Search results for: DDoS detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1528

Search results for: DDoS detection

958 Change Point Analysis in Average Ozone Layer Temperature Using Exponential Lomax Distribution

Authors: Amjad Abdullah, Amjad Yahya, Bushra Aljohani, Amani S. Alghamdi

Abstract:

Change point detection is an important part of data analysis. The presence of a change point refers to a significant change in the behavior of a time series. In this article, we examine the detection of multiple change points of parameters of the exponential Lomax distribution, which is broad and flexible compared with other distributions while fitting data. We used the Schwarz information criterion and binary segmentation to detect multiple change points in publicly available data on the average temperature in the ozone layer. The change points were successfully located.

Keywords: Binary segmentation, change point, exponential Lomax distribution, information criterion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 353
957 A Study on Abnormal Behavior Detection in BYOD Environment

Authors: Dongwan Kang, Joohyung Oh, Chaetae Im

Abstract:

Advancement of communication technologies and smart devices in the recent times is leading to changes into the integrated wired and wireless communication environments. Since early days, businesses had started introducing environments for mobile device application to their operations in order to improve productivity (efficiency) and the closed corporate environment gradually shifted to an open structure. Recently, individual user's interest in working environment using mobile devices has increased and a new corporate working environment under the concept of BYOD is drawing attention. BYOD (bring your own device) is a concept where individuals bring in and use their own devices in business activities. Through BYOD, businesses can anticipate improved productivity (efficiency) and also a reduction in the cost of purchasing devices. However, as a result of security threats caused by frequent loss and theft of personal devices and corporate data leaks due to low security, companies are reluctant about adopting BYOD system. In addition, without considerations to diverse devices and connection environments, there are limitations in detecting abnormal behaviors, such as information leaks, using the existing network-based security equipment. This study suggests a method to detect abnormal behaviors according to individual behavioral patterns, rather than the existing signature-based malicious behavior detection, and discusses applications of this method in BYOD environment.

Keywords: BYOD, Security, Anomaly Behavior Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073
956 Automatic Microaneurysm Quantification for Diabetic Retinopathy Screening

Authors: A. Sopharak, B. Uyyanonvara, S. Barman

Abstract:

Microaneurysm is a key indicator of diabetic retinopathy that can potentially cause damage to retina. Early detection and automatic quantification are the keys to prevent further damage. In this paper, which focuses on automatic microaneurysm detection in images acquired through non-dilated pupils, we present a series of experiments on feature selection and automatic microaneurysm pixel classification. We found that the best feature set is a combination of 10 features: the pixel-s intensity of shade corrected image, the pixel hue, the standard deviation of shade corrected image, DoG4, the area of the candidate MA, the perimeter of the candidate MA, the eccentricity of the candidate MA, the circularity of the candidate MA, the mean intensity of the candidate MA on shade corrected image and the ratio of the major axis length and minor length of the candidate MA. The overall sensitivity, specificity, precision, and accuracy are 84.82%, 99.99%, 89.01%, and 99.99%, respectively.

Keywords: Diabetic retinopathy, microaneurysm, naive Bayes classifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2201
955 Road Vehicle Recognition Using Magnetic Sensing Feature Extraction and Classification

Authors: Xiao Chen, Xiaoying Kong, Min Xu

Abstract:

This paper presents a road vehicle detection approach for the intelligent transportation system. This approach mainly uses low-cost magnetic sensor and associated data collection system to collect magnetic signals. This system can measure the magnetic field changing, and it also can detect and count vehicles. We extend Mel Frequency Cepstral Coefficients to analyze vehicle magnetic signals. Vehicle type features are extracted using representation of cepstrum, frame energy, and gap cepstrum of magnetic signals. We design a 2-dimensional map algorithm using Vector Quantization to classify vehicle magnetic features to four typical types of vehicles in Australian suburbs: sedan, VAN, truck, and bus. Experiments results show that our approach achieves a high level of accuracy for vehicle detection and classification.

