which it may be concluded that system (I)
always has the disease free equilibrium (DFE), or, I∗p is a
root of the third degree polynomial

P (Ip) = p3I
∗3
p + p2I

∗2
p + p1I

∗
p + p0

therefore the possibility of existence of endemic equilibria.
The coefficients of P are

p3 = (μa2d2 + a2d1 + b2e2 + b3e1)β
3

p2 = (βμa0d2 + μa2d1 + a2d0 + b1e2 + b2e1)β
2

p1 = (βμa0d1 + μa2d0 + μb0e2 + b1e1)β

p0 = μa0d0β + μb0e1 = −μa0d0βρ (1−Rρ)

where
e1 = (τn (1− αT ) ρ− cncT ) (1− φ) δcp+αT ρ (1− φ) δcnτp
e2 = −cna2
d0 = f2c2 + αT ρ (1− φ) δ [cnτ2 + τn(1− α2)ω]− f3f1
d1 = f2σL − δf3α1φσL + cnσT f1
d2 = cnb3
f1 = δ (α1φc2 + (1− φ)α2ω)
f2 = αT ρ [cnτ1 + τn (1− α1)φδ]
f3 = (τn (1− αT ) ρ− cncT )
and where

βρ =
c1c2cpcncT − ρ ((1− αT ) cpτn + αT cnτp) c1c2

d0

and Rρ = β
βρ

defining a new reproduction number. Note that
for ρ = 0, letting β0 =

c1c2cp
(φα1c2+(1−φ)ωα2)δ

we find again the
basic reproduction number R0 = β

β0
.

3) Stability of the disease-free equilibrium (DFE): At the
disease free equilibrium DFE, we have I∗p = 0 and previous
computation yields S∗ = 1 and L∗

1 = L∗
2 = I∗n = T ∗ = 0.

Hence DFE = (1, 0, 0, 0, 0, 0).
The stability of the disease free equilibrium is achieved

through the determination of the sign of the eigenvalues of
the jacobian matrix J0 of system (I) evaluated at DFE :
J0 =⎛
⎜⎜⎜⎜⎜⎜⎝

−μ 0 0 −β 0 0
0 −c1 0 β 0 0
0 (1− φ)δ −c2 0 0 0
0 α1φδ α2ω −cp 0 αT ρ
0 (1− α1)φδ (1− α2)ω 0 −cn (1− αT )ρ
0 τ1 τ2 τp τn −cT

⎞
⎟⎟⎟⎟⎟⎟⎠

one negative eigenvalue (−μ) of J0 is straightforwardly
determined, the other five eigenvalues are those of the matrix

J1 =

⎛
⎜⎜⎜⎜⎝

−c1 0 β 0 0
(1− φ)δ −c2 0 0 0
α1φδ α2ω −cp 0 αT ρ

(1− α1)φδ (1− α2)ω 0 −cn (1− αT )ρ
τ1 τ2 τp τn −cT

⎞
⎟⎟⎟⎟⎠
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The stability conditions of J1 are determined by use of the
following result of M-matrices theory.
Proposition
Let A = [aij ] be a n× n matrix. The real part of each of the
eigenvalues of A is greater than zero if and only if all diagonal
entries of A are positive, and there exists a positive diagonal
matrix D, such that AD is strictly diagonal dominant, that is,

aiidi >
n∑

j=1
j �=i

|aij | dj i = 1, ..., n.

Since The matrix J1 has negative diagonal entries,
we consider the matrix −J1. According to the previous
proposition, J1 has negative real part if and only if there exists
a positive diagonal matrix D = (d∗i )1≤i≤5 such that −J1D is
strictly diagonal dominant, namely,

