Search results for: High frequency
6365 A New Method for Identifying Broken Rotor Bars in Squirrel Cage Induction Motor Based on Particle Swarm Optimization Method
Authors: V. Rashtchi, R. Aghmasheh
Abstract:
Detection of squirrel cage induction motor (SCIM) broken bars has long been an important but difficult job in the detection area of motor faults. Early detection of this abnormality in the motor would help to avoid costly breakdowns. A new detection method based on particle swarm optimization (PSO) is presented in this paper. Stator current in an induction motor will be measured and characteristic frequency components of faylted rotor will be detected by minimizing a fitness function using pso. Supply frequency and side band frequencies and their amplitudes can be estimated by the proposed method. The proposed method is applied to a faulty motor with one and two broken bars in different loading condition. Experimental results prove that the proposed method is effective and applicable.
Keywords: broken bar, PSO, fault detection, SCIM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17166364 Analysis of EEG Signals Using Wavelet Entropy and Approximate Entropy: A Case Study on Depression Patients
Authors: Subha D. Puthankattil, Paul K. Joseph
Abstract:
Analyzing brain signals of the patients suffering from the state of depression may lead to interesting observations in the signal parameters that is quite different from a normal control. The present study adopts two different methods: Time frequency domain and nonlinear method for the analysis of EEG signals acquired from depression patients and age and sex matched normal controls. The time frequency domain analysis is realized using wavelet entropy and approximate entropy is employed for the nonlinear method of analysis. The ability of the signal processing technique and the nonlinear method in differentiating the physiological aspects of the brain state are revealed using Wavelet entropy and Approximate entropy.
Keywords: EEG, Depression, Wavelet entropy, Approximate entropy, Relative Wavelet energy, Multiresolution decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36386363 An 8-Bit, 100-MSPS Fully Dynamic SAR ADC for Ultra-High Speed Image Sensor
Authors: F. Rarbi, D. Dzahini, W. Uhring
Abstract:
In this paper, a dynamic and power efficient 8-bit and 100-MSPS Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC) is presented. The circuit uses a non-differential capacitive Digital-to-Analog (DAC) architecture segmented by 2. The prototype is produced in a commercial 65-nm 1P7M CMOS technology with 1.2-V supply voltage. The size of the core ADC is 208.6 x 103.6 µm2. The post-layout noise simulation results feature a SNR of 46.9 dB at Nyquist frequency, which means an effective number of bit (ENOB) of 7.5-b. The total power consumption of this SAR ADC is only 1.55 mW at 100-MSPS. It achieves then a figure of merit of 85.6 fJ/step.
Keywords: CMOS analog to digital converter, dynamic comparator, image sensor application, successive approximation register.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13026362 Design and Implementation of Active Radio Frequency Identification on Wireless Sensor Network-Based System
Authors: Che Z. Zulkifli, Nursyahida M. Noor, Siti N. Semunab, Shafawati A. Malek
Abstract:
Wireless sensors, also known as wireless sensor nodes, have been making a significant impact on human daily life. The Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two complementary technologies; hence, an integrated implementation of these technologies expands the overall functionality in obtaining long-range and real-time information on the location and properties of objects and people. An approach for integrating ZigBee and RFID networks is proposed in this paper, to create an energy-efficient network improved by the benefits of combining ZigBee and RFID architecture. Furthermore, the compatibility and requirements of the ZigBee device and communication links in the typical RFID system which is presented with the real world experiment on the capabilities of the proposed RFID system.Keywords: Mesh network, RFID, wireless sensor network, zigbee.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26396361 Mathematics Anxiety among Male and Female Students
Authors: Wern Lin Yeo, Choo Kim Tan, Sook Ling Lew
Abstract:
The purpose of this study is to determine the relationship of anxiety level between male and female undergraduates at a private university in Malaysia. Convenient sampling method used in this study in which the students were selected based on the grouping assigned by the faculty. There were 214 undergraduates who registered the probability courses had participated in this study. Mathematics Anxiety Rating Scale (MARS) was the instrument used in study which used to determine students’ anxiety level towards probability. Reliability and validity of instrument was done before the major study was conducted. In the major study, students were given briefing about the study conducted. Participation of this study was voluntary. Students were given consent form to determine whether they agree to participate in the study. Duration of two weeks was given for students to complete the given online questionnaire. The data collected will be analyzed using Statistical Package for the Social Sciences (SPSS) to determine the level of anxiety. There were three anxiety level, i.e., low, average and high. Students’ anxiety level was determined based on their scores obtained compared with the mean and standard deviation. If