Search results for: binary tree
88 Meta-Learning for Hierarchical Classification and Applications in Bioinformatics
Authors: Fabio Fabris, Alex A. Freitas
Abstract:
Hierarchical classification is a special type of classification task where the class labels are organised into a hierarchy, with more generic class labels being ancestors of more specific ones. Meta-learning for classification-algorithm recommendation consists of recommending to the user a classification algorithm, from a pool of candidate algorithms, for a dataset, based on the past performance of the candidate algorithms in other datasets. Meta-learning is normally used in conventional, non-hierarchical classification. By contrast, this paper proposes a meta-learning approach for more challenging task of hierarchical classification, and evaluates it in a large number of bioinformatics datasets. Hierarchical classification is especially relevant for bioinformatics problems, as protein and gene functions tend to be organised into a hierarchy of class labels. This work proposes meta-learning approach for recommending the best hierarchical classification algorithm to a hierarchical classification dataset. This work’s contributions are: 1) proposing an algorithm for splitting hierarchical datasets into new datasets to increase the number of meta-instances, 2) proposing meta-features for hierarchical classification, and 3) interpreting decision-tree meta-models for hierarchical classification algorithm recommendation.Keywords: Algorithm recommendation, meta-learning, bioinformatics, hierarchical classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 137087 Application of Data Mining Techniques for Tourism Knowledge Discovery
Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee
Abstract:
Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.
Keywords: Classification algorithms; data mining; tourism; knowledge discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 254686 A Hybrid Feature Selection by Resampling, Chi squared and Consistency Evaluation Techniques
Authors: Amir-Massoud Bidgoli, Mehdi Naseri Parsa
Abstract:
In this paper a combined feature selection method is proposed which takes advantages of sample domain filtering, resampling and feature subset evaluation methods to reduce dimensions of huge datasets and select reliable features. This method utilizes both feature space and sample domain to improve the process of feature selection and uses a combination of Chi squared with Consistency attribute evaluation methods to seek reliable features. This method consists of two phases. The first phase filters and resamples the sample domain and the second phase adopts a hybrid procedure to find the optimal feature space by applying Chi squared, Consistency subset evaluation methods and genetic search. Experiments on various sized datasets from UCI Repository of Machine Learning databases show that the performance of five classifiers (Naïve Bayes, Logistic, Multilayer Perceptron, Best First Decision Tree and JRIP) improves simultaneously and the classification error for these classifiers decreases considerably. The experiments also show that this method outperforms other feature selection methods.Keywords: feature selection, resampling, reliable features, Consistency Subset Evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 258485 Relay Node Placement for Connectivity Restoration in Wireless Sensor Networks Using Genetic Algorithms
Authors: Hanieh Tarbiat Khosrowshahi, Mojtaba Shakeri
Abstract:
Wireless Sensor Networks (WSNs) consist of a set of sensor nodes with limited capability. WSNs may suffer from multiple node failures when they are exposed to harsh environments such as military zones or disaster locations and lose connectivity by getting partitioned into disjoint segments. Relay nodes (RNs) are alternatively introduced to restore connectivity. They cost more than sensors as they benefit from mobility, more power and more transmission range, enforcing a minimum number of them to be used. This paper addresses the problem of RN placement in a multiple disjoint network by developing a genetic algorithm (GA). The problem is reintroduced as the Steiner tree problem (which is known to be an NP-hard problem) by the aim of finding the minimum number of Steiner points where RNs are to be placed for restoring connectivity. An upper bound to the number of RNs is first computed to set up the length of initial chromosomes. The GA algorithm then iteratively reduces the number of RNs and determines their location at the same time. Experimental results indicate that the proposed GA is capable of establishing network connectivity using a reasonable number of RNs compared to the best existing work.
Keywords: Connectivity restoration, genetic algorithms, multiple-node failure, relay nodes, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 110484 Comparative Studies on Vertical Stratification,Floristic Composition, and Woody Species Diversity of Subtropical Evergreen Broadleaf Forests Between the Ryukyu Archipelago, Japan, and South China
Authors: M. Wu, S. M. Feroz, A. Hagihara, L. Xue, Z. L. Huang
Abstract:
In order to compare vertical stratification, floristic composition, and woody species diversity of subtropical evergreen broadleaf forests between the Ryukyu Archipelago, Japan, and South China, tree censuses in a 400 m2 plot in Ishigaki Island and a 1225 m2 plot in Dinghushan Nature Reserve were performed. Both of the subtropical forests consisted of five vertical strata. The floristic composition of the Ishigaki forest was quite different from that of the Dinghushan forest in terms of similarity on a species level (Kuno-s similarity index r0 = 0.05). The values of Shannon-s index H' and Pielou-s index J ' tended to increase from the bottom stratum upward in both forests, except H' for the top stratum in the Ishigaki forest and the upper two strata in the Dinghushan forest. The woody species diversity in the Dinghushan forest (H'= 3.01 bit) was much lower than that in the Ishigaki forest (H'= 4.36 bit).