Keywords: Vehicle classification, signal processing, road traffic model, magnetic sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413
954 Multiuser Detection in CDMA Fast Fading Multipath Channel using Heuristic Genetic Algorithms

Authors: Muhammad Naeem, Syed Ismail Shah, Habibullah Jamal

Abstract:

In this paper, a simple heuristic genetic algorithm is used for Multistage Multiuser detection in fast fading environments. Multipath channels, multiple access interference (MAI) and near far effect cause the performance of the conventional detector to degrade. Heuristic Genetic algorithms, a rapidly growing area of artificial intelligence, uses evolutionary programming for initial search, which not only helps to converge the solution towards near optimal performance efficiently but also at a very low complexity as compared with optimal detector. This holds true for Additive White Gaussian Noise (AWGN) and multipath fading channels. Experimental results are presented to show the superior performance of the proposed techque over the existing methods.

Keywords: Genetic Algorithm (GA), Multiple AccessInterference (MAI), Multistage Detectors (MSD), SuccessiveInterference Cancellation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056
953 Taxonomy of Threats and Vulnerabilities in Smart Grid Networks

Authors: Faisal Al Yahmadi, Muhammad R. Ahmed

Abstract:

Electric power is a fundamental necessity in the 21st century. Consequently, any break in electric power is probably going to affect the general activity. To make the power supply smooth and efficient, a smart grid network is introduced which uses communication technology. In any communication network, security is essential. It has been observed from several recent incidents that adversary causes an interruption to the operation of networks. In order to resolve the issues, it is vital to understand the threats and vulnerabilities associated with the smart grid networks. In this paper, we have investigated the threats and vulnerabilities in Smart Grid Networks (SGN) and the few solutions in the literature. Proposed solutions showed developments in electricity theft countermeasures, Denial of services attacks (DoS) and malicious injection attacks detection model, as well as malicious nodes detection using watchdog like techniques and other solutions.

Keywords: Smart grid network, security, threats, vulnerabilities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 609
952 An Approach for the Prediction of Diabetes via Relief Feature Selection

Authors: Nebi Gedik

Abstract:

One of the most common chronic diseases in the world, diabetes is brought on by insufficient insulin production by the pancreas or by inefficient insulin utilization by the body. The disease is linked to the interplay of lifestyle, behavioral and medical circumstances, demographics, and genetic risk factors. Early disease detection is crucial for helping medical professionals with diagnosis or prognosis as well as for creating a successful preventative strategy. Machine learning techniques are utilized for this purpose in order to identify diabetes from medical records. Finding the characteristics or features that provide the best prediction of classification for diabetes detection is the aim of this study. The performance of each feature is compared using the linear discriminant analysis and k-nearest neighbor classifiers. The feature that yields the best classification results has been determined.

Keywords: Diabetes, relief feature selection, k-nearest neighbor classifiers, lenear discriminant analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22
951 Abnormality Detection of Persons Living Alone Using Daily Life Patterns Obtained from Sensors

Authors: Ippei Kamihira, Takashi Nakajima, Taiyo Matsumura, Hikaru Miura, Takashi Ono

Abstract:

In this research, the goal was construction of a system by which multiple sensors were used to observe the daily life behavior of persons living alone (while respecting their privacy), using this information to judge such conditions as bad physical condition or falling in the home, etc., so that these abnormal conditions can be made known to relatives and third parties. The daily life patterns of persons living alone are expressed by the number of responses of sensors each time that a set time period has elapsed. By comparing data for the prior two weeks, it was possible to judge a situation as “normal” when the person was in good physical condition or as “abnormal” when the person was in bad physical condition.