the scores obtained were below mean and standard deviation, the anxiety level was low. If the scores were at below and above the mean and between one standard deviation, the anxiety level was average. If the scores were above the mean and greater than one standard deviation, the anxiety level was high. Results showed that both of genders were having average anxiety level. Among low, average and high anxiety level, frequency of males were found to be higher as compared to females. Hence, the mean values obtained for males (M = 3.62) was higher than females (M = 3.42). In order to be significant of anxiety level among the gender, the p-value should be less than .05. The p-value obtained in this study was .117. However, this value was greater than .05. Thus, there was no significant difference of anxiety level among the gender. In other words, there was no relationship of anxiety level with the gender.Keywords: Anxiety level, gender, mathematics anxiety, probability and statistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42886360 Comparative Parametric Analysis on the Dynamic Response of Fibre Composite Beams with Debonding
Authors: Indunil Jayatilake, Warna Karunasena
Abstract:
Fiber Reinforced Polymer (FRP) composites enjoy an array of applications ranging from aerospace, marine and military to automobile, recreational and civil industry due to their outstanding properties. A structural glass fiber reinforced polymer (GFRP) composite sandwich panel made from E-glass fiber skin and a modified phenolic core has been manufactured in Australia for civil engineering applications. One of the major mechanisms of damage in FRP composites is skin-core debonding. The presence of debonding is of great concern not only because it severely affects the strength but also it modifies the dynamic characteristics of the structure, including natural frequency and vibration modes. This paper deals with the investigation of the dynamic characteristics of a GFRP beam with single and multiple debonding by finite element based numerical simulations and analyses using the STRAND7 finite element (FE) software package. Three-dimensional computer models have been developed and numerical simulations were done to assess the dynamic behavior. The FE model developed has been validated with published experimental, analytical and numerical results for fully bonded as well as debonded beams. A comparative analysis is carried out based on a comprehensive parametric investigation. It is observed that the reduction in natural frequency is more affected by single debonding than the equally sized multiple debonding regions located symmetrically to the single debonding position. Thus it is revealed that a large single debonding area leads to more damage in terms of natural frequency reduction than isolated small debonding zones of equivalent area, appearing in the GFRP beam. Furthermore, the extents of natural frequency shifts seem mode-dependent and do not seem to have a monotonous trend of increasing with the mode numbers.
Keywords: Debonding, dynamic response, finite element modelling, FRP beams.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5206359 Computation of the Filtering Properties of Photonic Crystal Waveguide Discontinuities Using the Mode Matching Method
Authors: Athanasios Theoharidis, Thomas Kamalakis, Ioannis Neokosmidis, Thomas Sphicopoulos
Abstract:
In this paper, the application of the Mode Matching (MM) method in the case of photonic crystal waveguide discontinuities is presented. The structure under consideration is divided into a number of cells, which supports a number of guided and evanescent modes. These modes can be calculated numerically by an alternative formulation of the plane wave expansion method for each frequency. A matrix equation is then formed relating the modal amplitudes at the beginning and at the end of the structure. The theory is highly efficient and accurate and can be applied to study the transmission sensitivity of photonic crystal devices due to fabrication tolerances. The accuracy of the MM method is compared to the Finite Difference Frequency Domain (FDFD) and the Adjoint Variable Method (AVM) and good agreement is observed.Keywords: Optical Communications, Integrated Optics, Photonic Crystals, Optical Waveguide Discontinuities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15776358 Fundamental Problems in the Operation of the Automotive Parts Industry Small and Medium Businesses in Bangkok and Surrounding Provinces
Authors: P. Thepnarintra
Abstract:
The purposes of this study were to: 1) investigate operation conditions of SME automotive part industry in Bangkok and vicinity and 2) to compare operation problem levels of SME automotive part industry in Bangkok and vicinity according to the sizes of the enterprises. Samples in this study included 196 entrepreneurs of SME automotive part industry in Bangkok and vicinity derived from simple random sampling and calculation from R. V. Krejcie and D. W. Morgan’s tables. Research statistics included frequency, percentage, mean, standard deviation, and T-test. The results revealed that in general the problem levels of SME automotive part industry in Bangkok and vicinity were high. When considering in details, it was found that the problem levels were high at every aspect, i.e. personal, production, export, finance, and marketing respectively. The comparison of the problem levels according to the sizes of the enterprises revealed statistically significant differences at .05. When considering on each aspect, it was found that the aspect with the statistical difference at .05 included 5 aspects, i.e. production, marketing, finance, personal, and export. The findings also showed that small enterprises faced more severe problems than those of medium enterprises.Keywords: Automotive part industry, operation problems, SME, perimeter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15936357 Fuzzy Metric Approach for Fuzzy Time Series Forecasting based on Frequency Density Based Partitioning