(II)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c1d
∗
1 > βd∗3

c2d
∗
2 > (1− φ)δd∗1

cpd
∗
3 > α1φδd

∗
1 + α2ωd

∗
2 + αT ρd

∗
5

cnd
∗
4 > (1− α1)φδd

∗
1 + (1− α2)ωd

∗
2 + (1− αT )ρd

∗
5

cT d
∗
5 > τ1d

∗
1 + τ2d

∗
2 + τpd

∗
3 + τnd

∗
4

Let

d∗3 = 1

d∗1 =
β + ε

c1

d∗2 =
(1− φ)δβ

c1c2
+ ε

(1− φ)δ + c1
c1c2

d∗4 =
(1− α1)φδd

∗
1 + (1− α2)ωd

∗
2 + (1− αT )ρd

∗
5 + ε

cn

=
(xβ + yτp) + ε (x+ y + t)

z

d∗5 =
τ1d

∗
1 + τ2d

∗
2 + τpd

∗
3 + τnd

∗
4 + ε

cT

where ε > 0, t = c1 [(1− α2)ωcT + (1− αT )ρτ2] + cT c1c2
y = (1− αT )ρc1c2, z = [cncT − (1− αT )ρτn] c1c2,
x = [(1− α1)φδcT + (1− αT )ρτ1] c2
+ [(1− α2)ωcT + (1− αT )ρτ2] (1− φ)δ,
substituting in the third inequality cpd

∗
3 > α1φδd

∗
1+α2ωd

∗
2+

αT ρd
∗
5 we get

ε <
d0βpcT

B
(1−Rρ)

where B = [cncT − (1− αT )ρτn]C + τn (x+ y + t)αT ρ
and C = α1φδc2cT + (α2ωcT + αT ρτ2) (c1 + (1− φ)δ) +
(τ1 + c1)αT ρc2.
Thus for Rρ < 1 all inequalities of system (II) are satisfied;
this implies that the real part of each of the eigenvalues
of −J1 is greater than zero and therefore the DFE is
locally asymptotically stable. Otherwise, it is unstable and an
epidemic is triggered. The special case Rρ = 1 implies that
p0 = 0 and the disease free equilibrium loses its stability and
becomes unstable for Rρ > 1.

Looking on the expression of Rρ, we note that it is
independent of the parameters σT and σL; although the
exogenous re-infection does not affect the stability, it affects
the effort to reduce the TB incidence.

4) Endemic equilibrium: The existence of endemic
equilibria for system (I) is linked to the existence of real
positive roots of the polynomial P ; (I∗p > 0 must be
biologically feasible).

A numerical computation of the polynomial discriminant
Disc of P

Disc =

(
3p1p3 − p22

9p23

)3

+

(
9p1p2p3 − 27p0p

2
3 − 2p32

54p33

)2

yields Disc < 0, consequently all roots of P are real and
unequal. Using the fact that the sign of the product of all
roots of P is that of −sign(p0)sign(p3) and Since p3 < 0
and p0 = μa0d0βρ (Rρ − 1) we deduced that the polynomial
P has at least one positive real root if p0 > 0, that is, Rp > 1
and therefore the existence of one endemic equilibrium. Using
Descartes’ Rule of signs we proved that P has three real
negative roots for 0 < Rp < 1 and thus non equilibria.

5) Expected population after eradication of the disease:
Eradication of the disease occurs when there are no more
exposed and infectious individuals in the population, namely
L1 = L2 = Ip = In = 0. Therefore S+T = 1 and the system
(I) is reduced to

•
S = μ− μS
•
T = − (ρ+ μ)T

solving these equations we get

S(t) = 1 + (S(0)− 1)e−μt

T (t) = T (0)e−(ρ+μ)t

where S(0) and T (0) are the initial number of susceptible,
treated individuals respectively. As t → +∞, S(t) → 1, and
T (t) → 0. Hence, in such situation, the whole population will
be comprised of susceptible individuals.

6) Model without exogenous re-infection:
Case σT = σL = 0
We investigate the situation where the re-infection is not
possible or does not occur in the population. Equation (1)
becomes

b1e1βIp + μa0d0β + μb0e1 = 0

We have p1 = b1e1 < 0.
Indeed b1 = αT ρc1c2 > 0 and e1 < 0 where

e1 = −μ (1− φ) δ [ρτp (1− αT ) + ραT τn + cpτn + ρμ+ μcp]

Moreover we have proved that p0 = μa0d0β + μb0e1 =
μa0d0βρ (Rρ − 1) , therefore for Rρ > 1, we have one real
positive root then one endemic equilibrium and for Rρ < 1
there exist no equilibrium.
case σT = 0
Now let us assume that individuals who followed a treatment
acquired a full immunity against re-infection; so σT = 0.
Equation (1) becomes

p2I
2
p + p1Ip + p0 = 0

where p2 = b2e1β
2, p1 = (βμa0d1 + b1e1)β, p0 = μa0d0β+

μb0e1. Using Descartes’ Rule of signs we proved that P has
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one real positive root and therefore one endemic equilibrium
for Rp > 1 and two real negative roots and thus non equilibria
for 0 < Rp < 1.

