Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30578
Metal-Based Anticancer Agents: In vitro DNA Binding, Cleavage and Cytotoxicity

Authors: Mala Nath, Partha Roy, Nagamani Kompelli, Snehasish Das

Abstract:

Two new metal-based anticancer chemotherapeutic agents, [(Ph2Sn)2(HGuO)2(phen)Cl2] 1 and [(Ph3Sn)(HGuO)(phen)]- Cl.CH3OH.H2O 2, were designed, prepared and characterized by analytical and spectral (IR, ESI-Mass, 1H, 13C and 119Sn NMR) techniques. The proposed geometry of Sn(IV) in 1 and 2 is distorted octahedral and distorted trigonal-bipyramidal, respectively. Both 1 and 2 exhibit potential cytotoxicity in vitro against MCF-7, HepG-2 and DU-145 cell lines. The intrinsic binding constant (Kb) values of 1 (2.33 × 105 M-1) and 2 (2.46 × 105 M-1) evaluated from UV-Visible absorption studies suggest non-classical electrostatic mode of interaction via phosphate backbone of DNA double helix. The Stern- Volmer quenching constant (Ksv) of 1 (9.74 × 105 M-1) and 2 (2.9 × 106 M-1) determined by fluorescence studies suggests the groove binding and intercalation mode for 1 and 2, respectively. Effective cleavage of pBR322 DNA is induced by 1.Their interaction with DNA of cancer cells may account for potency.

Keywords: Anticancer Agents, DNA binding studies, organotin, NMR spectroscopy

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1094092

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2395

References:


[1] S. G. Ward, R. C. Taylor, "Anti-tumor activity of the main-group elements: aluminum, gallium, indium, thallium, germanium, lead, antimony and bismuth,” in Metal-Based Anti-Tumor Drugs, M. F. Gielen, Ed. London: Freund Publishing House, 1988, pp. 1.
[2] P. K¨opf-Maier, H. K¨opf, " Non-platinum-group metal antitumor agents: history, current status, and perspectives,” Chem. Rev., vol. 87, 1987, pp. 1137–1152.
[3] B. K. Keppler, C. Friesen, H. G. Moritz, H. Vongerichten, E. Vogel, "Tumor inhibiting bis(β-diketonato) metal complexes. Budotitane, cisdiethoxybis( 1-phenylbutane-1,3- dionato)titanium-(IV); The first transition metal complex after platinum to qualify for clinical trials,” Struct. Bond., vol. 78, 1991, pp. 97–127.
[4] S. Fruhauf, W. J. Zeller, "In vitro evaluation of platinum, titanium and ruthenium metal complexes in cisplatin-sensitive and -resistant rat ovarian tumors,” Cancer Chemoth. Pharm., vol. 27, 1991, pp. 301–307.
[5] G. Sava, S. Zorzet, T. Giraldi, "Antineoplastic activity and toxicity of an organometallic complex of ruthenium(II) in comparison with cis-PDD in mice bearing solid malignant neoplasms,” Eur. J. Cancer Clin. Oncol., vol. 20, 1984, pp. 841–847.
[6] C. Pettinari, F. Marchetti, "Chemical and biotechnological developments in organotin cancer chemotherapy,” in Tin Chemistry, Fundamentals, Frontiers, and Applications, A. G. Davies, M. Gielen, K. H. Pannell, and E. R. T. Tiekink, Ed. New York: JohnWiley & Sons, 2008, pp. 454–468.
[7] A. K. Saxena, F. Huber, "Organotin compounds and cancer chemotherapy,” Coord. Chem. Rev., vol. 95, 1989, pp. 109–123.
[8] M. Gielen, P. Lelieveld, D. de Vos, R. Willem, "In vitro antitumor activity of organotin compounds,” in Metal-Based Antitumor Drugs, M. Gielen Ed. London: Freund Publishing House, 1992.
[9] M. J. Clarke, F. Zhu, D. R. Frasca, "Non-platinum chemotherapeutic metallopharmaceuticals,” Chem. Rev., vol. 99, 1999, pp. 2511–2533.
[10] M. Nath, S. Pokharia, R. Yadav, "Organotin(IV) complexes of amino acids and peptides,” Coord. Chem. Rev., vol. 215, 2001, pp. 99–149.
[11] Q. Li, P. Yang, H. Wang, G. Maolin, "Diorganotin(IV) antitumor agent. (C2H5)2SnCl2 (phen)/nucleotides aqueous and solid-state coordination chemistry and its DNA binding studies,” J. Inorg. Biochem., vol. 64, 1996, pp. 181–195.
[12] R. Huang, A. Wallqvist, D. G. Covell, "Anticancer metal compounds in NCI’s tumor-screening database: putative mode of action,” Biochem. Pharmacol., vol. 69, 2005, pp. 1009–1039.
[13] F. Arjmand, G. C. Sharma, F. Sayeed, M. Muddassir, S. Tabassum, "De novo design of chiral organotin cancer drug candidates: validation of enantiopreferential binding to molecular target DNA and 5’-GMP by UV–visible, fluorescence, 1H and 31P NMR,” J. Photochem. Photobiol., vol. 105, 2011, pp. 167–174.
[14] C. F. J. Barnard, M. J. Cleare, P. C. Hydes, "Second generation anticancer platinum compounds,” Chem. in Brit., vol. 22, 1986, pp. 1001–1004.
[15] B. Desoize, "Cancer and metals and metal compounds: part II—cancer treatment,” Crit. Rev. Oncol. Hematol., vol. 42, 2002, pp. 213–215.
[16] B. Desoize, C. Madoulet, "Particular aspects of platinum compounds used at present in cancer treatment,” Crit. Rev. Oncol. Hematol., vol. 42, 2002, pp. 317–325.
[17] P. Yang, M. Guo, "Interactions of organometallic anticancer agents with nucleotides and DNA,” Coord. Chem. Rev., vol. 185–186, 1999, pp. 189–211.
[18] L. Pellerito, L. Nagy, "Organotin(IV)n+ complexes formed with biologically active ligands: equilibrium and structural studies, and some biological aspects,” Coord. Chem. Rev., vol. 224, 2002, pp. 111–150.
[19] S. Tabassum, C. Pettinari, "Chemical and biotechnological developments in organotin cancer chemotherapy,” J. Organomet. Chem., vol. 691, 2006, pp. 1761–1766.
[20] Zolt´an Szab´o, "Multinuclear NMR studies of the interaction of metal ions with adenine-nucleotides,” Coord. Chem. Rev., vol. 252, 2008, pp. 2362–2380.
[21] A. Alama, B. Tasso, F. Novelli, F. Sparatore, "Organometallic compounds in oncology: implications of novel organotins as antitumor agents,” Drug Discov. Today, vol. 14, 2009, pp.9-10.