Authors: Tahseen Ahmed Jilani, Syed Muhammad Aqil Burney, C. Ardil
Abstract:
In the last 15 years, a number of methods have been proposed for forecasting based on fuzzy time series. Most of the fuzzy time series methods are presented for forecasting of enrollments at the University of Alabama. However, the forecasting accuracy rates of the existing methods are not good enough. In this paper, we compared our proposed new method of fuzzy time series forecasting with existing methods. Our method is based on frequency density based partitioning of the historical enrollment data. The proposed method belongs to the kth order and time-variant methods. The proposed method can get the best forecasting accuracy rate for forecasting enrollments than the existing methods.
Keywords: Fuzzy logical groups, fuzzified enrollments, fuzzysets, fuzzy time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32216356 Perturbations of the EM-field Meters Reading Caused by Flat Roof Security Wall
Authors: Alfonso Bahillo, Juan Blas, Santiago Mazuelas, Patricia Fernanadez, Ruben Mateo Lorenzo, Evaristo Jose Abril
Abstract:
The wide increase and diffusion on telecommunication technologies have caused a huge spread of electromagnetic sources in most European Countries. Since the public is continuously being exposed to electromagnetic radiation the possible health effects have become the focus of population concerns. As a result, electromagnetic field monitoring stations which control field strength in commercial frequency bands are being placed on the flat roof of many buildings. However there is no guidance on where to place them. This paper presents an analysis of frequency, polarization and angles of incidence of a plane wave which impinges on a flat roof security wall and its dependence on electromagnetic field strength meters placement.Keywords: EM field exposition, EM field strength meter, FDTD method, flat roof security wall, plane wave propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13146355 Using Single Decision Tree to Assess the Impact of Cutting Conditions on Vibration
Authors: S. Ghorbani, N. I. Polushin
Abstract:
Vibration during machining process is crucial since it affects cutting tool, machine, and workpiece leading to a tool wear, tool breakage, and an unacceptable surface roughness. This paper applies a nonparametric statistical method, single decision tree (SDT), to identify factors affecting on vibration in machining process. Workpiece material (AISI 1045 Steel, AA2024 Aluminum alloy, A48-class30 Gray Cast Iron), cutting tool (conventional, cutting tool with holes in toolholder, cutting tool filled up with epoxy-granite), tool overhang (41-65 mm), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev) and depth of cut (0.05-0.15 mm) were used as input variables, while vibration was the output parameter. It is concluded that workpiece material is the most important parameters for natural frequency followed by cutting tool and overhang.Keywords: Cutting condition, vibration, natural frequency, decision tree, CART algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14316354 Design and Fabrication of a Miniature Railway Vehicle
Authors: Max Ti-Kuang Hou, Hui-Mei Shen, Chiang-Ni Lu, I-Jen Hsu
Abstract:
We present design, fabrication, and characterization of a small (12 mm × 12 mm × 8 mm) movable railway vehicle for sensor carrying. The miniature railway vehicle (MRV) was mainly composed of a vibrational structure and three legs. A railway was designed and fabricated to power and guide the MRV. It also transmits the sensed data from the MRV to the signal processing unit. The MRV with legs on the railway was moving due to its high-frequency vibration. A model was derived to describe the motion. Besides, FEM simulations were performed to design the legs. Then, the MRV and the railway were fabricated by precision machining. Finally, an infrared sensor was carried and tested. The result shows that the MRV without loading was moving along the railway and its maximum speed was 12.2 mm/s. Moreover, the testing signal was sensed by the MRV.Keywords: Locomotion, Micro-Robot, Miniature Railway Vehicle, Stick-Slip.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15496353 Space-Vector PWM Inverter Feeding a Permanent-Magnet Synchronous Motor
Authors: A. Maamoun, Y. M. Alsayed, A. Shaltout
Abstract:
The paper presents a space-vector pulse width modulation (SVPWM) inverter feeding a permanent-magnet synchronous motor (PMSM). The SVPWM inverter enables to feed the motor with a higher voltage with low harmonic distortions than the conventional sinusoidal PWM inverter. The control strategy of the inverter is the voltage / frequency control method, which is based on the space-vector modulation technique. The proposed PMSM drive system involving the field-oriented control scheme not only decouples the torque and flux which provides faster response but also makes the control task easy. The performance of the proposed drive is simulated. The advantages of the proposed drive are confirmed by the simulation results.
