Search results for: sliding mode control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4475

Search results for: sliding mode control

3905 Flight Control of a Trirotor Mini-UAV for Enhanced Situational Awareness

Authors: Igor Astrov, Andrus Pedai

Abstract:

This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for an unmanned aerial vehicle (UAV). Autonomous vertical flight is a challenging but important task for tactical UAVs to achieve high level of autonomy under adverse conditions. With the SA strategy, we proposed a two stage flight control procedure using two autonomous control subsystems to address the dynamics variation and performance requirement difference in initial and final stages of flight trajectory for a nontrivial nonlinear trirotor mini-UAV model. This control strategy for chosen mini-UAV model has been verified by simulation of hovering maneuvers using software package Simulink and demonstrated good performance for fast SA in realtime search-and-rescue operations.

Keywords: Flight control, trirotor aircraft, situational awareness, unmanned aerial vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165
3904 Model Predictive Control of Three Phase Inverter for PV Systems

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

This paper presents a model predictive control (MPC) of a utility interactive three phase inverter (TPI) for a photovoltaic (PV) system at commercial level. The proposed model uses phase locked loop (PLL) to synchronize the TPI with the power electric grid (PEG) and performs MPC control in a dq reference frame. TPI model consists of a boost converter (BC), maximum power point tracking (MPPT) control, and a three-leg voltage source inverter (VSI). The operational model of VSI is used to synthesize the sinusoidal current and track the reference. The model is validated using a 35.7 kW PV system in Matlab/Simulink. Implementation results show simplicity and accuracy, as well as reliability of the model.

Keywords: Model predictive control, three phase voltage source inverter, PV system, Matlab/Simulink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3766
3903 An Adaptive Approach to Synchronization of Two Chua's Circuits

Authors: Majid Reza Naseh, Mohammad Haeri

Abstract:

This paper introduces an adaptive control scheme to synchronize two identical Chua's systems. Introductory part of the paper is presented in the first part of the paper and then in the second part, a new theorem is proposed based on which an adaptive control scheme is developed to synchronize two identical modified Chua's circuit. Finally, numerical simulations are included to verify the effectiveness of the proposed control method.

Keywords: Chaos synchronization, adaptive control, Chua's circuits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431
3902 Development of Wind Turbine Simulator for Generator Torque Control

Authors: Jae-Kyung Lee, Joon-Young Park, Ki-Yong Oh, Jun-Shin Park

Abstract:

Wind turbine should be controlled to capture maximum wind energy and to prevent the turbine from being stalled. To achieve those two goals, wind turbine controller controls torque on generator and limits input torque from wind by pitching blade. Usually, torque on generator is controlled using inverter torque set point. However, verifying a control algorithm in actual wind turbine needs a lot of efforts to test and the actual wind turbine could be broken while testing a control algorithm. So, several software have developed and commercialized by Garrad Hassan, GH Bladed, and NREL, FAST. Even though, those programs can simulate control system modeling with subroutines or DLLs. However, those simulation programs are not able to emulate detailed generator or PMSG. In this paper, a small size wind turbine simulator is developed with induction motor and small size drive train. The developed system can simulate wind turbine control algorithm in the region before rated power.

Keywords: Wind turbine, simulator, wind turbine control, wind turbine torque control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3129
3901 Motion Control of TUAV having Eight Rotors for Enhanced Situational Awareness

Authors: Igor Astrov, Andrus Pedai

Abstract:

This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for tactical unmanned aerial vehicle (TUAV). With the SA strategy, we proposed a two stage flight control procedure using two autonomous control subsystems to address the dynamics variation and performance requirement difference in initial and final stages of flight trajectory for a nontrivial nonlinear eight-rotor helicopter model. This control strategy for chosen model of mini-TUAV has been verified by simulation of hovering maneuvers using software package Simulink and demonstrated good performance for fast stabilization of engines in hovering, consequently, fast SA with economy in energy of batteries can be asserted during search-andrescue operations.