Keywords: Sensors, Elderly living alone, Abnormality detection, Lifestyle habit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
950 Building a Trend Based Segmentation Method with SVR Model for Stock Turning Detection

Authors: Jheng-Long Wu, Pei-Chann Chang, Yi-Fang Pan

Abstract:

This research focus on developing a new segmentation method for improving forecasting model which is call trend based segmentation method (TBSM). Generally, the piece-wise linear representation (PLR) can finds some of pair of trading points is well for time series data, but in the complicated stock environment it is not well for stock forecasting because of the stock has more trends of trading. If we consider the trends of trading in stock price for the trading signal which it will improve the precision of forecasting model. Therefore, a TBSM with SVR model used to detect the trading points for various stocks of Taiwanese and America under different trend tendencies. The experimental results show our trading system is more profitable and can be implemented in real time of stock market

Keywords: Trend based segmentation method, support vector machine, turning detection, stock forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3177
949 Stochastic Edge Based Anomaly Detection for Supervisory Control and Data Acquisitions Systems: Considering the Zambian Power Grid

Authors: Lukumba Phiri, Simon Tembo, Kumbuso Joshua Nyoni

Abstract:

In Zambia, recent initiatives by various power operators like ZESCO, CEC, and consumers like the mines, to upgrade power systems into smart grids, target an even tighter integration with information technologies to enable the integration of renewable energy sources, local and bulk generation, and demand response. Thus, for the reliable operation of smart grids, its information infrastructure must be secure and reliable in the face of both failures and cyberattacks. Due to the nature of the systems, ICS/SCADA cybersecurity and governance face additional challenges compared to the corporate networks, and critical systems may be left exposed. There exist control frameworks internationally such as the NIST framework, however, they are generic and do not meet the domain-specific needs of the SCADA systems. Zambia is also lagging in cybersecurity awareness and adoption, and therefore there is a concern about securing ICS controlling key infrastructure critical to the Zambian economy as there are few known facts about the true posture. In this paper, we present a stochastic Edged-based Anomaly Detection for SCADA systems (SEADS) framework for threat modeling and risk assessment. SEADS enables the calculation of steady-steady probabilities that are further applied to establish metrics like system availability, maintainability, and reliability.

Keywords: Anomaly detection, SmartGrid, edge, maintainability, reliability, stochastic process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 337
948 A Methodological Approach for Detecting Burst Noise in the Time Domain

Authors: Liu Dan, Wang Xue, Wang Guiqin, Qian Zhihong

Abstract:

The burst noise is a kind of noises that are destructive and frequently found in semiconductor devices and ICs, yet detecting and removing the noise has proved challenging for IC designers or users. According to the properties of burst noise, a methodological approach is presented (proposed) in the paper, by which the burst noise can be analysed and detected in time domain. In this paper, principles and properties of burst noise are expounded first, Afterwards, feasibility (viable) of burst noise detection by means of wavelet transform in the time domain is corroborated in the paper, and the multi-resolution characters of Gaussian noise, burst noise and blurred burst noise are discussed in details by computer emulation. Furthermore, the practical method to decide parameters of wavelet transform is acquired through a great deal of experiment and data statistics. The methodology may yield an expectation in a wide variety of applications.

Keywords: Burst noise, detection, wavelet transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
947 Variance Based Component Analysis for Texture Segmentation

Authors: Zeinab Ghasemi, S. Amirhassan Monadjemi, Abbas Vafaei

Abstract:

This paper presents a comparative analysis of a new unsupervised PCA-based technique for steel plates texture segmentation towards defect detection. The proposed scheme called Variance Based Component Analysis or VBCA employs PCA for feature extraction, applies a feature reduction algorithm based on variance of eigenpictures and classifies the pixels as defective and normal. While the classic PCA uses a clusterer like Kmeans for pixel clustering, VBCA employs thresholding and some post processing operations to label pixels as defective and normal. The experimental results show that proposed algorithm called VBCA is 12.46% more accurate and 78.85% faster than the classic PCA.