Keywords: permanent-magnet synchronous motor, space-vectorPWM inverter, voltage/frequency control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66996352 Characterization of Adhesive Layers in Sandwich Composites by Nondestructive Technique
Authors: E. Barkanov, E. Skukis, M. Wesolowski, A. Chate
Abstract:
New nondestructive technique, namely an inverse technique based on vibration tests, to characterize nonlinear mechanical properties of adhesive layers in sandwich composites is developed. An adhesive layer is described as a viscoelastic isotropic material with storage and loss moduli which are both frequency dependent values in wide frequency range. An optimization based on the planning of experiments and response surface technique to minimize the error functional is applied to decrease considerably the computational expenses. The developed identification technique has been tested on aluminum panels and successfully applied to characterize viscoelastic material properties of 3M damping polymer ISD-112 used as a core material in sandwich panels.
Keywords: Adhesive layer, finite element method, inverse technique, sandwich panel, vibration test, viscoelastic material properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22506351 Newtonian Mechanics Descriptions for General Relativity Experimental Tests, Dark Matter and Dark Energy
Authors: Jing-Gang Xie
Abstract:
As the continuation to the previous studies of gravitational frequency shift, gravitational time dilation, gravitational light bending, gravitational waves, dark matter, and dark energy are explained in the context of Newtonian mechanics. The photon is treated as the particle with mass of hν/C2 under the gravitational field of much larger mass of M. Hence the quantum mechanics theory could be applied to gravitational field on cosmology scale. The obtained results are the same as those obtained by general relativity considering weak gravitational field approximation; however, the results are different when the gravitational field is substantially strong.
Keywords: Gravitational time dilation, gravitational light bending, gravitational waves, dark matter, dark energy, General Relativity, gravitational frequency shift.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10486350 Development of Prediction Tool for Sound Absorption and Sound Insulation for Sound Proof Properties
Authors: Yoshio Kurosawa, Takao Yamaguchi
Abstract:
High frequency automotive interior noise above 500 Hz considerably affects automotive passenger comfort. To reduce this noise, sound insulation material is often laminated on body panels or interior trim panels. For a more effective noise reduction, the sound reduction properties of this laminated structure need to be estimated. We have developed a new calculate tool that can roughly calculate the sound absorption and insulation properties of laminate structure and handy for designers. In this report, the outline of this tool and an analysis example applied to floor mat are introduced.Keywords: Automobile, acoustics, porous material, Transfer Matrix Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18776349 Effects of Duct Geometry, Thickness and Types of Liners on Transmission Loss for Absorptive Silencers
Abstract:
Sound attenuation in absorptive silencers has been analyzed in this paper. The structure of such devices is as follows. When the rigid duct of an expansion chamber has been lined by a packed absorptive material under a perforated membrane, incident sound waves will be dissipated by the absorptive liners. This kind of silencer, usually are applicable for medium to high frequency ranges. Several conditions for different absorptive materials, variety in their thicknesses, and different shapes of the expansion chambers have been studied in this paper. Also, graphs of sound attenuation have been compared between empty expansion chamber and duct of silencer with applying liner. Plane waves have been assumed in inlet and outlet regions of the silencer. Presented results that have been achieved by applying finite element method (FEM), have shown the dependence of the sound attenuation spectrum to flow resistivity and the thicknesses of the absorptive materials, and geometries of the cross section (configuration of the silencer). As flow resistivity and thickness of absorptive materials