Keywords: Flight control, eight-rotor helicopter, situational awareness, tactical unmanned aerial vehicle

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
3900 Comparison between Skyhook and Minimax Control Strategies for Semi-active Suspension System

Authors: Hongkun Zhang, Hermann Winner, Wenjun Li

Abstract:

This paper describes the development, modeling, and testing of skyhook and MiniMax control strategies of semi-active suspension. The control performances are investigated using Matlab/Simulink [1], with a two-degree-of-freedom quarter car semiactive suspension system model. The comparison and evaluation of control result are made using software-in-the-loop simulation (SILS) method. This paper also outlines the development of a hardware-inthe- loop simulation (HILS) system. The simulation results show that skyhook strategy can significantly reduce the resonant peak of body and provide improvement in vehicle ride comfort. Otherwise, MiniMax strategy can be employed to effectively improve drive safety of vehicle by influencing wheel load. The two strategies can be switched to control semi-active suspension system to fulfill different requirement of vehicle in different stages.

Keywords: Hardware-in-the-loop simulation, Semi-active suspension, Skyhook control, MiniMax control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2689
3899 Damping and Stability Evaluation for the Dynamical Hunting Motion of the Bullet Train Wheel Axle Equipped with Cylindrical Wheel Treads

Authors: Barenten Suciu

Abstract:

Classical matrix calculus and Routh-Hurwitz stability conditions, applied to the snake-like motion of the conical wheel axle, lead to the conclusion that the hunting mode is inherently unstable, and its natural frequency is a complex number. In order to analytically solve such a complicated vibration model, either the inertia terms were neglected, in the model designated as geometrical, or restrictions on the creep coefficients and yawing diameter were imposed, in the so-called dynamical model. Here, an alternative solution is proposed to solve the hunting mode, based on the observation that the bullet train wheel axle is equipped with cylindrical wheels. One argues that for such wheel treads, the geometrical hunting is irrelevant, since its natural frequency becomes nil, but the dynamical hunting is significant since its natural frequency reduces to a real number. Moreover, one illustrates that the geometrical simplification of the wheel causes the stabilization of the hunting mode, since the characteristic quartic equation, derived for conical wheels, reduces to a quadratic equation of positive coefficients, for cylindrical wheels. Quite simple analytical expressions for the damping ratio and natural frequency are obtained, without applying restrictions into the model of contact. Graphs of the time-depending hunting lateral perturbation, including the maximal and inflexion points, are presented both for the critically-damped and the over-damped wheel axles.

Keywords: Bullet train, dynamical hunting, cylindrical wheels, damping, stability, creep, vibration analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 760
3898 Optimal Parameters of Double Moving Average Control Chart

Authors: Y. Areepong

Abstract:

The objective of this paper is to present explicit analytical formulas for evaluating important characteristics of Double Moving Average control chart (DMA) for Poisson distribution. The most popular characteristics of a control chart are Average Run Length ( 0 ARL ) - the mean of observations that are taken before a system is signaled to be out-of control when it is actually still incontrol, and Average Delay time ( 1 ARL ) - mean delay of true alarm times. An important property required of 0 ARL is that it should be sufficiently large when the process is in-control to reduce a number of false alarms. On the other side, if the process is actually out-ofcontrol then 1 ARL should be as small as possible. In particular, the explicit analytical formulas for evaluating 0 ARL and 1 ARL be able to get a set of optimal parameters which depend on a width of the moving average ( w ) and width of control limit ( H ) for designing DMA chart with minimum of 1 ARL

Keywords: Optimal parameters, Average Run Length, Average Delay time, Double Moving Average chart.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2326
3897 Metal-Based Anticancer Agents: In vitro DNA Binding, Cleavage and Cytotoxicity

Authors: Mala Nath, Nagamani Kompelli, Partha Roy, Snehasish Das

Abstract:

Two new metal-based anticancer chemotherapeutic agents, [(Ph2Sn)2(HGuO)2(phen)Cl2] 1 and [(Ph3Sn)(HGuO)(phen)]- Cl.CH3OH.H2O 2, were designed, prepared and characterized by analytical and spectral (IR, ESI-Mass, 1H, 13C and 119Sn NMR) techniques. The proposed geometry of Sn(IV) in 1 and 2 is distorted octahedral and distorted trigonal-bipyramidal, respectively. Both 1 and 2 exhibit potential cytotoxicity in vitro against MCF-7, HepG-2 and DU-145 cell lines. The intrinsic binding constant (Kb) values of 1 (2.33 × 105 M-1) and 2 (2.46 × 105 M-1) evaluated from UV-Visible absorption studies suggest non-classical electrostatic mode of interaction via phosphate backbone of DNA double helix. The Stern- Volmer quenching constant (Ksv) of 1 (9.74 × 105 M-1) and 2 (2.9 × 106 M-1) determined by fluorescence studies suggests the groove binding and intercalation mode for 1 and 2, respectively. Effective cleavage of pBR322 DNA is induced by 1.Their interaction with DNA of cancer cells may account for potency.