Keywords: Principal Component Analysis; Variance Based Component Analysis; Defect Detection; Texture Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
946 Numerical Simulation of Fiber Bragg Grating Spectrum for Mode-І Delamination Detection

Authors: O. Hassoon, M. Tarfoui, A. El Malk

Abstract:

Fiber Bragg optic sensor is embedded in composite material to detect and monitor the damage that occurs in composite structures. In this paper, we deal with the mode-Ι delamination to determine the material strength to crack propagation, using the coupling mode theory and T-matrix method to simulate the FBGs spectrum for both uniform and non-uniform strain distribution. The double cantilever beam test is modeled in FEM to determine the longitudinal strain. Two models are implemented, the first is the global half model, and the second is the sub-model to represent the FBGs with higher refined mesh. This method can simulate damage in composite structures and converting strain to a wavelength shifting in the FBG spectrum.

Keywords: Fiber Bragg grating, Delamination detection, DCB, FBG spectrum, Structure health monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6557
945 Improving Subjective Bias Detection Using Bidirectional Encoder Representations from Transformers and Bidirectional Long Short-Term Memory

Authors: Ebipatei Victoria Tunyan, T. A. Cao, Cheol Young Ock

Abstract:

Detecting subjectively biased statements is a vital task. This is because this kind of bias, when present in the text or other forms of information dissemination media such as news, social media, scientific texts, and encyclopedias, can weaken trust in the information and stir conflicts amongst consumers. Subjective bias detection is also critical for many Natural Language Processing (NLP) tasks like sentiment analysis, opinion identification, and bias neutralization. Having a system that can adequately detect subjectivity in text will boost research in the above-mentioned areas significantly. It can also come in handy for platforms like Wikipedia, where the use of neutral language is of importance. The goal of this work is to identify the subjectively biased language in text on a sentence level. With machine learning, we can solve complex AI problems, making it a good fit for the problem of subjective bias detection. A key step in this approach is to train a classifier based on BERT (Bidirectional Encoder Representations from Transformers) as upstream model. BERT by itself can be used as a classifier; however, in this study, we use BERT as data preprocessor as well as an embedding generator for a Bi-LSTM (Bidirectional Long Short-Term Memory) network incorporated with attention mechanism. This approach produces a deeper and better classifier. We evaluate the effectiveness of our model using the Wiki Neutrality Corpus (WNC), which was compiled from Wikipedia edits that removed various biased instances from sentences as a benchmark dataset, with which we also compare our model to existing approaches. Experimental analysis indicates an improved performance, as our model achieved state-of-the-art accuracy in detecting subjective bias. This study focuses on the English language, but the model can be fine-tuned to accommodate other languages.

Keywords: Subjective bias detection, machine learning, BERT–BiLSTM–Attention, text classification, natural language processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 845
944 Defect Detection of Tiles Using 2D-Wavelet Transform and Statistical Features

Authors: M.Ghazvini, S. A. Monadjemi, N. Movahhedinia, K. Jamshidi

Abstract:

In this article, a method has been offered to classify normal and defective tiles using wavelet transform and artificial neural networks. The proposed algorithm calculates max and min medians as well as the standard deviation and average of detail images obtained from wavelet filters, then comes by feature vectors and attempts to classify the given tile using a Perceptron neural network with a single hidden layer. In this study along with the proposal of using median of optimum points as the basic feature and its comparison with the rest of the statistical features in the wavelet field, the relational advantages of Haar wavelet is investigated. This method has been experimented on a number of various tile designs and in average, it has been valid for over 90% of the cases. Amongst the other advantages, high speed and low calculating load are prominent.