IV. NUMERICAL SIMULATIONS

The simulations of the stability of the endemic equilibria
as well as simulations following the proportion of active TB
individuals over time were carried out using the following
parameters values. The natural death rate (μ) is obtained
from the expression 1

μ = life expectancy. We take the life
expectancy of 75 years corresponding to the one of Algerian
population. The transmission rate β is variable. The treatment
period by the program being 6 months which gives a recovery
rate of 2 per individual per year, so τp = τn = 2 (it is
taken as the inverse of the time between the tuberculosis
detection by the program and recovery by treatment). The
proportion of individuals going towards the class Ip were taken
from algerian data. The rate of endogenous reactivation for
treated individuals ρ = 0.00002yr−1, the rate of endogenous
reactivation for persistent latent infection ω = 0.0002yr−1,
the factor reducing the risk of infection for persistent latent
individuals σL = 0.25 were taken from the literature [4]. The
factor reducing the risk of infection for treated individuals σT

is variable. The rate of progression to active TB is estimated
from φδ ≈ 0.6 [4]; if we assume that φ = 5% of the latent
population eventually develops active TB then δ = 12year−1.
The proportion of individuals going from L1 (resp. L2, T )
towards Ip is α1 = 0.4 (resp. α2 = 0.4, αT = 0.9). The
proportion of individuals going to compartment Ip and In is
φ = 0.05. The incidence in Algeria for the year 2006 being
26.1 per 100000 inhabitants [6], the corresponding values of
infectious Ip is 8834 cases and of the transmission coefficient
β is 150.42 and reproduction number Rρ = 1.9; we used the
system (I) to compute these values.
Fig. 3. describes the incidence of TB at equilibrium as function
of the reproduction number Rρ in the absence of treatment of
LTBI individuals (τ1 = τ2 = 0); the circle ◦ corresponds to
the incidence in Algeria for the year 2006.
Fig. 4., Fig. 5, and Fig. 6 describe the proportion of individuals
with smear positive pulmonary TB at equilibrium as a function
of the transmission coefficient β in the absence of treatment of
individuals with LTBI (τ1 = τ2 = 0) with heavy line and with
treatment of recent LTBI at rate τ1 = 1 and persistent LTBI at
various values of τ2 with dashed line. Through these figures,
we see how the proportion of active TB individuals changes if
the susceptibility to re-infection of treated individuals differs
from that of persistent LTBI individuals.
Finally, Fig. 7. shows how the proportion of active TB
individuals changes over time when the treatment of LTBI
individuals is introduced and this is done for series of rates
(τ1 = τ2 = 0; 0.1; 0.2; 0.3; 0.4; 0.5; 1; 10 and the limit τ1 →
∞).

A widespread treatment of LTBI individuals for some years
is recommended to shift from higher to lower equilibrium state
and thereafter relaxation is recommended whenever σT ≤ σL.
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Fig. 3. Incidence at equilibrium as function of the reproduction number Rρ

in the absence of treatment of LTBI individuals; the circle ◦ corresponds to
the incidence in Algeria for the year 2006.
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Fig. 4. The proportion of individuals with smear positive pulmonary TB at
equilibrium as a function of the transmission coefficient β for σT = σL and
τ1 = 1.
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Fig. 5. The proportion of individuals with smear positive pulmonary TB at
equilibrium as a function of the transmission coefficient β for σT = 2σL

and τ1 = 1.
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Fig. 6. The proportion of individuals with smear positive pulmonary TB at
equilibrium as a function of the transmission coefficient β for σT = σL/2
and τ1 = 1.
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Fig. 7. The proportion of active TB individuals as function of time for
different values of the treatment rate of LTBI individuals.
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