increase, sound attenuation improves. In this paper, diagrams of the transmission loss (TL) for absorptive silencers in five different cross sections (rectangle, circle, ellipse, square, and rounded rectangle as the main geometry) have been presented. Also, TL graphs for silencers using different absorptive material (glass wool, wood fiber, and kind of spongy materials) as liner with three different thicknesses of 5 mm, 15 mm, and 30 mm for glass wool liner have been exhibited. At first, the effect of substances of the absorptive materials with the specific flow resistivity and densities on the TL spectrum, then the effect of the thicknesses of the glass wool, and at last the efficacy of the shape of the cross section of the silencer have been investigated.Keywords: Transmission loss, absorptive material, flow resistivity, thickness, frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11296348 Modelling and Simulation of Cascaded H-Bridge Multilevel Single Source Inverter Using PSIM
Authors: Gaddafi S. Shehu, T. Yalcinoz, Abdullahi B. Kunya
Abstract:
Multilevel inverters such as flying capacitor, diodeclamped, and cascaded H-bridge inverters are very popular particularly in medium and high power applications. This paper focuses on a cascaded H-bridge module using a single direct current (DC) source in order to generate an 11-level output voltage. The noble approach reduces the number of switches and gate drivers, in comparison with a conventional method. The anticipated topology produces more accurate result with an isolation transformer at high switching frequency. Different modulation techniques can be used for the multilevel inverter, but this work features modulation techniques known as selective harmonic elimination (SHE).This modulation approach reduces the number of carriers with reduction in Switching Losses, Total Harmonic Distortion (THD), and thereby increasing Power Quality (PQ). Based on the simulation result obtained, it appears SHE has the ability to eliminate selected harmonics by chopping off the fundamental output component. The performance evaluation of the proposed cascaded multilevel inverter is performed using PSIM simulation package and THD of 0.94% is obtained.
Keywords: Cascaded H-bridge Multilevel Inverter, Power Quality, Selective Harmonic Elimination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50956347 Robust Features for Impulsive Noisy Speech Recognition Using Relative Spectral Analysis
Authors: Hajer Rahali, Zied Hajaiej, Noureddine Ellouze
Abstract:
The goal of speech parameterization is to extract the relevant information about what is being spoken from the audio signal. In speech recognition systems Mel-Frequency Cepstral Coefficients (MFCC) and Relative Spectral Mel-Frequency Cepstral Coefficients (RASTA-MFCC) are the two main techniques used. It will be shown in this paper that it presents some modifications to the original MFCC method. In our work the effectiveness of proposed changes to MFCC called Modified Function Cepstral Coefficients (MODFCC) were tested and compared against the original MFCC and RASTA-MFCC features. The prosodic features such as jitter and shimmer are added to baseline spectral features. The above-mentioned techniques were tested with impulsive signals under various noisy conditions within AURORA databases.
Keywords: Auditory filter, impulsive noise, MFCC, prosodic features, RASTA filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23226346 A Video Watermarking Algorithm Based on Chaotic and Wavelet Neural Network
Authors: Jiadong Liang
Abstract:
This paper presented a video watermarking algorithm based on wavelet chaotic neural network. First, to enhance binary image’s security, the algorithm encrypted it with double chaotic based on Arnold and Logistic map, Then, the host video was divided into some equal frames and distilled the key frame through chaotic sequence which generated by Logistic. Meanwhile, we distilled the low frequency coefficients of luminance component and self-adaptively embedded the processed image watermark into the low frequency coefficients of the wavelet transformed luminance component with the wavelet neural network. The experimental result suggested that the presented algorithm has better invisibility and robustness against noise, Gaussian filter, rotation, frame loss and other attacks.