Keywords: Floristic similarity, subtropical evergreen broadleaf forest, vertical stratification, woody species diversity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166483 A Reliable Secure Multicast Key Distribution Scheme for Mobile Adhoc Networks
Authors: D. SuganyaDevi, G. Padmavathi
Abstract:
Reliable secure multicast communication in mobile adhoc networks is challenging due to its inherent characteristics of infrastructure-less architecture with lack of central authority, high packet loss rates and limited resources such as bandwidth, time and power. Many emerging commercial and military applications require secure multicast communication in adhoc environments. Hence key management is the fundamental challenge in achieving reliable secure communication using multicast key distribution for mobile adhoc networks. Thus in designing a reliable multicast key distribution scheme, reliability and congestion control over throughput are essential components. This paper proposes and evaluates the performance of an enhanced optimized multicast cluster tree algorithm with destination sequenced distance vector routing protocol to provide reliable multicast key distribution. Simulation results in NS2 accurately predict the performance of proposed scheme in terms of key delivery ratio and packet loss rate under varying network conditions. This proposed scheme achieves reliability, while exhibiting low packet loss rate with high key delivery ratio compared with the existing scheme.Keywords: Key Distribution, Mobile Adhoc Network, Multicast and Reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163782 Enhancing the Performance of Wireless Sensor Networks Using Low Power Design
Authors: N. Mahendran, R. Madhuranthi
Abstract:
Wireless sensor networks (WSNs), are constantly in demand to process information more rapidly with less energy and area cost. Presently, processor based solutions have difficult to achieve high processing speed with low-power consumption. This paper presents a simple and accurate data processing scheme for low power wireless sensor node, based on reduced number of processing element (PE). The presented model provides a simple recursive structure (SRS) to process the sampled data in the wireless sensor environment and to reduce the power consumption in wireless sensor node. Based on this model, to process the incoming samples and produce a smaller amount of data sufficient to reconstruct the original signal. The ModelSim simulator used to simulate SRS structure. Functional simulation is carried out for the validation of the presented architecture. Xilinx Power Estimator (XPE) tool is used to measure the power consumption. The experimental results show the average power consumption of 91 mW; this is 42% improvement compared to the folded tree architecture.Keywords: Power consumption, energy efficiency, low power WSN node, recursive structure, sleep/wake scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 101481 An Approach for Vocal Register Recognition Based on Spectral Analysis of Singing
Authors: Aleksandra Zysk, Pawel Badura
Abstract:
Recognizing and controlling vocal registers during singing is a difficult task for beginner vocalist. It requires among others identifying which part of natural resonators is being used when a sound propagates through the body. Thus, an application has been designed allowing for sound recording, automatic vocal register recognition (VRR), and a graphical user interface providing real-time visualization of the signal and recognition results. Six spectral features are determined for each time frame and passed to the support vector machine classifier yielding a binary decision on the head or chest register assignment of the segment. The classification training and testing data have been recorded by ten professional female singers (soprano, aged 19-29) performing sounds for both chest and head register. The classification accuracy exceeded 93% in each of various validation schemes. Apart from a hard two-class clustering, the support vector classifier returns also information on the distance between particular feature vector and the discrimination hyperplane in a feature space. Such an information reflects the level of certainty of the vocal register classification in a fuzzy way. Thus, the designed recognition and training application is able to assess and visualize the continuous trend in singing in a user-friendly graphical mode providing an easy way to control the vocal emission.Keywords: Classification, singing, spectral analysis, vocal emission, vocal register.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 131380 Cloud Forest Characteristics of Khao Nan, Thailand
Authors: P. Sangarun, W. Srisang, K. Jaroensutasinee, M. Jaroensutasinee
Abstract:
A better understanding of cloud forest characteristic in a tropical montane cloud forest at Khao Nan, Nakhon Si Thammarat on climatic, vegetation, soil and hydrology were studied during 18-21 April 2007. The results showed that as air temperature at Sanyen cloud forest increased, the percent relative humidity decreased. The amount of solar radiation at Sanyen cloud forest had a positive association with the amount of solar radiation at Parah forest. The amount of solar radiation at Sanyen cloud forest was very low with a range of 0-19 W/m2. On the other hand, the amount of solar radiation at Parah forest was high with a range of 0-1000 W/m2. There was no difference between leaf width, leaf length, leaf thickness and leaf area with increasing in elevations. As the elevations increased, bush height and tree height decreased. There was no association between bush width and bush ratio with elevation. As the elevations increased, the percent epiphyte cover and the percent soil moisture increased but water temperature, conductivity, and dissolved oxygen decreased. The percent soil moistures and organic contents were higher at elevations above 900 m than elevations below.