Keywords: Anticancer agents, DNA binding studies, NMR spectroscopy, organotin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2774
3896 Predictive Functional Control with Disturbance Observer for Tendon-Driven Balloon Actuator

Authors: Jun-ya Nagase, Toshiyuki Satoh, Norihiko Saga, Koichi Suzumori

Abstract:

In recent years, Japanese society has been aging, engendering a labor shortage of young workers. Robots are therefore expected to perform tasks such as rehabilitation, nursing elderly people, and day-to-day work support for elderly people. The pneumatic balloon actuator is a rubber artificial muscle developed for use in a robot hand in such environments. This actuator has a long stroke and a high power-to-weight ratio compared with the present pneumatic artificial muscle. Moreover, the dynamic characteristics of this actuator resemble those of human muscle. This study evaluated characteristics of force control of balloon actuator using a predictive functional control (PFC) system with disturbance observer. The predictive functional control is a model-based predictive control (MPC) scheme that predicts the future outputs of the actual plants over the prediction horizon and computes the control effort over the control horizon at every sampling instance. For this study, a 1-link finger system using a pneumatic balloon actuator is developed. Then experiments of PFC control with disturbance observer are performed. These experiments demonstrate the feasibility of its control of a pneumatic balloon actuator for a robot hand.

Keywords: Disturbance observer, Pneumatic balloon, Predictive functional control, Rubber artificial muscle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2421
3895 Discontinuous Feedback Linearization of an Electrically Driven Fast Robot Manipulator

Authors: A. Izadbakhsh, M. M. Fateh, M. A. Sadrnia

Abstract:

A multivariable discontinuous feedback linearization approach is proposed to position control of an electrically driven fast robot manipulator. A desired performance is achieved by selecting a useful controller and suitable sampling rate and considering saturation for actuators. There is a high flexibility to apply the proposed control approach on different electrically driven manipulators. The control approach can guarantee the stability and satisfactory tracking performance. A PUMA 560 robot driven by geared permanent magnet dc motors is simulated. The simulation results show a desired performance for control system under technical specifications.

Keywords: Fast robot, feedback linearization, multivariabledigital control, PUMA560.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
3894 PID Controller Design for Following Control of Hard Disk Drive by Characteristic Ratio Assignment Method

Authors: Chaoraingern J., Trisuwannawat T., Numsomran A.

Abstract:

The author present PID controller design for following control of hard disk drive by characteristic ratio assignment method. The study in this paper concerns design of a PID controller which sufficiently robust to the disturbances and plant perturbations on following control of hard disk drive. Characteristic Ratio Assignment (CRA) is shown to be an efficient control technique to serve this requirement. The controller design by CRA is based on the choice of the coefficients of the characteristic polynomial of the closed loop system according to the convenient performance criteria such as equivalent time constant and ration of characteristic coefficient. Hence, in this study, CRA method is applied in PID controller design for following control of hard disk drive. Matlab simulation results shown that CRA design is fairly stable and robust whilst giving the convenience in controller-s parameters adjustment.

Keywords: Following Control, Hard Disk Drive, PID, CRA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968
3893 PI Control for Positive Output Elementary Super Lift Luo Converter

Authors: K. Ramash Kumar, S. Jeevananthan

Abstract:

The object of this paper is to design and analyze a proportional – integral (PI) control for positive output elementary super lift Luo converter (POESLLC), which is the start-of-the-art DC-DC converter. The positive output elementary super lift Luo converter performs the voltage conversion from positive source voltage to positive load voltage. This paper proposes a development of PI control capable of providing the good static and dynamic performance compared to proportional – integralderivative (PID) controller. Using state space average method derives the dynamic equations describing the positive output elementary super lift luo converter and PI control is designed. The simulation model of the positive output elementary super lift Luo converter with its control circuit is implemented in Matlab/Simulink. The PI control for positive output elementary super lift Luo converter is tested for transient region, line changes, load changes, steady state region and also for components variations.