Keywords: Defect detection, tile and ceramic quality inspection, wavelet transform, classification, neural networks, statistical features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2384
943 Relation of Optimal Pilot Offsets in the Shifted Constellation-Based Method for the Detection of Pilot Contamination Attacks

Authors: Dimitriya A. Mihaylova, Zlatka V. Valkova-Jarvis, Georgi L. Iliev

Abstract:

One possible approach for maintaining the security of communication systems relies on Physical Layer Security mechanisms. However, in wireless time division duplex systems, where uplink and downlink channels are reciprocal, the channel estimate procedure is exposed to attacks known as pilot contamination, with the aim of having an enhanced data signal sent to the malicious user. The Shifted 2-N-PSK method involves two random legitimate pilots in the training phase, each of which belongs to a constellation, shifted from the original N-PSK symbols by certain degrees. In this paper, legitimate pilots’ offset values and their influence on the detection capabilities of the Shifted 2-N-PSK method are investigated. As the implementation of the technique depends on the relation between the shift angles rather than their specific values, the optimal interconnection between the two legitimate constellations is investigated. The results show that no regularity exists in the relation between the pilot contamination attacks (PCA) detection probability and the choice of offset values. Therefore, an adversary who aims to obtain the exact offset values can only employ a brute-force attack but the large number of possible combinations for the shifted constellations makes such a type of attack difficult to successfully mount. For this reason, the number of optimal shift value pairs is also studied for both 100% and 98% probabilities of detecting pilot contamination attacks. Although the Shifted 2-N-PSK method has been broadly studied in different signal-to-noise ratio scenarios, in multi-cell systems the interference from the signals in other cells should be also taken into account. Therefore, the inter-cell interference impact on the performance of the method is investigated by means of a large number of simulations. The results show that the detection probability of the Shifted 2-N-PSK decreases inversely to the signal-to-interference-plus-noise ratio.

Keywords: Channel estimation, inter-cell interference, pilot contamination attacks, wireless communications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 688
942 Quality Control of Automotive Gearbox Based On Vibration Signal Analysis

Authors: Nilson Barbieri, Bruno Matos Martins, Gabriel de Sant'Anna Vitor Barbieri

Abstract:

In more complex systems, such as automotive gearbox, a rigorous treatment of the data is necessary because there are several moving parts (gears, bearings, shafts, etc.), and in this way, there are several possible sources of errors and also noise. The basic objective of this work is the detection of damage in automotive gearbox. The detection methods used are the wavelet method, the bispectrum; advanced filtering techniques (selective filtering) of vibrational signals and mathematical morphology. Gearbox vibration tests were performed (gearboxes in good condition and with defects) of a production line of a large vehicle assembler. The vibration signals are obtained using five accelerometers in different positions of the sample. The results obtained using the kurtosis, bispectrum, wavelet and mathematical morphology showed that it is possible to identify the existence of defects in automotive gearboxes.

Keywords: Automotive gearbox, mathematical morphology, wavelet, bispectrum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2324
941 Photograph Based Pair-matching Recognition of Human Faces

Authors: Min Yao, Kota Aoki, Hiroshi Nagahashi

Abstract:

In this paper, a novel system recognition of human faces without using face different color photographs is proposed. It mainly in face detection, normalization and recognition. Foot method of combination of Haar-like face determined segmentation and region-based histogram stretchi (RHST) is proposed to achieve more accurate perf using Haar. Apart from an effective angle norm side-face (pose) normalization, which is almost a might be important and beneficial for the prepr introduced. Then histogram-based and photom normalization methods are investigated and ada retinex (ASR) is selected for its satisfactory illumin Finally, weighted multi-block local binary pattern with 3 distance measures is applied for pair-mat Experimental results show its advantageous perfo with PCA and multi-block LBP, based on a principle.