Keywords: Cloud forest, climate, vegetation, soil, hydrology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187379 Application of Neural Network in User Authentication for Smart Home System
Authors: A. Joseph, D.B.L. Bong, D.A.A. Mat
Abstract:
Security has been an important issue and concern in the smart home systems. Smart home networks consist of a wide range of wired or wireless devices, there is possibility that illegal access to some restricted data or devices may happen. Password-based authentication is widely used to identify authorize users, because this method is cheap, easy and quite accurate. In this paper, a neural network is trained to store the passwords instead of using verification table. This method is useful in solving security problems that happened in some authentication system. The conventional way to train the network using Backpropagation (BPN) requires a long training time. Hence, a faster training algorithm, Resilient Backpropagation (RPROP) is embedded to the MLPs Neural Network to accelerate the training process. For the Data Part, 200 sets of UserID and Passwords were created and encoded into binary as the input. The simulation had been carried out to evaluate the performance for different number of hidden neurons and combination of transfer functions. Mean Square Error (MSE), training time and number of epochs are used to determine the network performance. From the results obtained, using Tansig and Purelin in hidden and output layer and 250 hidden neurons gave the better performance. As a result, a password-based user authentication system for smart home by using neural network had been developed successfully.Keywords: Neural Network, User Authentication, Smart Home, Security
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204078 Identification of Nonlinear Predictor and Simulator Models of a Cement Rotary Kiln by Locally Linear Neuro-Fuzzy Technique
Authors: Masoud Sadeghian, Alireza Fatehi
Abstract:
One of the most important parts of a cement factory is the cement rotary kiln which plays a key role in quality and quantity of produced cement. In this part, the physical exertion and bilateral movement of air and materials, together with chemical reactions take place. Thus, this system has immensely complex and nonlinear dynamic equations. These equations have not worked out yet. Only in exceptional case; however, a large number of the involved parameter were crossed out and an approximation model was presented instead. This issue caused many problems for designing a cement rotary kiln controller. In this paper, we presented nonlinear predictor and simulator models for a real cement rotary kiln by using nonlinear identification technique on the Locally Linear Neuro- Fuzzy (LLNF) model. For the first time, a simulator model as well as a predictor one with a precise fifteen minute prediction horizon for a cement rotary kiln is presented. These models are trained by LOLIMOT algorithm which is an incremental tree-structure algorithm. At the end, the characteristics of these models are expressed. Furthermore, we presented the pros and cons of these models. The data collected from White Saveh Cement Company is used for modeling.Keywords: Cement rotary kiln, nonlinear identification, Locally Linear Neuro-Fuzzy model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202477 The Thermal Properties of Nano Magnesium Hydroxide Blended with LDPE/EVA/Irganox1010 for Insulator Application
Authors: Ahmad Aroziki Abdul Aziz, Sakinah Mohd Alauddin, Ruzitah Mohd Salleh, Mohammed Iqbal Shueb
Abstract:
This paper illustrates the effect of nano Magnesium Hydroxide (MH) loading on the thermal properties of Low Density Polyethylene (LDPE)/Poly (ethylene-co vinyl acetate) (EVA) nano composite. Thermal studies were conducted, as it understanding is vital for preliminary development of new polymeric systems. Thermal analysis of nanocomposite was conducted using thermo gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Major finding of TGA indicated two main stages of degradation process found at (350 ± 25oC) and (480 ± 25oC) respectively. Nano metal filler expressed better fire resistance as it stand over high degree of temperature. Furthermore, DSC analysis provided a stable glass temperature around 51 (±1oC) and captured double melting point at 84 (±2oC) and 108 (±2oC). This binary melting point reflects the modification of nano filler to the polymer matrix forming melting crystals of folded and extended chain. The percent crystallinity of the samples grew vividly with increasing filler content. Overall, increasing the filler loading improved the degradation temperature and weight loss evidently and a better process and phase stability was captured in DSC.