Keywords: DC-DC converter, Positive output elementarysuper lift Luo converter (POESLLC), Proportional – Integral (PI)control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5027
3892 The Autoregresive Analysis for Wind Turbine Signal Postprocessing

Authors: Daniel Pereiro, Felix Martinez, Iker Urresti, Ana Gomez Gonzalez

Abstract:

Today modern simulations solutions in the wind turbine industry have achieved a high degree of complexity and detail in result. Limitations exist when it is time to validate model results against measurements. Regarding Model validation it is of special interest to identify mode frequencies and to differentiate them from the different excitations. A wind turbine is a complex device and measurements regarding any part of the assembly show a lot of noise. Input excitations are difficult or even impossible to measure due to the stochastic nature of the environment. Traditional techniques for frequency analysis or features extraction are widely used to analyze wind turbine sensor signals, but have several limitations specially attending to non stationary signals (Events). A new technique based on autoregresive analysis techniques is introduced here for a specific application, a comparison and examples related to different events in the wind turbine operations are presented.

Keywords: Wind turbine, signal processing, mode extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
3891 An Empirical Mode Decomposition Based Method for Action Potential Detection in Neural Raw Data

Authors: Sajjad Farashi, Mohammadjavad Abolhassani, Mostafa Taghavi Kani

Abstract:

Information in the nervous system is coded as firing patterns of electrical signals called action potential or spike so an essential step in analysis of neural mechanism is detection of action potentials embedded in the neural data. There are several methods proposed in the literature for such a purpose. In this paper a novel method based on empirical mode decomposition (EMD) has been developed. EMD is a decomposition method that extracts oscillations with different frequency range in a waveform. The method is adaptive and no a-priori knowledge about data or parameter adjusting is needed in it. The results for simulated data indicate that proposed method is comparable with wavelet based methods for spike detection. For neural signals with signal-to-noise ratio near 3 proposed methods is capable to detect more than 95% of action potentials accurately.

Keywords: EMD, neural data processing, spike detection, wavelet decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2374
3890 Optimal Criteria for Non-Minimal Phase Plants

Authors: Z. Nemec, R. Matousek

Abstract:

The paper describes the evaluation of quality of control for cases of controlled non-minimal phase plants. Control circuits containing non-minimal phase plants have different properties, they manifest reversed reaction at the beginning of unit step response. For these types of plants are developed special criterion of quality of control, which considers the difference and can be helpful for synthesis of optimal controller tuning. All results are clearly presented using Matlab/Simulink models.

Keywords: control design, non-minimal phase system, optimalcriteria, power plant, heating plant, water turbine, Matlab, Simulink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
3889 A FE-Based Scheme for Computing Wave Interaction with Nonlinear Damage and Generation of Harmonics in Layered Composite Structures

Authors: R. K. Apalowo, D. Chronopoulos

Abstract:

A Finite Element (FE) based scheme is presented for quantifying guided wave interaction with Localised Nonlinear Structural Damage (LNSD) within structures of arbitrary layering and geometric complexity. The through-thickness mode-shape of the structure is obtained through a wave and finite element method. This is applied in a time domain FE simulation in order to generate time harmonic excitation for a specific wave mode. Interaction of the wave with LNSD within the system is computed through an element activation and deactivation iteration. The scheme is validated against experimental measurements and a WFE-FE methodology for calculating wave interaction with damage. Case studies for guided wave interaction with crack and delamination are presented to verify the robustness of the proposed method in classifying and identifying damage.