Keywords: Video watermark, double chaotic encryption, wavelet neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10516345 Nondestructive Electrochemical Testing Method for Prestressed Concrete Structures
Authors: Tomoko Fukuyama, Osamu Senbu
Abstract:
Prestressed concrete is used a lot in infrastructures such as roads or bridges. However, poor grout filling and PC steel corrosion are currently major issues of prestressed concrete structures. One of the problems with nondestructive corrosion detection of PC steel is a plastic pipe which covers PC steel. The insulative property of pipe makes a nondestructive diagnosis difficult; therefore a practical technology to detect these defects is necessary for the maintenance of infrastructures. The goal of the research is a development of an electrochemical technique which enables to detect internal defects from the surface of prestressed concrete nondestructively. Ideally, the measurements should be conducted from the surface of structural members to diagnose non-destructively. In the present experiment, a prestressed concrete member is simplified as a layered specimen to simulate a current path between an input and an output electrode on a member surface. The specimens which are layered by mortar and the prestressed concrete constitution materials (steel, polyethylene, stainless steel, or galvanized steel plates) were provided to the alternating current impedance measurement. The magnitude of an applied electric field was 0.01-volt or 1-volt, and the frequency range was from 106 Hz to 10-2 Hz. The frequency spectrums of impedance, which relate to charge reactions activated by an electric field, were measured to clarify the effects of the material configurations or the properties. In the civil engineering field, the Nyquist diagram is popular to analyze impedance and it is a good way to grasp electric relaxation using a shape of the plot. However, it is slightly not suitable to figure out an influence of a measurement frequency which is reciprocal of reaction time. Hence, Bode diagram is also applied to describe charge reactions in the present paper. From the experiment results, the alternating current impedance method looks to be applicable to the insulative material measurement and eventually prestressed concrete diagnosis. At the same time, the frequency spectrums of impedance show the difference of the material configuration. This is because the charge mobility reflects the variety of substances and also the measuring frequency of the electric field determines migration length of charges which are under the influence of the electric field. However, it could not distinguish the differences of the material thickness and is inferred the difficulties of prestressed concrete diagnosis to identify the amount of an air void or a layer of corrosion product by the technique.
Keywords: Prestressed concrete, electric charge, impedance, phase shift.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7206344 Prediction of the Dynamic Characteristics of a Milling Machine Using the Integrated Model of Machine Frame and Spindle Unit
Authors: Jui P. Hung, Yuan L. Lai, Tzuo L. Luo, Hsi H. Hsiao
Abstract:
The machining performance is determined by the frequency characteristics of the machine-tool structure and the dynamics of the cutting process. Therefore, the prediction of dynamic vibration behavior of spindle tool system is of great importance for the design of a machine tool capable of high-precision and high-speed machining. The aim of this study is to develop a finite element model to predict the dynamic characteristics of milling machine tool and hence evaluate the influence of the preload of the spindle bearings. To this purpose, a three dimensional spindle bearing model of a high speed engraving spindle tool was created. In this model, the rolling interfaces with contact stiffness defined by Harris model were used to simulate the spindle bearing components. Then a full finite element model of a vertical milling machine was established by coupling the spindle tool unit with the machine frame structure. Using this model, the vibration mode that had a dominant influence on the dynamic stiffness was determined. The results of the finite element simulations reveal that spindle bearing with different preloads greatly affect the dynamic behavior of the spindle tool unit and hence the dynamic responses of the vertical column milling system. These results were validated by performing vibration on the individual spindle tool unit and the milling machine prototype, respectively. We conclude that preload of the spindle bearings is an important component affecting the dynamic characteristics and machining performance of the entire vertical column structure of the milling machine.Keywords: Dynamic compliance, Milling machine, Spindle unit, Bearing preload.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36496343 The Results of the Fetal Weight Estimation of the Infants Delivered in the Delivery Room At Dan Khunthot Hospital by Johnson-s Method
Authors: Nareelux Suwannobol, JintanaTapin, Khuanchanok Narachan
Abstract:
The objective of this study was to determine the accuracy to estimation fetal weight by Johnson-s method and compares it with actual birth weight. The sample group was 126 infants delivered in Dan KhunThot hospital from January March 2012. Fetal weight was estimated by measuring fundal height according to Johnson-s method. The information was collected by studying historical delivery records and then analyzed by using the statistics of frequency, percentage, mean, and standard deviation. Finally, the difference was analyzed by a paired t-test.The results showed had an average birth weight was 3093.57 ± 391.03 g (mean ± SD) and 3,455 ± 454.55 g average estimated fetal weight by Johnson-s method higher than average actual birth weight was 384.09 grams. When classifying the infants according to birth weight found that low birth weight (<2500 g) and the appropriate birth weight (2500-3999g) actual birth weight less than estimate fetal weight . But the high birth weight (> 4000 g) actual birth weight was more than estimated fetal weight. The difference was found between actual birth weight and estimation fetal weight of the minimum weight in high birth weight ( > 4000 g) , the appropriate birth weight (2500-3999g) and low birth weight (<2500 g) respectively. The rate of estimates fetal weight within 10% of actual birth weight was 35.7%. Actual birth weight were compared with the found that the difference is statistically significant (p <.000). Employing Johnson-s method to estimate fetal weight can estimate initial fetal weight before passing to special examinations, which may require excessive high cost. A variety of methods should be employed to estimate fetal weight more precisely, which will help plan care for mother-s and infant-s safety.