Keywords: Cable and Wire, LDPE/EVA, Nano MH, Nano Particles, Thermal properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 304276 Machine Learning for Music Aesthetic Annotation Using MIDI Format: A Harmony-Based Classification Approach
Authors: Lin Yang, Zhian Mi, Jiacheng Xiao, Rong Li
Abstract:
Swimming with the tide of deep learning, the field of music information retrieval (MIR) experiences parallel development and a sheer variety of feature-learning models has been applied to music classification and tagging tasks. Among those learning techniques, the deep convolutional neural networks (CNNs) have been widespreadly used with better performance than the traditional approach especially in music genre classification and prediction. However, regarding the music recommendation, there is a large semantic gap between the corresponding audio genres and the various aspects of a song that influence user preference. In our study, aiming to bridge the gap, we strive to construct an automatic music aesthetic annotation model with MIDI format for better comparison and measurement of the similarity between music pieces in the way of harmonic analysis. We use the matrix of qualification converted from MIDI files as input to train two different classifiers, support vector machine (SVM) and Decision Tree (DT). Experimental results in performance of a tag prediction task have shown that both learning algorithms are capable of extracting high-level properties in an end-to end manner from music information. The proposed model is helpful to learn the audience taste and then the resulting recommendations are likely to appeal to a niche consumer.
Keywords: Harmonic analysis, machine learning, music classification and tagging, MIDI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75875 Application of Machine Learning Methods to Online Test Error Detection in Semiconductor Test
Authors: Matthias Kirmse, Uwe Petersohn, Elief Paffrath
Abstract:
As in today's semiconductor industries test costs can make up to 50 percent of the total production costs, an efficient test error detection becomes more and more important. In this paper, we present a new machine learning approach to test error detection that should provide a faster recognition of test system faults as well as an improved test error recall. The key idea is to learn a classifier ensemble, detecting typical test error patterns in wafer test results immediately after finishing these tests. Since test error detection has not yet been discussed in the machine learning community, we define central problem-relevant terms and provide an analysis of important domain properties. Finally, we present comparative studies reflecting the failure detection performance of three individual classifiers and three ensemble methods based upon them. As base classifiers we chose a decision tree learner, a support vector machine and a Bayesian network, while the compared ensemble methods were simple and weighted majority vote as well as stacking. For the evaluation, we used cross validation and a specially designed practical simulation. By implementing our approach in a semiconductor test department for the observation of two products, we proofed its practical applicability.
Keywords: Ensemble methods, fault detection, machine learning, semiconductor test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 227474 Reliability Analysis of Press Unit using Vague Set
Authors: S. P. Sharma, Monica Rani
Abstract:
In conventional reliability assessment, the reliability data of system components are treated as crisp values. The collected data have some uncertainties due to errors by human beings/machines or any other sources. These uncertainty factors will limit the understanding of system component failure due to the reason of incomplete data. In these situations, we need to generalize classical methods to fuzzy environment for studying and analyzing the systems of interest. Fuzzy set theory has been proposed to handle such vagueness by generalizing the notion of membership in a set. Essentially, in a Fuzzy Set (FS) each element is associated with a point-value selected from the unit interval [0, 1], which is termed as the grade of membership in the set. A Vague Set (VS), as well as an Intuitionistic Fuzzy Set (IFS), is a further generalization of an FS. Instead of using point-based membership as in FS, interval-based membership is used in VS. The interval-based membership in VS is more expressive in capturing vagueness of data. In the present paper, vague set theory coupled with conventional Lambda-Tau method is presented for reliability analysis of repairable systems. The methodology uses Petri nets (PN) to model the system instead of fault tree because it allows efficient simultaneous generation of minimal cuts and path sets. The presented method is illustrated with the press unit of the paper mill.
Keywords: Lambda -Tau methodology, Petri nets, repairable system, vague fuzzy set.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152773 Performance Analysis of MIMO Based Multi-User Cooperation Diversity Over Various Fading Channels
Authors: Zuhaib Ashfaq Khan, Imran Khan, Nandana Rajatheva
Abstract:
In this paper, hybrid FDMA-TDMA access technique in a cooperative distributive fashion introducing and implementing a modified protocol introduced in [1] is analyzed termed as Power and Cooperation Diversity Gain Protocol (PCDGP). A wireless network consists of two users terminal , two relays and a destination terminal equipped with two antennas. The relays are operating in amplify-and-forward (AF) mode with a fixed gain. Two operating modes: cooperation-gain mode and powergain mode are exploited from source terminals to relays, as it is working in a best channel selection scheme. Vertical BLAST (Bell Laboratories Layered Space Time) or V-BLAST with minimum mean square error (MMSE) nulling is used at the relays to perfectly detect the joint signals from multiple source terminals. The performance is analyzed using binary phase shift keying (BPSK) modulation scheme and investigated over independent and identical (i.i.d) Rayleigh, Ricean-K and Nakagami-m fading environments. Subsequently, simulation results show that the proposed scheme can provide better signal quality of uplink users in a cooperative communication system using hybrid FDMATDMA technique.