Keywords: Layered Structures, nonlinear ultrasound, wave interaction with nonlinear damage, wave finite element, finite element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544
3888 Chua’s Circuit Regulation Using a Nonlinear Adaptive Feedback Technique

Authors: Abolhassan Razminia, Mohammad-Ali Sadrnia

Abstract:

Chua’s circuit is one of the most important electronic devices that are used for Chaos and Bifurcation studies. A central role of secure communication is devoted to it. Since the adaptive control is used vastly in the linear systems control, here we introduce a new trend of application of adaptive method in the chaos controlling field. In this paper, we try to derive a new adaptive control scheme for Chua’s circuit controlling because control of chaos is often very important in practical operations. The novelty of this approach is for sake of its robustness against the external perturbations which is simulated as an additive noise in all measured states and can be generalized to other chaotic systems. Our approach is based on Lyapunov analysis and the adaptation law is considered for the feedback gain. Because of this, we have named it NAFT (Nonlinear Adaptive Feedback Technique). At last, simulations show the capability of the presented technique for Chua’s circuit.

Keywords: Chaos, adaptive control, nonlinear control, Chua's circuit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
3887 Bandwidth Optimization through Dynamic Routing in ATM Networks: Genetic Algorithm and Tabu Search Approach

Authors: Susmi Routray, A. M. Sherry, B. V. R. Reddy

Abstract:

Asynchronous Transfer Mode (ATM) is widely used in telecommunications systems to send data, video and voice at a very high speed. In ATM network optimizing the bandwidth through dynamic routing is an important consideration. Previous research work shows that traditional optimization heuristics result in suboptimal solution. In this paper we have explored non-traditional optimization technique. We propose comparison of two such algorithms - Genetic Algorithm (GA) and Tabu search (TS), based on non-traditional Optimization approach, for solving the dynamic routing problem in ATM networks which in return will optimize the bandwidth. The optimized bandwidth could mean that some attractive business applications would become feasible such as high speed LAN interconnection, teleconferencing etc. We have also performed a comparative study of the selection mechanisms in GA and listed the best selection mechanism and a new initialization technique which improves the efficiency of the GA.

Keywords: Asynchronous Transfer Mode(ATM), GeneticAlgorithm(GA), Tabu Search(TS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769
3886 Study of Crashworthiness Behavior of Thin-Walled Tube under Axial Loading by Using Computational Mechanics

Authors: M. Kamal M. Shah, Noorhifiantylaily Ahmad, O. Irma Wani, J. Sahari

Abstract:

This paper presents the computationally mechanics analysis of energy absorption for cylindrical and square thin wall tubed structure by using ABAQUS/explicit. The crashworthiness behavior of AISI 1020 mild steel thin-walled tube under axial loading has been studied. The influence effects of different model’s cross-section, as well as model length on the crashworthiness behavior of thin-walled tube, are investigated. The model was placed on loading platform under axial loading with impact velocity of 5 m/s to obtain the deformation results of each model under quasi-static loading. The results showed that model undergoes different deformation mode exhibits different energy absorption performance.

Keywords: Axial loading, energy absorption performance, computational mechanics, crashworthiness behavior, deformation mode, thin-walled tubes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1158
3885 Collaborative Tracking Control of UAV-UGV

Authors: Jae-Young Choi, Sung-Gaun Kim

Abstract:

This paper suggests a fast and stable Target Tracking system in collaborative control of UAV and UGV. Wi-Fi communication range is limited in collaborative control of UAV and UGV. Thus, to secure a stable communications, UAV and UGV have to be kept within a certain distance from each other. But existing method which uses UAV Vertical Camera to follow the motion of UGV is likely to lose a target with a sudden movement change. Eventually, UGV has disadvantages that it could only move at a low speed and not make any sudden change of direction in order to keep track of the target. Therefore, we suggest utilizing AR Drone UAV front camera to track fast-moving and Omnidirectional Mecanum Wheel UGV.

Keywords: Collaborative control, UAV, UGV, Target Tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2943
3884 Interactive Effects in Blended Learning Mode: Exploring Hybrid Data Sources and Iterative Linkages

Authors: Hock Chuan, Lim

Abstract:

This paper presents an approach for identifying interactive effects using Network Science (NS) supported by Social Network Analysis (SNA) techniques. Based on general observations that learning processes and behaviors are shaped by the social relationships and influenced by learning environment, the central idea was to understand both the human and non-human interactive effects for a blended learning mode of delivery of computer science modules. Important findings include (a) the importance of non-human nodes to influence the centrality and transfer; (b) the degree of non-human and human connectivity impacts learning. This project reveals that the NS pattern and connectivity as measured by node relationships offer alternative approach for hypothesis generation and design of qualitative data collection. An iterative process further reinforces the analysis, whereas the experimental simulation option itself is an interesting alternative option, a hybrid combination of both experimental simulation and qualitative data collection presents itself as a promising and viable means to study complex scenario such as blended learning delivery mode. The primary value of this paper lies in the design of the approach for studying interactive effects of human (social nodes) and non-human (learning/study environment, Information and Communication Technologies (ICT) infrastructures nodes) components. In conclusion, this project adds to the understanding and the use of SNA to model and study interactive effects in blended social learning.