Keywords: Johnson's method, Fetal weight estimate, Delivery Room, Student nurse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23446342 Noise Estimation for Speech Enhancement in Non-Stationary Environments-A New Method
Authors: Ch.V.Rama Rao, Gowthami., Harsha., Rajkumar., M.B.Rama Murthy, K.Srinivasa Rao, K.AnithaSheela
Abstract:
This paper presents a new method for estimating the nonstationary noise power spectral density given a noisy signal. The method is based on averaging the noisy speech power spectrum using time and frequency dependent smoothing factors. These factors are adjusted based on signal-presence probability in individual frequency bins. Signal presence is determined by computing the ratio of the noisy speech power spectrum to its local minimum, which is updated continuously by averaging past values of the noisy speech power spectra with a look-ahead factor. This method adapts very quickly to highly non-stationary noise environments. The proposed method achieves significant improvements over a system that uses voice activity detector (VAD) in noise estimation.Keywords: Noise estimation, Non-stationary noise, Speechenhancement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23406341 Fuzzy Logic Based Improved Range Free Localization for Wireless Sensor Networks
Authors: Ashok Kumar, Vinod Kumar
Abstract:
Wireless Sensor Networks (WSNs) are used to monitor/observe vast inaccessible regions through deployment of large number of sensor nodes in the sensing area. For majority of WSN applications, the collected data needs to be combined with geographic information of its origin to make it useful for the user; information received from remote Sensor Nodes (SNs) that are several hops away from base station/sink is meaningless without knowledge of its source. In addition to this, location information of SNs can also be used to propose/develop new network protocols for WSNs to improve their energy efficiency and lifetime. In this paper, range free localization protocols for WSNs have been proposed. The proposed protocols are based on weighted centroid localization technique, where the edge weights of SNs are decided by utilizing fuzzy logic inference for received signal strength and link quality between the nodes. The fuzzification is carried out using (i) Mamdani, (ii) Sugeno, and (iii) Combined Mamdani Sugeno fuzzy logic inference. Simulation results demonstrate that proposed protocols provide better accuracy in node localization compared to conventional centroid based localization protocols despite presence of unintentional radio frequency interference from radio frequency (RF) sources operating in same frequency band.
Keywords: localization, range free, received signal strength, link quality indicator, Mamdani fuzzy logic inference, Sugeno fuzzy logic inference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26316340 Mechanical Properties and Released Gas Analysis of High Strength Concrete with Polypropylene and Raw Rice Husk under High Temperature Effect
Authors: B. Akturk, N. Yuzer, N. Kabay
Abstract:
When concrete is exposed to high temperatures, some changes may occur in its physical and mechanical properties. Especially, high strength concrete (HSC), may exhibit damages such as cracks and spallings. To overcome this problem, incorporating polymer fibers such as polypropylene (PP) in concrete is a well-known method. In high temperatures, PP decomposes and releases harmful gases such as CO and CO2. This study researches the use of raw rice husk (RRH) as a sustainable material, instead of PP fibers considering its several favorable properties, and its usability in HSC. RRH and PP fibers were incorporated in concrete at 0.5-3% and 0.2-0.5% by weight of cement, respectively. Concrete specimens were exposed to 20 (control), 300, 600 and 900°C. Under these temperatures, residual compressive and splitting tensile strength was determined. During the high temperature effect, the amount of released harmful gases was measured by a gas detector.