Keywords: Cooperation Diversity, Best Channel Selectionscheme, MIMO relay networks, V-BLAST, QRdecomposition, and MMSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 200372 Speaker Independent Quranic Recognizer Basedon Maximum Likelihood Linear Regression
Authors: Ehab Mourtaga, Ahmad Sharieh, Mousa Abdallah
Abstract:
An automatic speech recognition system for the formal Arabic language is needed. The Quran is the most formal spoken book in Arabic, it is spoken all over the world. In this research, an automatic speech recognizer for Quranic based speakerindependent was developed and tested. The system was developed based on the tri-phone Hidden Markov Model and Maximum Likelihood Linear Regression (MLLR). The MLLR computes a set of transformations which reduces the mismatch between an initial model set and the adaptation data. It uses the regression class tree, as well as, estimates a set of linear transformations for the mean and variance parameters of a Gaussian mixture HMM system. The 30th Chapter of the Quran, with five of the most famous readers of the Quran, was used for the training and testing of the data. The chapter includes about 2000 distinct words. The advantages of using the Quranic verses as the database in this developed recognizer are the uniqueness of the words and the high level of orderliness between verses. The level of accuracy from the tested data ranged 68 to 85%.Keywords: Hidden Markov Model (HMM), MaximumLikelihood Linear Regression (MLLR), Quran, Regression ClassTree, Speech Recognition, Speaker-independent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 191571 Molecular Epidemiology and Genotyping of Bovine Viral Diarrhea Virus in Xinjiang Uygur Autonomous Region of China
Authors: Yan Ren, Jun Qiao, Xianxia Liu, Pengyan Wang, Qiang Fu, Huijun Shi, Fei Guo, Yuanzhi Wang, Hui Zhang, Jinliang Sheng, Xinli Gu, Xiao-Jun Liu, Chuangfu Chen
Abstract:
As part of national epidemiological survey on bovine viral diarrhea virus (BVDV), a total of 274 dejecta samples were collected from 14 cattle farms in 8 areas of Xinjiang Uygur Autonomous Region in northwestern China. Total RNA was extracted from each sample, and 5--untranslated region (UTR) of BVDV genome was amplified by using two-step reverse transcriptase-polymerase chain reaction (RT-PCR). The PCR products were subsequently sequenced to study the genetic variations of BVDV in these areas. Among the 274 samples, 33 samples were found virus-positive. According to sequence analysis of the PCR products, the 33 samples could be arranged into 16 groups. All the sequences, however, were highly conserved with BVDV Osloss strains. The virus possessed theses sequences belonged to BVDV-1b subtype by phylogenetic analysis. Based on these data, we established a typing tree for BVDV in these areas. Our results suggested that BVDV-1b was a predominant subgenotype in northwestern China and no correlation between the genetic and geographical distances could be observed above the farm level.Keywords: bovine viral diarrhea virus, molecular epidemiology, phylogenetic analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 248870 Predictive Analytics of Student Performance Determinants in Education
Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi
Abstract:
Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine (SVM), Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis (LDA), and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.
Keywords: Student performance, supervised machine learning, prediction, classification, cross-validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 54869 Rank-Based Chain-Mode Ensemble for Binary Classification
Authors: Chongya Song, Kang Yen, Alexander Pons, Jin Liu
Abstract:
In the field of machine learning, the ensemble has been employed as a common methodology to improve the performance upon multiple base classifiers. However, the true predictions are often canceled out by the false ones during consensus due to a phenomenon called “curse of correlation” which is represented as the strong interferences among the predictions produced by the base classifiers. In addition, the existing practices are still not able to effectively mitigate the problem of imbalanced classification. Based on the analysis on our experiment results, we conclude that the two problems are caused by some inherent deficiencies in the approach of consensus. Therefore, we create an enhanced ensemble algorithm which adopts a designed rank-based chain-mode consensus to overcome the two problems. In order to evaluate the proposed ensemble algorithm, we employ a well-known benchmark data set NSL-KDD (the improved version of dataset KDDCup99 produced by University of New Brunswick) to make comparisons between the proposed and 8 common ensemble algorithms. Particularly, each compared ensemble classifier uses the same 22 base classifiers, so that the differences in terms of the improvements toward the accuracy and reliability upon the base classifiers can be truly revealed. As a result, the proposed rank-based chain-mode consensus is proved to be a more effective ensemble solution than the traditional consensus approach, which outperforms the 8 ensemble algorithms by 20% on almost all compared metrices which include accuracy, precision, recall, F1-score and area under receiver operating characteristic curve.