[22] A. M. Florea, D. Büsselberg, "Anti-cancer drugs interfere with intracellular calcium signaling,” NeuroToxicol., vol. 1006, 2009, pp. 1– 8.
[23] S. K. Hadjikakou, N. Hadjiliadis, "Antiproliferative and anti-tumor activity of organotin compounds,” Coord. Chem. Rev., vol. 253, 2009, pp. 235–249.
[24] A. Y. Louie, T. J. Meade, "Metal complexes as enzyme inhibitors,” Chem. Rev., vol. 99, 1999, pp. 2711–2734.
[25] P. J. Barnard, S. J. Berners-Price, "Target in the mitochondrial cell death pathway with gold compounds,” Coord. Chem. Rev., vol. 251, 2007, pp. 1889–1902.
[26] J. D. Robertson, S. Orrenius, "Role of mitochondria in toxic cell death,” Toxicology, vol. 181–182, 2002, pp. 491–496.
[27] A. J. Crowe, "The chemotherapeutic properties of tin compounds”, Drugs Future, vol. 12, 1987, pp. 255–275.
[28] M. Gielen, Tin-Based Antitumor Drugs, Springer Verlag, Berlin, 1990.
[29] M. Gielen, E. R. T. Tiekink, Tin compounds and their therapeutic potential, Metallotherapeutic Drugs and Metal-Based Diagnostic Agents. The Use of Metals in Medicine, JohnWiley & Sons, New York, 2005.
[30] R. C. Poller, The chemistry of organotin compounds, Logos Press Limited, London, 1970.
[31] A. G. Davies, Organotin chemistry, VCH, Weinheim, Germany, 2004.
[32] M. Gielen, "An overview of forty years organotin chemistry developed at the Free Universities of Brussels ULB and VUB,” J. Braz. Chem. Soc., vol. 14, 2003, pp. 1.
[33] M. Nath, S. Pokharia, G. Eng, X. Song, M. Gielen, M. Kemmer, M. Biesemans, R. Willem, D. de Vos, "New organotin(IV) derivatives of dipeptides as models for metal-protein interactions: In vitro antitumor activity,” Appl. Organmet. Chem., vol. 17, 2003, pp. 305–314.
[34] M. Nath, M. Vats, P. Roy, "Di- and triorganotin(IV) complexes of biologically important orotic acid: synthesis, spectroscopic studies, in vitro anti-cancer, DNA fragmentation, enzymes assays, and in vivo antiinflammatory activities,” Eur. J. Med. Chem., vol. 59, 2013, pp.310– 321.
[35] S. R. Collinson, D. E. Fenton, "Metal complexes of bibracchial Schiff base macrocycles,” Coord. Chem. Rev., vol. 148, 1996, pp. 19.
[36] M. Nath, S. Pokharia, G. Eng, X. Song, A. Kumar, "Comparative study of structure-activity relationship of di- and triorganotin( IV) derivatives of amino acid and peptides,” J. Organomet. Chem., vol. 669, 2003, pp. 109–123.
[37] M. Nath, S. Pokharia, G. Eng, X. Song, A. Kumar, "Diorganotin(IV) derivatives of dipeptides containing at least one essential amino acid residue: synthesis, characteristic spectral data, cardiovascular, and antiinflammatory activities,” Synth. React. Inorg. Metal-Org. Chem., vol. 34, 2004, pp. 1689–1708.
[38] M. Nath, R. Jairath, G. Eng, X. Song, A. Kumar, "Interaction of triorganotin(IV) cations with pyrimidine bases/nucleoside: synthesis, spectral characterization and biological studies of a novel triphenyltin(IV) derivative of thymidine,” Inorg. Chem. Commun., vol. 7, 2004, pp. 1161–1163.
[39] M. Nath, S. Pokharia, G. Eng, X. Song, A. Kumar, M.Gielen, R. Willem, M. Biesemans, "New trimethyltin(IV) derivatives of dipeptides: synthesis, characteristic spectral studies and biological activity,” Appl. Organomet. Chem., vol. 18, 2004, pp. 460–470.
[40] M. Nath, S. Pokharia, G. Eng, X. Song, A. Kumar, "New triorganotin(IV) derivatives of dipeptides as anti-inflammatoryantimicrobial agents,” Eur. J. Med. Chem., vol. 40, 2005, pp. 289–298.
[41] M. Nath, S. Pokharia, G. Eng, X. Song, A. Kumar, "New triorganotin (IV) derivatives of dipeptides as models for metal-protein interactions: synthesis, structural characterization and biological studies,” Spectrochim. Acta—Part A, vol. 63, 2006, pp. 66–75.
[42] M. Nath, H. Singh, P. Kumar, A. Kumar, X. Song, G. Eng, "Organotin(IV) tryptophanylglycinates: potential nonsteroidal anti inflammatory agents; crystal structure of dibutyltin(IV) tryptophanylglycinate,” Appl. Organomet. Chem., vol. 23, 2009, pp. 347–358.
[43] M.Nath, H. Singh, G. Eng, X. Song, A. Kumar, "Syntheses, characterization and biological activity of diorganotin(IV) derivatives of 2-amino-6-hydroxypurine (guanine),” Inorg. Chem. Commun., vol. 12, 2009, pp. 1049–1052.