Keywords: Gas analysis, high temperature, high strength concrete, polypropylene fibers, raw rice husk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21876339 A Closed Form Solution for Hydrodynamic Pressure of Gravity Dams Reservoir with Effect of Viscosity under Dynamic Loading
Authors: B. Navayineya, J. Vaseghi Amiri, M. Alijani Ardeshir
Abstract:
Hydrodynamic pressures acting on upstream of concrete dams during an earthquake are an important factor in designing and assessing the safety of these structures in Earthquake regions. Due to inherent complexities, assessing exact hydrodynamic pressure is only feasible for problems with simple geometry. In this research, the governing equation of concrete gravity dam reservoirs with effect of fluid viscosity in frequency domain is solved and then compared with that in which viscosity is assumed zero. The results show that viscosity influences the reservoir-s natural frequency. In excitation frequencies near the reservoir's natural frequencies, hydrodynamic pressure has a considerable difference in compare to the results of non-viscose fluid.
Keywords: Closed form solution, concrete dams reservoir, viscosity, dynamic loads, hydrodynamic pressure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22466338 Accurate Control of a Pneumatic System using an Innovative Fuzzy Gain-Scheduling Pattern
Authors: M. G. Papoutsidakis, G. Chamilothoris, F. Dailami, N. Larsen, A Pipe
Abstract:
Due to their high power-to-weight ratio and low cost, pneumatic actuators are attractive for robotics and automation applications; however, achieving fast and accurate control of their position have been known as a complex control problem. A methodology for obtaining high position accuracy with a linear pneumatic actuator is presented. During experimentation with a number of PID classical control approaches over many operations of the pneumatic system, the need for frequent manual re-tuning of the controller could not be eliminated. The reason for this problem is thermal and energy losses inside the cylinder body due to the complex friction forces developed by the piston displacements. Although PD controllers performed very well over short periods, it was necessary in our research project to introduce some form of automatic gain-scheduling to achieve good long-term performance. We chose a fuzzy logic system to do this, which proved to be an easily designed and robust approach. Since the PD approach showed very good behaviour in terms of position accuracy and settling time, it was incorporated into a modified form of the 1st order Tagaki- Sugeno fuzzy method to build an overall controller. This fuzzy gainscheduler uses an input variable which automatically changes the PD gain values of the controller according to the frequency of repeated system operations. Performance of the new controller was significantly improved and the need for manual re-tuning was eliminated without a decrease in performance. The performance of the controller operating with the above method is going to be tested through a high-speed web network (GRID) for research purposes.Keywords: Fuzzy logic, gain scheduling, leaky integrator, pneumatic actuator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17486337 On the Wave Propagation in Layered Plates of General Anisotropic Media
Authors: K. L. Verma
Abstract:
Analysis for the propagation of elastic waves in arbitrary anisotropic plates is investigated, commencing with a formal analysis of waves in a layered plate of an arbitrary anisotropic media, the dispersion relations of elastic waves are obtained by invoking continuity at the interface and boundary of conditions on the surfaces of layered plate. The obtained solutions can be used for material systems of higher symmetry such as monoclinic, orthotropic, transversely isotropic, cubic, and isotropic as it is contained implicitly in the analysis. The cases of free layered plate and layered half space are considered separately. Some special cases have also been deduced and discussed. Finally numerical solution of the frequency equations for an aluminum epoxy is carried out, and the dispersion curves for the few lower modes are presented. The results obtained theoretically have been verified numerically and illustrated graphically.Keywords: Anisotropic, layered, dispersion, elastic waves, frequency equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19476336 Realization of Electronically Tunable Current- Mode Multiphase Sinusoidal Oscillators Using CFTAs
Authors: Prungsak Uttaphut
Abstract:
An implementation of current-mode multiphase sinusoidal oscillators is presented. Using CFTA-based lossy integrators, odd and odd/even phase systems can be realized with following advantages. The condition of oscillation and frequency of oscillation can be orthogonally tuned. The high output impedances facilitate easy driving an external load without additional current buffers. The proposed MSOs provide odd or even phase signals that are equally spaced in phase and equal amplitude. The circuit requires one CFTA, one resistor and one grounded capacitor per phase without additional current amplifier. The results of PSPICE simulations using CMOS CFTA are included to verify theory.
Keywords: multiphase sinusoidal oscillator, current-mode, CFTA, lossy integrator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614