Keywords: Consensus, curse of correlation, imbalanced classification, rank-based chain-mode ensemble.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73468 Lifelong Distance Learning and Skills Development: A Case Study Analysis in Greece
Authors: Eleni Giouli
Abstract:
Distance learning provides a flexible approach to education, enabling busy learners to complete their coursework at their own pace, on their own schedule, and from a convenient location. This flexibility combined with a series of other issues; make the benefits of lifelong distance learning numerous. The purpose of the paper is to investigate whether distance education can contribute to the improvement of adult skills in Greece, highlighting in this way the necessity of the lifelong distance learning. To investigate this goal, a questionnaire is constructed and analyzed based on responses from 3,016 attendees of lifelong distance learning programs in the e-learning of the National and Kapodistrian University of Athens in Greece. In order to do so, a series of relationships is examined including the effects of a) the gender, b) the previous educational level, c) the current employment status, and d) the method used in the distance learning program, on the development of new general, technical, administrative, social, cultural, entrepreneurial and green skills. The basic conclusions that emerge after using a binary logistic framework are that the following factors are critical in order to develop new skills: the gender, the education level and the educational method used in the lifelong distance learning program. The skills more significantly affected by those factors are the acquiring new skills in general, as well as acquiring general, language and cultural, entrepreneurial and green skills, while for technical and social skills only gender and educational method play a crucial role. Moreover, routine skills and social skills are not affected by the four factors included in the analysis.
Keywords: Adult skills, distance learning, education, lifelong learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59667 Recommender Systems Using Ensemble Techniques
Authors: Yeonjeong Lee, Kyoung-jae Kim, Youngtae Kim
Abstract:
This study proposes a novel recommender system that uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user’s preference. The proposed model consists of two steps. In the first step, this study uses logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. Then, this study combines the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. In the second step, this study uses the market basket analysis to extract association rules for co-purchased products. Finally, the system selects customers who have high likelihood to purchase products in each product group and recommends proper products from same or different product groups to them through above two steps. We test the usability of the proposed system by using prototype and real-world transaction and profile data. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The results also show that the proposed system may be useful in real-world online shopping store.
Keywords: Product recommender system, Ensemble technique, Association rules, Decision tree, Artificial neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 422266 Automated Textile Defect Recognition System Using Computer Vision and Artificial Neural Networks
Authors: Atiqul Islam, Shamim Akhter, Tumnun E. Mursalin
Abstract:
Least Development Countries (LDC) like Bangladesh, whose 25% revenue earning is achieved from Textile export, requires producing less defective textile for minimizing production cost and time. Inspection processes done on these industries are mostly manual and time consuming. To reduce error on identifying fabric defects requires more automotive and accurate inspection process. Considering this lacking, this research implements a Textile Defect Recognizer which uses computer vision methodology with the combination of multi-layer neural networks to identify four classifications of textile defects. The recognizer, suitable for LDC countries, identifies the fabric defects within economical cost and produces less error prone inspection system in real time. In order to generate input set for the neural network, primarily the recognizer captures digital fabric images by image acquisition device and converts the RGB images into binary images by restoration process and local threshold techniques. Later, the output of the processed image, the area of the faulty portion, the number of objects of the image and the sharp factor of the image, are feed backed as an input layer to the neural network which uses back propagation algorithm to compute the weighted factors and generates the desired classifications of defects as an output.Keywords: Computer vision, image acquisition device, machine vision, multi-layer neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 330065 In vitro Culture Medium Sterilization by Chemicals and Essential Oils without Autoclaving and Growth of Chrysanthemum Nodes
Authors: Wittaya Deein, Chockpisit Thepsithar, Aree Thongpukdee
Abstract:
Plant tissue culture is an important in vitro technology applied for agricultural and industrial production. A sterile condition of culture medium is one of the main aspects. The alternative technique for medium sterilization to replace autoclaving was carried out. For sterilization of plant tissue culture medium without autoclaving, ten commercial pure essential oils and 5 disinfectants were tested. Each essential oil or disinfectant was added to a 20-mL Murashige and Skoog (MS) medium before medium was solidified in a 120-mL container, kept for 2 weeks before evaluating sterile conditions. Treated media, supplemented with essential oils or disinfectants, were compared to control medium, autoclaved at 121 degree Celsius for 15 min. Sterile conditions of MS medium were found 100% from betel oil or clove oil (18 mL/20 mL medium), cinnamon oil (36 mL/20 mL medium), lavender oil or holy basil oil (108 mL/20 mL medium), and lemon oil or tea tree oil or turmeric oil (252 mL/20 mL medium), compared to 100% sterile condition from autoclaved medium. For disinfectants, 2% iodine + 2.4% potassium iodide, 2% merbromine solution, 10% povidone-iodine, 6% sodium hypochlorite or 0.1% thimerosal at 36 mL/20 mL medium provided 100% sterile conditions. Furthermore, growth of new shoots from chrysanthemum node explants on treated media (fresh weight, shoot length, root length and number of node) were also reported and discussed in the comparison of those on autoclaved medium.