[44] M. Nath, H. Singh, G. Eng, X. Song, "Interaction of organotin(IV) moieties with nucleic acid constituent: synthesis, structural characterization and anti-inflammatory activity of tri-n-propyltin(IV) and diorganotin(IV) derivatives of guanosine,” Inorg. Chem. Commun., vol. 14, 2011, pp. 1381–1385.
[45] M. Nath, H. Singh, G. Eng, X. Song, "Interaction of 5’-guanosine monophosphate with organotin(IV) moieties: synthesis, structural characterization, and anti-inflammatory activity,” ISRN Org. Chem., 2012, pp. 1–9.
[46] M. I. Khan, M. K. Baloch, M. Ashfaq, G. Stoter, "In vivo toxicological effects and spectral studies of new triorganotin(IV)–N– maleoyltranexanates,” J. Organomet. Chem., vol. 691, 2006, pp. 2554.
[47] A. Atkinson, M. D. Rodriguez, T. E. Shewmaker, J. A. Walmsley, "Synthesis and characterization of compounds of di- and tributyltin chloride with adenine and guanine mononucleotides,” Inorg. Chim. Acta, vol. 285, 1999, pp. 60–69.
[48] H. Jankovics, L. Nagy, N. Buz´as, L. Pellerito, R. Barbieri, "Coordination properties of adenosine-5’-monophosphate and related ligands towards Me2Sn(IV)2+ in aqueous solution,” J. Inorg. Biochem., vol. 92, 2002, pp. 55.
[49] F. Gharib, E. Farzad, M. M. Amini, "Interaction of dimethyltin(IV) dichloride with 5’-AMP and 5’-GMP,” Can. J. Chem., vol. 84, 2006, pp. 1534.
[50] S. Roy, K. D. Hagen, P. U. Maheswari, M. Lutz, A. L. Spek, J. Reedijk, G. P. van Wezel, "Phenanthroline derivatives with improved selectivity as DNA-targeting anticancer or antimicrobial drugs,” Chem. Med. Chem., vol. 3, 2008, pp. 1427–1434.
[51] W. D. Honnick, M. C. Hughes, C. D. Schaeffer, Jr., J. J. Zuckerman, "Tin– 119m mössbauer, infrared, nuclear magnetic resonance, equilibrium, and thermodynamic measurements on complexes of dimethyltin dichloride with substituted 1,l0-phenanthrolines and 2,2'- bipyridines,” Inorg. Chem., vol. 15, 1976, pp. 1391–1396.
[52] M. E. Reicmann, S. A. Rice, C. A. Thomas, P. Doty, "A further examination of the molecular weight and size of desoxypentose nucleic acid,” J. Am. Chem. Soc., vol. 76, 1954, pp. 3047–3053.
[53] L. F. Tan, H. Chao, K. C. Zhen, J. J. Fei, F. Wang, Y. F. Zhou, N. J. Liang, "Co(III) complexes of Me-salpn and Me-salbn and the ring size effect on the coordination modes and electrochemical properties: the crystal structures of trans-
[CoIII(Me-salpn)(py)2]PF6 and cis-α-
[CoIII(Me-salbn)(4-Mepy)2]BPh4 4-Mepy,” Polyhedron, vol. 26, 2007, pp. 5448–5457.
[54] L. J. Childs, J. Malina, B. E. Rolfsnes, M. Pascu, M. J. Prieto, M. J. Broome, P. M. Rodger, E. Sletten, V. Moreno, A. Rodger, M. J. Hannon, "A DNA-binding copper(I) metallosupramolecular cylinder that acts as an artificial nuclease,” Chem..Eur. J., vol. 12, 2006, pp. 4919–4927.
[55] S. Yellappa, J. Seetharamappa, L. M. Rogers, R. Chitta, R. P. Singhal, F. D’Souza, "Binding, electrochemical activation, and cleavage of DNA by Cobalt(II) Tetrakis-N-methylpyridyl Porphyrin and its β-Pyrrole brominated derivative,” Bioconjugate Chem., vol. 17, 2006, pp. 1418– 1425.
[56] S. Satyanarayana, J. C. Dabrowiak, J. B. Chaires, "Neither DELTA- nor LAMBDA -tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation,” Biochemistry, vol. 31, 1992, pp. 9319–9324.
[57] D. -L. Ma, C. -M. Che, "A bifunctional platinum(II) complex capable of intercalation and hydrogen-bonding interactions with DNA: Binding studies and cytotoxicity,” Chem. Eur. J., vol. 9, 2003, pp. 6133–6144.
[58] D. -L. Ma, C. -M. Che, F. -M. Siu, M. Yang, K. -Y. Wong, "DNA binding and cytotoxicity of ruthenium(II) and rhenium(I) complexes of 2-Amino-4-phenylamino-6-(2-pyridyl)-1,3,5-triazine,” Inorg. Chem., vol. 46, 2007, pp. 740–749.
[59] S. Wang, R. Cosstick, J. F. Gardner, R. I. Gumport, "The specific binding of Escherichia coli integration host factor involves both major and minor grooves of DNA,” Biochemistry, vol. 34, 1995, pp.13082– 13090.
[60] S. Tabassum, R. A. Khan, F. Arjmand, M. Aziz, A. S. Juvekar, S. M. Zingde, "Carbohydrate-conjugate heterobimetallic complexes: synthesis, DNAbinding studies, artificial nuclease activity and in vitro cytotoxicity,” Carbohydr. Res., vol. 346, 2011, pp. 2886–2895.
[61] K. Aoki, "The Anti-tumor activity of tin compounds,” in Metal-Based Anti-Tumor Drugs, M. F. Gielen, Ed. London: Freund Publishing House, 1988, pp. 127.