
 

 

 
    Abstract—This paper introduces an adaptive control scheme to 
synchronize two identical Chua’s systems. Introductory part of the 
paper is presented in the first part of the paper and then in the second 
part, a new theorem is proposed based on which an adaptive control 
scheme is developed to synchronize two identical modified Chua’s 
circuit. Finally, numerical simulations are included to verify the 
effectiveness of the proposed control method. 
 

Keywords—Chaos synchronization, Adaptive control, Chua’s 
circuits. 

I. INTRODUCTION 
HOS control and synchronization have attracted a great 
deal of attention of researchers from many different fields 

and is very important in many physical systems such as secure 
communication, space engineering, electronic systems, and 
semiconductor laser [1]. The control problem attempts to 
stabilize a chaotic attractor to either a periodic orbit or an 
equilibrium point [2]. Recently several control strategies have 
been proposed to stabilize chaotic systems. There are two 
main approaches to control chaos: non-feedback control [3, 4] 
and feedback control [5-7]. 

The idea of synchronizing two identical chaotic systems 
with different initial conditions was introduced by Pecora and 
Carroll [8, 9]. Different approaches including conventional 
linear control techniques as well as advanced nonlinear 
control schemes have been already applied to the mentioned 
problem [1, 10]. In the most of the existing works, it is 
essential to know the system parameters. In practical 
situations, however, the parameters are usually unknown. 
Therefore, the derivation of an adaptive controller for the 
control and synchronization of chaotic systems is important. 

Chua’s circuit has been studied extensively as a 
prototypical electronic system by means of theoretical analysis 
and laboratory experiments. In recent years synchronization of 
two Chua’s circuits has been studied [2, 11 and 12]. In this 
paper we present a new approach to adaptively synchronize 
two Chua’s systems. 

II. ADAPTIVE SCHEME 
The Chua’s system is described by the following state space 

representation; 
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and pba ,,  and q  are constant parameters. When 

87.14,10,68.0,27.1 ==−=−= qpba  and 1=E  this system 
generates chaotic attractor [3]. 

Lets consider system (3) as the master and system (4) as the 
slave system. 
 

Master system; 
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Slave system; 
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where 21, uu  and 3u  are controllers to be determined. Let the 
state error signals be; 
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So the error dynamics of the systems (3) and (4) would be as; 
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Theorem: The slave system (4) can be synchronized with the 
master system (3) using the adaptive rule xkeuuu === 132 ,0  

where 0,2 >= AAek x
& . 

 
Proof: The error dynamics are; 
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Consider the Lyapanov candidate function of the form; 
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where ِ 0>D  and k̂  are constants. Define adaptive parameter 
error as; 
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Then one can write (8) in compact form as; 
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G  is positive definite when the followings are satisfied. 
 

04/,0,0 22 >−>> nqppqq            (13) 
 
It is easy to show that the last condition is satisfied when 

qpn 240 << . When G  is positive definite then 0>GeeT  
and therefore 0>V . 
Derivate of V  along the system (6) dynamics is as follows. 
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It is easy to find that; 
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Let qAD 2= , )ˆ( kpaqL +=  
 
So we have; 
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Q  is negative definite if and only if the following conditions 
are hold. 
 

0
2/2/

2/22
2/222

0
22

222
022

<
−−

+−
−−−

>
+−

−−

<−−

nnn
nnqpqpq
npqpqL

nqpqpq
pqpqL

pqL

        (17) 

 

The above three conditions can be replaced by the following 
two conditions [13]. 
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Inequality (18) is satisfied when; 
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So we have; 
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Furthermore inequality (19) is satisfied when; 
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So we conclude that: 
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is hold in which the following definitions were employed. 
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When αγβ 42 ≤  then any positive number n  is a solution of 
(25). Hence, n  can be selected as; 
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When αγβ 42 >  we let 
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Then any n  can satisfy above inequality considering the 
following condition. 
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By this selection Q  would be negative definite. In 
conclusion, we can always choose 10 ≤< n  such that G  be 
positive definite and Q  be negative definite. Hence the 
system (3) and (4) can be adaptively synchronized. 

III. SIMULATION RESULTS 
To verify the effectiveness of the proposed synchronizing 

controller we illustrate a numerical simulation. We use two 
identical Chua’s circuits with parameters: 
 

1,87.14,0.10,68.1,27.1 ===−=−= Eqpba  
 
The initial values for the master system are 5.010 =x , 

5.0,5.0 1010 −== zy  and for the slave system are 1.020 =x , 
1.0,1.0 2020 −== zy  respectively. The control parameter is 

initiated as 5.00 =k . The trajectory of the master system’s 
states is shown in Fig. 1. 
 

 
 

Fig. 1 The chaotic attractor of the Chua's circuit 
The time responses for the state adaptive synchronization 

errors are shown in the Figs. 2, 3, 4. It is easily seen that the 
errors are diminished after few seconds. 

 

 
 

Fig. 2 The synchronization error for state x  
 

 
 

Fig. 3 The synchronization error for state y  
 

 
 

Fig. 4 The synchronization error for state z  
 

 
 

Fig. 5 Parameter k  with initial condition 5.00 =k  
 

The parameter adaptation is shown in Fig. 5. Figs. 6 and 7 
indicate effect of the parameter initial condition on the 
synchronization time. The final value of the parameter is also 
affected. 
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Fig. 6 Parameter k  with initial condition 40 =k  
 

 
 

Fig. 7 Parameter k  with initial condition 5.00 −=k  

IV. CONCLUSION 
In this paper we have introduced a new adaptive scheme to 

synchronize two Chua’s circuit. The numerical simulations 
were presented to show the effectiveness of the proposed 
method. We have also shown that the synchronizing delay 
time can be decreased by proper choice of the initial condition 
of the control parameter. 
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