Keywords: Chrysanthemum, disinfectants, essential oils, MS medium, sterilizing agents, sterilization of medium without autoclaving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 571864 Use of Carica papaya as a Bio-Sorbent for Removal of Heavy Metals in Wastewater
Authors: W. E. Igwegbe, B. C. Okoro, J. C. Osuagwu
Abstract:
The study assessed the effectiveness of Pawpaw (Carica papaya) wood in reducing the concentrations of heavy metals in wastewater acting as a bio-sorbent. The following heavy metals were considered; Zinc, Cadmium, Lead, Copper, Iron, Selenium, Nickel and Manganese. The physiochemical properties of Carica papaya stem were studied. The experimental sample was sourced from the trunk of a felled matured pawpaw tree. Wastewater for experimental use was prepared by dissolving soil samples collected from a dump site at Owerri, Imo state of Nigeria in water. The concentration of each metal remaining in solution as residual metal after bio-sorption was determined using Atomic absorption Spectrometer. The effects of pH and initial heavy metal concentration were studied in a batch reactor. The results of Spectrometer test showed that there were different functional groups detected in the Carica papaya stem biomass. There was increase in metal removal as the pH increased for all the metals considered except for Nickel and Manganese. Optimum bio-sorption occurred at pH 5.9 with 5g/100ml solution of bio-sorbent. The results of the study showed that the treated wastewater is fit for irrigation purpose based on Canada wastewater quality guideline for the protection of Agricultural standard. This approach thus provides a cost effective and environmentally friendly option for treating wastewater.Keywords: Biomass, bio-sorption, Carica papaya, heavy metal, wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 281963 Hazard Identification and Sensitivity of Potential Resource of Emergency Water Supply
Authors: A. Bumbová, M. Čáslavský, F. Božek, J. Dvořák, E. Bakoš
Abstract:
The paper presents the case study of hazard identification and sensitivity of potential resource of emergency water supply as part of the application of methodology classifying the resources of drinking water for emergency supply of population. The case study has been carried out on a selected resource of emergency water supply in one region of the Czech Republic. The hazard identification and sensitivity of potential resource of emergency water supply is based on a unique procedure and developed general registers of selected types of hazards and sensitivities. The registers have been developed with the help of the “Fault Tree Analysis” method in combination with the “What if method”. The identified hazards for the assessed resource include hailstorms and torrential rains, drought, soil erosion, accidents of farm machinery, and agricultural production. The developed registers of hazards and vulnerabilities and a semi-quantitative assessment of hazards for individual parts of hydrological structure and technological elements of presented drilled wells are the basis for a semi-quantitative risk assessment of potential resource of emergency supply of population and the subsequent classification of such resource within the system of crisis planning.