Keywords: Face detection, pair-matching rec normalization, skin color segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
940 Evaluation of State of the Art IDS Message Exchange Protocols

Authors: Robert Koch, Mario Golling, Gabi Dreo

Abstract:

During the last couple of years, the degree of dependence on IT systems has reached a dimension nobody imagined to be possible 10 years ago. The increased usage of mobile devices (e.g., smart phones), wireless sensor networks and embedded devices (Internet of Things) are only some examples of the dependency of modern societies on cyber space. At the same time, the complexity of IT applications, e.g., because of the increasing use of cloud computing, is rising continuously. Along with this, the threats to IT security have increased both quantitatively and qualitatively, as recent examples like STUXNET or the supposed cyber attack on Illinois water system are proofing impressively. Once isolated control systems are nowadays often publicly available - a fact that has never been intended by the developers. Threats to IT systems don’t care about areas of responsibility. Especially with regard to Cyber Warfare, IT threats are no longer limited to company or industry boundaries, administrative jurisdictions or state boundaries. One of the important countermeasures is increased cooperation among the participants especially in the field of Cyber Defence. Besides political and legal challenges, there are technical ones as well. A better, at least partially automated exchange of information is essential to (i) enable sophisticated situational awareness and to (ii) counter the attacker in a coordinated way. Therefore, this publication performs an evaluation of state of the art Intrusion Detection Message Exchange protocols in order to guarantee a secure information exchange between different entities.

Keywords: Cyber Defence, Cyber Warfare, Intrusion Detection Information Exchange, Early Warning Systems, Joint Intrusion Detection, Cyber Conflict

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2299
939 Development of Position Changing System for Obstructive Sleep Apnea Patient using HRV

Authors: Soo- Young Ye, Dong-Hyun Kim

Abstract:

Obstructive sleep apnea in patients, between 70 and 80 percent, can be cured with just a posture correcting. The most import thing to do this is detection of obstructive sleep apnea. Detection of obstructive sleep apnea can be performed through heart rate variability analysis using power spectrum density analysis. After HRV analysis we needed to know the current position information for correcting the position. The pressure sensors of the array type were used to obtain position information. These sensors can obtain information from the experimenter about position. In addition, air cylinder corrected the position of the experimenter by lifting the bed. The experimenter can be changed position without breaking during sleep by the system. Polysomnograph recording were obtained from 10 patients. The results of HRV analysis were that NLF and LF/HF ratio increased, while NHF decreased during OSA. Position change had to be done the periods.

Keywords: Obstructive sleep apnea, Heart rate variability, Air cylinder, PSD, RR interval, ANS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
938 Faults Forecasting System

Authors: Hanaa E.Sayed, Hossam A. Gabbar, Shigeji Miyazaki

Abstract:

This paper presents Faults Forecasting System (FFS) that utilizes statistical forecasting techniques in analyzing process variables data in order to forecast faults occurrences. FFS is proposing new idea in detecting faults. Current techniques used in faults detection are based on analyzing the current status of the system variables in order to check if the current status is fault or not. FFS is using forecasting techniques to predict future timing for faults before it happens. Proposed model is applying subset modeling strategy and Bayesian approach in order to decrease dimensionality of the process variables and improve faults forecasting accuracy. A practical experiment, designed and implemented in Okayama University, Japan, is implemented, and the comparison shows that our proposed model is showing high forecasting accuracy and BEFORE-TIME.

Keywords: Bayesian Techniques, Faults Detection, Forecasting techniques, Multivariate Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
937 Fault Detection and Identification of COSMED K4b2 Based On PCA and Neural Network

Authors: Jing Zhou, Steven Su, Aihuang Guo

Abstract:

COSMED K4b2 is a portable electrical device designed to test pulmonary functions. It is ideal for many applications that need the measurement of the cardio-respiratory response either in the field or in the lab is capable with the capability to delivery real time data to a sink node or a PC base station with storing data in the memory at the same time. But the actual sensor outputs and data received may contain some errors, such as impulsive noise which can be related to sensors, low batteries, environment or disturbance in data acquisition process. These abnormal outputs might cause misinterpretations of exercise or living activities to persons being monitored. In our paper we propose an effective and feasible method to detect and identify errors in applications by principal component analysis (PCA) and a back propagation (BP) neural network.