Keywords: Blended learning, network science, social learning, social network analysis, study environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 658
3883 Robust Control of a High-Speed Manipulator in State Space

Authors: M. M. Fateh, A. Izadbakhsh

Abstract:

A robust control approach is proposed for a high speed manipulator using a hybrid computed torque control approach in the state space. The high-speed manipulator is driven by permanent magnet dc motors to track a trajectory in the joint space in the presence of disturbances. Tracking problem is analyzed in the state space where the completed models are considered for actuators. The proposed control approach can guarantee the stability and a satisfactory tracking performance. A two-link elbow manipulator driven by electrical actuators is simulated and results are shown to satisfy conditions under technical specifications.

Keywords: Computed torque, manipulator, robust control, state space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2339
3882 Modelling for Temperature Non-Isothermal Continuous Stirred Tank Reactor Using Fuzzy Logic

Authors: Nasser Mohamed Ramli, Mohamad Syafiq Mohamad

Abstract:

Many types of controllers were applied on the continuous stirred tank reactor (CSTR) unit to control the temperature. In this research paper, Proportional-Integral-Derivative (PID) controller are compared with Fuzzy Logic controller for temperature control of CSTR. The control system for temperature non-isothermal of a CSTR will produce a stable response curve to its set point temperature. A mathematical model of a CSTR using the most general operating condition was developed through a set of differential equations into S-function using MATLAB. The reactor model and S-function are developed using m.file. After developing the S-function of CSTR model, User-Defined functions are used to link to SIMULINK file. Results that are obtained from simulation and temperature control were better when using Fuzzy logic control compared to PID control.

Keywords: CSTR, temperature, PID, fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2484
3881 Modelling for Roof Failure Analysis in an Underground Cave

Authors: M. Belén Prendes-Gero, Celestino González-Nicieza, M. Inmaculada Alvarez-Fernández

Abstract:

Roof collapse is one of the problems with a higher frequency in most of the mines of all countries, even now. There are many reasons that may cause the roof to collapse, namely the mine stress activities in the mining process, the lack of vigilance and carelessness or the complexity of the geological structure and irregular operations. This work is the result of the analysis of one accident produced in the “Mary” coal exploitation located in northern Spain. In this accident, the roof of a crossroad of excavated galleries to exploit the “Morena” Layer, 700 m deep, collapsed. In the paper, the work done by the forensic team to determine the causes of the incident, its conclusions and recommendations are collected. Initially, the available documentation (geology, geotechnics, mining, etc.) and accident area were reviewed. After that, laboratory and on-site tests were carried out to characterize the behaviour of the rock materials and the support used (metal frames and shotcrete). With this information, different hypotheses of failure were simulated to find the one that best fits reality. For this work, the software of finite differences in three dimensions, FLAC 3D, was employed. The results of the study confirmed that the detachment was originated as a consequence of one sliding in the layer wall, due to the large roof span present in the place of the accident, and probably triggered as a consequence of the existence of a protection pillar insufficient. The results allowed to establish some corrective measures avoiding future risks. For example, the dimensions of the protection zones that must be remained unexploited and their interaction with the crossing areas between galleries, or the use of more adequate supports for these conditions, in which the significant deformations may discourage the use of rigid supports such as shotcrete. At last, a grid of seismic control was proposed as a predictive system. Its efficiency was tested along the investigation period employing three control equipment that detected new incidents (although smaller) in other similar areas of the mine. These new incidents show that the use of explosives produces vibrations which are a new risk factor to analyse in a next future.