Keywords: Hazard identification, register of hazards, sensitivity identification, register of sensitivity, emergency water supply, state of crisis, resource of emergency water supply, ground water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 182762 Performance Comparison of Situation-Aware Models for Activating Robot Vacuum Cleaner in a Smart Home
Authors: Seongcheol Kwon, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
We assume an IoT-based smart-home environment where the on-off status of each of the electrical appliances including the room lights can be recognized in a real time by monitoring and analyzing the smart meter data. At any moment in such an environment, we can recognize what the household or the user is doing by referring to the status data of the appliances. In this paper, we focus on a smart-home service that is to activate a robot vacuum cleaner at right time by recognizing the user situation, which requires a situation-aware model that can distinguish the situations that allow vacuum cleaning (Yes) from those that do not (No). We learn as our candidate models a few classifiers such as naïve Bayes, decision tree, and logistic regression that can map the appliance-status data into Yes and No situations. Our training and test data are obtained from simulations of user behaviors, in which a sequence of user situations such as cooking, eating, dish washing, and so on is generated with the status of the relevant appliances changed in accordance with the situation changes. During the simulation, both the situation transition and the resulting appliance status are determined stochastically. To compare the performances of the aforementioned classifiers we obtain their learning curves for different types of users through simulations. The result of our empirical study reveals that naïve Bayes achieves a slightly better classification accuracy than the other compared classifiers.Keywords: Situation-awareness, Smart home, IoT, Machine learning, Classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 185661 Quality Service Standard of Food and Beverage Service Staff in Hotel
Authors: Thanasit Suksutdhi
Abstract:
This survey research aims to study the standard of service quality of food and beverage service staffs in hotel business by studying the service standard of three sample hotels, Siam Kempinski Hotel Bangkok, Four Seasons Resort Chiang Mai, and Banyan Tree Phuket. In order to find the international service standard of food and beverage service, triangular research, i.e. quantitative, qualitative, and survey were employed. In this research, questionnaires and in-depth interview were used for getting the information on the sequences and method of services. There were three parts of modified questionnaires to measure service quality and guest’s satisfaction including service facilities, attentiveness, responsibility, reliability, and circumspection. This study used sample random sampling to derive subjects with the return rate of the questionnaires was 70% or 280. Data were analyzed by SPSS to find arithmetic mean, SD, percentage, and comparison by t-test and One-way ANOVA. The results revealed that the service quality of the three hotels were in the international level which could create high satisfaction to the international customers. Recommendations for research implementations were to maintain the area of good service quality, and to improve some dimensions of service quality such as reliability. Training in service standard, product knowledge, and new technology for employees should be provided. Furthermore, in order to develop the service quality of the industry, training collaboration between hotel organization and educational institutions in food and beverage service should be considered.
Keywords: Service standard, food and beverage department, sequence of service, service method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780460 Fruit Growing in Romania and Its Role for Rural Communities’ Development
Authors: Maria Toader, Gheorghe Valentin Roman
Abstract:
The importance of fruit trees and bushes growing for Romania is due the concordance that exists between the different ecological conditions in natural basins, and the requirements of different species and varieties. There are, in Romania, natural areas dedicated to the main trees species: plum, apple, pear, cherry, sour cherry, finding optimal conditions for harnessing the potential of fruitfulness, making fruit quality both in terms of ratio commercial, and content in active principles. The share of fruits crops in the world economy of agricultural production is due primarily to the role of fruits in nourishment for human, and in the prevention and combating of diseases, in increasing the national income of cultivator countries and to improve comfort for human life. For Romania, the perspectives of the sector are positive, and are due to European funding opportunities, which provide farmers a specialized program that meets the needs of development and modernization of fruit growing industry, cultivation technology and equipment, organization and grouping of producers, creating storage facilities, conditioning, marketing and the joint use of fresh fruit. This paper shows the evolution of fruit growing, in Romania compared to other states. The document presents the current situation of the main tree species both in terms of surface but also of the productions and the role that this activity may have for the development of rural communities.
Keywords: Fruit growing, fruits trees, productivity, rural development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 138859 Using Data Mining Techniques for Finding Cardiac Outlier Patients
Authors: Farhan Ismaeel Dakheel, Raoof Smko, K. Negrat, Abdelsalam Almarimi
Abstract:
In this paper we used data mining techniques to identify outlier patients who are using large amount of drugs over a long period of time. Any healthcare or health insurance system should deal with the quantities of drugs utilized by chronic diseases patients. In Kingdom of Bahrain, about 20% of health budget is spent on medications. For the managers of healthcare systems, there is no enough information about the ways of drug utilization by chronic diseases patients, is there any misuse or is there outliers patients. In this work, which has been done in cooperation with information department in the Bahrain Defence Force hospital; we select the data for Cardiac patients in the period starting from 1/1/2008 to December 31/12/2008 to be the data for the model in this paper. We used three techniques for finding the drug utilization for cardiac patients. First we applied a clustering technique, followed by measuring of clustering validity, and finally we applied a decision tree as classification algorithm. The clustering results is divided into three clusters according to the drug utilization, for 1603 patients, who received 15,806 prescriptions during this period can be partitioned into three groups, where 23 patients (2.59%) who received 1316 prescriptions (8.32%) are classified to be outliers. The classification algorithm shows that the use of average drug utilization and the age, and the gender of the patient can be considered to be the main predictive factors in the induced model.Keywords: Data Mining, Clustering, Classification, Drug Utilization..
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898