Keywords: BP Neural Network, Exercising Testing, Fault Detection and Identification, Principal Component Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3080
936 The Comparison Study of Current Control Techniques for Active Power Filters

Authors: T. Narongrit, K-L. Areerak, K-N. Areerak

Abstract:

This paper presents the comparison study of current control techniques for shunt active power filter. The hysteresis current control, the delta modulation control and the carrier-based PWM control are considered in the paper. The synchronous detection method is used to calculate the reference currents for shunt active power filter. The simulation results show that the carrier-based PWM control technique provides the minimum %THD value of the source currents compared with other comparable techniques after compensation. However, the %THD values of all three techniques can follow the IEEE std.519-1992.

Keywords: hysteresis current control, delta modulation current control, pulse width modulation control, shunt active power filter, synchronous detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2498
935 Indian License Plate Detection and Recognition Using Morphological Operation and Template Matching

Authors: W. Devapriya, C. Nelson Kennedy Babu, T. Srihari

Abstract:

Automatic License plate recognition (ALPR) is a technology which recognizes the registration plate or number plate or License plate of a vehicle. In this paper, an Indian vehicle number plate is mined and the characters are predicted in efficient manner. ALPR involves four major technique i) Pre-processing ii) License Plate Location Identification iii) Individual Character Segmentation iv) Character Recognition. The opening phase, named pre-processing helps to remove noises and enhances the quality of the image using the conception of Morphological Operation and Image subtraction. The second phase, the most puzzling stage ascertain the location of license plate using the protocol Canny Edge detection, dilation and erosion. In the third phase, each characters characterized by Connected Component Approach (CCA) and in the ending phase, each segmented characters are conceptualized using cross correlation template matching- a scheme specifically appropriate for fixed format. Major application of ALPR is Tolling collection, Border Control, Parking, Stolen cars, Enforcement, Access Control, Traffic control. The database consists of 500 car images taken under dissimilar lighting condition is used. The efficiency of the system is 97%. Our future focus is Indian Vehicle License Plate Validation (Whether License plate of a vehicle is as per Road transport and highway standard).

Keywords: Automatic License plate recognition, Character recognition, Number plate Recognition, Template matching, morphological operation, canny edge detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2417
934 Analysis of Acoustic Emission Signal for the Detection of Defective Manufactures in Press Process

Authors: Dong Hun Kim, Won Kyu Lee, Sok Won Kim

Abstract:

Small cracks or chips of a product appear very frequently in the course of continuous production of an automatic press process system. These phenomena become the cause of not only defective product but also damage of a press mold. In order to solve this problem AE system was introduced. AE system was expected to be very effective to real time detection of the defective product and to prevention of the damage of the press molds. In this study, for pick and analysis of AE signals generated from the press process, AE sensors/pre-amplifier/analysis and processing board were used as frequently found in the other similar cases. For analysis and processing the AE signals picked in real time from the good or bad products, specialized software called cdm8 was used. As a result of this work it was conformed that intensity and shape of the various AE signals differ depending on the weight and thickness of metal sheet and process type.

Keywords: press, acoustic emission, signal processing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636
933 Study of Anti-Symmetric Flexural Mode Propagation along Wedge Tip with a Crack

Authors: Manikanta Prasad Banda, Che Hua Yang

Abstract:

Anti-symmetric wave propagation along the particle motion of the wedge waves is known as anti-symmetric flexural (ASF) modes which travel along the wedge tips of the mid-plane apex with a small truncation. This paper investigates the characteristics of the ASF modes propagation with the wedge tip crack. The simulation and experimental results obtained by a three-dimensional (3-D) finite element model explained the contact acoustic non-linear (CAN) behavior in explicit dynamics in ABAQUS and the ultrasonic non-destructive testing (NDT) method is used for defect detection. The effect of various parameters on its high and low-level conversion modes are known for complex reflections and transmissions involved with direct reflections and transmissions. The results are used to predict the location of crack through complex transmission and reflection coefficients.