Keywords: Forensic analysis, hypothesis modelling, roof failure, seismic monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 607
3880 A New Intelligent Strategy to Integrated Control of AFS/DYC Based on Fuzzy Logic

Authors: R. Karbalaei, A. Ghaffari, R. Kazemi, S. H. Tabatabaei

Abstract:

An integrated vehicle dynamics control system is developed in this paper by a combination of active front steering (AFS) and direct yaw-moment control (DYC) based on fuzzy logic control. The control system has a hierarchical structure consisting of two layers. A fuzzy logic controller is used in the upper layer (yaw rate controller) to keep the yaw rate in its desired value. The yaw rate error and its rate of change are applied to the upper controlling layer as inputs, where the direct yaw moment control signal and the steering angle correction of the front wheels are the outputs. In the lower layer (fuzzy integrator), a fuzzy logic controller is designed based on the working region of the lateral tire forces. Depending on the directions of the lateral forces at the front wheels, a switching function is activated to adjust the scaling factor of the fuzzy logic controller. Using a nonlinear seven degrees of freedom vehicle model, the simulation results illustrate considerable improvements which are achieved in vehicle handling through the integrated AFS/DYC control system in comparison with the individual AFS or DYC controllers.

Keywords: Intelligent strategy, integrated control, fuzzy logic, AFS/DYC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2314
3879 Repetitive Control and Feedback Dithering Modulation of a DC/AC Converter

Authors: Sing-Han Wang, Shiang-Hwua Yu, Chih-Po Yang

Abstract:

Repetitive control and feedback dithering modulation are applied to a single-phase voltage source inverter, with an aim to eliminate harmonics and stabilize the inverter under load variations. The proposed control and modulation scheme comprise multiple loops of feedback, which helps improve inverter performance and robustness. Experimental results show that the designed inverter exhibits very low distortion at its output with THD of about 0.3% under different load variations.

Keywords: Feedback dithering modulation, repetitive control, state feedback, inverter, harmonics elimination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2141
3878 Small Signal Stability Assessment of MEPE Test System in Free and Open Source Software

Authors: Kyaw Myo Lin

Abstract:

This paper presents small signal stability study carried over the 140-Bus, 31-Machine, 5-Area MEPE system and validated on free and open source software: PSAT. Well-established linearalgebra analysis, eigenvalue analysis, is employed to determine the small signal dynamic behavior of test system. The aspects of local and interarea oscillations which may affect the operation and behavior of power system are analyzed. Eigenvalue analysis is carried out to investigate the small signal behavior of test system and the participation factors have been determined to identify the participation of the states in the variation of different mode shapes. Also, the variations in oscillatory modes are presented to observe the damping performance of the test system.

Keywords: Eigenvalue analysis, Mode shapes, MEPE test system, Participation factors, Power System oscillations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2435
3877 Genetic-Based Planning with Recursive Subgoals

Authors: Han Yu, Dan C. Marinescu, Annie S. Wu, Howard Jay Siegel

Abstract:

In this paper, we introduce an effective strategy for subgoal division and ordering based upon recursive subgoals and combine this strategy with a genetic-based planning approach. This strategy can be applied to domains with conjunctive goals. The main idea is to recursively decompose a goal into a set of serializable subgoals and to specify a strict ordering among the subgoals. Empirical results show that the recursive subgoal strategy reduces the size of the search space and improves the quality of solutions to planning problems.

Keywords: Planning, recursive subgoals, Sliding-tile puzzle, subgoal interaction, genetic algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509
3876 Design of Nonlinear Robust Control in a Class of Structurally Stable Functions

Authors: V. Ten

Abstract:

An approach of design of stable of control systems with ultimately wide ranges of uncertainly disturbed parameters is offered. The method relies on using of nonlinear structurally stable functions from catastrophe theory as controllers. Theoretical part presents an analysis of designed nonlinear second-order control systems. As more important the integrators in series, canonical controllable form and Jordan forms are considered. The analysis resumes that due to added controllers systems become stable and insensitive to any disturbance of parameters. Experimental part presents MATLAB simulation of design of control systems of epidemic spread, aircrafts angular motion and submarine depth. The results of simulation confirm the efficiency of offered method of design. KeywordsCatastrophes, robust control, simulation, uncertain parameters.

Keywords: Catastrophes, robust control, simulation, uncertain parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1292