Keywords: ASF mode, crack detection, finite elements method, laser ultrasound technique, wedge waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544
932 Current Status and Future Trends of Mechanized Fruit Thinning Devices and Sensor Technology

Authors: Marco Lopes, Pedro D. Gaspar, Maria P. Simões

Abstract:

This paper reviews the different concepts that have been investigated concerning the mechanization of fruit thinning as well as multiple working principles and solutions that have been developed for feature extraction of horticultural products, both in the field and industrial environments. The research should be committed towards selective methods, which inevitably need to incorporate some kinds of sensor technology. Computer vision often comes out as an obvious solution for unstructured detection problems, although leaves despite the chosen point of view frequently occlude fruits. Further research on non-traditional sensors that are capable of object differentiation is needed. Ultrasonic and Near Infrared (NIR) technologies have been investigated for applications related to horticultural produce and show a potential to satisfy this need while simultaneously providing spatial information as time of flight sensors. Light Detection and Ranging (LIDAR) technology also shows a huge potential but it implies much greater costs and the related equipment is usually much larger, making it less suitable for portable devices, which may serve a purpose on smaller unstructured orchards. Portable devices may serve a purpose on these types of orchards. In what concerns sensor methods, on-tree fruit detection, major challenge is to overcome the problem of fruits’ occlusion by leaves and branches. Hence, nontraditional sensors capable of providing some type of differentiation should be investigated.

Keywords: Fruit thinning, horticultural field, portable devices, sensor technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 991
931 Guided Wave Sensitivity for De-Bond Defects in Aluminum Skin-Honeycomb Core

Authors: A. Satour, F. Boubenider, R. Halimi, A. Badidibouda

Abstract:

Sandwich plates are finding an increasing range of application in the aircraft industry. The inspection of honeycomb composite structure by conventional ultrasonic technique is complex and very time consuming. The present study demonstrates a technique using guided Lamb waves at low frequencies to predict de-bond defects in aluminum skin-honeycomb core sandwich structure used in aeronautics. The numerical method was investigated for drawing the dispersion and displacement curves of ultrasonic Lamb wave propagated in Aluminum plate. An experimental study was carried out to check the theoretical prediction. The detection of unsticking between the skin and the core was tested by the two first modes for a low frequency. It was found that A0 mode is more sensitive to delamination defect compared to S0 mode.

Keywords: Damage detection, delamination, guided waves, Sandwich structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2331
930 Decoder Design for a New Single Error Correcting/Double Error Detecting Code

Authors: M. T. Anwar, P. K. Lala, P. Thenappan

Abstract:

This paper presents the decoder design for the single error correcting and double error detecting code proposed by the authors in an earlier paper. The speed of error detection and correction of a code is largely dependent upon the associated encoder and decoder circuits. The complexity and the speed of such circuits are determined by the number of 1?s in the parity check matrix (PCM). The number of 1?s in the parity check matrix for the code proposed by the authors are fewer than in any currently known single error correcting/double error detecting code. This results in simplified encoding and decoding circuitry for error detection and correction.

Keywords: Decoder, Hsiao code, Parity Check Matrix, Syndrome Pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087
929 A Fast Sign Localization System Using Discriminative Color Invariant Segmentation

Authors: G.P. Nguyen, H.J. Andersen

Abstract:

Building intelligent traffic guide systems has been an interesting subject recently. A good system should be able to observe all important visual information to be able to analyze the context of the scene. To do so, signs in general, and traffic signs in particular, are usually taken into account as they contain rich information to these systems. Therefore, many researchers have put an effort on sign recognition field. Sign localization or sign detection is the most important step in the sign recognition process. This step filters out non informative area in the scene, and locates candidates in later steps. In this paper, we apply a new approach in detecting sign locations using a new color invariant model. Experiments are carried out with different datasets introduced in other works where authors claimed the difficulty in detecting signs under unfavorable imaging conditions. Our method is simple, fast and most importantly it gives a high detection rate in locating signs.

Keywords: Sign localization, color-based segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301