
 
Abstract—In Zambia, recent initiatives by various power 

operators like ZESCO, CEC, and consumers like the mines, to upgrade 
power systems into smart grids, target an even tighter integration with 
information technologies to enable the integration of renewable energy 
sources, local and bulk generation, and demand response. Thus, for the 
reliable operation of smart grids, its information infrastructure must be 
secure and reliable in the face of both failures and cyberattacks. Due 
to the nature of the systems, ICS/SCADA cybersecurity and 
governance face additional challenges compared to the corporate 
networks, and critical systems may be left exposed. There exist control 
frameworks internationally such as the NIST framework, however, 
they are generic and do not meet the domain-specific needs of the 
SCADA systems. Zambia is also lagging in cybersecurity awareness 
and adoption, and therefore there is a concern about securing ICS 
controlling key infrastructure critical to the Zambian economy as there 
are few known facts about the true posture. In this paper, we present a 
stochastic Edged-based Anomaly Detection for SCADA systems 
(SEADS) framework for threat modeling and risk assessment. SEADS 
enables the calculation of steady-steady probabilities that are further 
applied to establish metrics like system availability, maintainability, 
and reliability.  

  
Keywords—Anomaly detection, SmartGrid, edge, maintainability, 

reliability, stochastic process.  

I. INTRODUCTION 
ENEWABLE energy sources like water, solar, wind, and 
biomass are used in Zambia together with fossil fuels like 

petroleum. Except for petroleum, which is entirely imported 
into the country, Zambia has the potential to be energy self-
sufficient due to its significant untapped renewable resource 
reserves. Water still serves as Zambia's primary energy source 
despite the variety of these sources. According to estimates [1], 
Zambia has over 6,000 MW of hydropower potential, of which 
roughly 2,354 MW has been generated. It also has 40% of the 
SADC region's water resources. As of June 30, 2020, the total 
installed capacity of electricity in the country was 2,981.23 
MW. In terms of installed capacity by technology, coal was 
second at 10.1%, followed by hydro generation at 80.5%. 
Further generation of heavy fuel oil (HFO) was at 3.7%; diesel 
and solar generation were at 2.8% and 3.0%, respectively. Over 
2,800 MW of significant hydropower projects with current 
feasibility studies are located on Zambia's principal rivers. It 
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would be wise to create optimal generating plans that are 
focused on hydropower because of this [1]-[3]. 

ZESCO (formerly called the Zambia Electricity Supply 
Corporation) dominates Zambia's energy industry. Electricity is 
produced, transmitted, distributed, and supplied to local and 
national markets by ZESCO, a vertically integrated national 
utility [4]. The Copperbelt Energy Corporation (CEC), a 
transmission business that buys high-voltage power from 
ZESCO and distributes it to the mining sector in the Copperbelt 
region, and the Lunsemfwa Hydro Power Company, are two 
more significant players [4]. Additionally, there are two rural 
concessions: Zengamina Hydro Power Company (ZHPC), 
which manages a remote rural network in the Northern 
Province, and North West Energy Corporation, which provides 
energy to a remote mining settlement that is not connected to 
the ZESCO system [4]. The Energy Regulation Board (ERB) is 
in charge of regulating the industry. Following the publication 
of Statutory Instrument No. 6 of 1997, the Energy Regulation 
Act (Commencement Order) on January 27, 1997 [4], the ERB 
was established under the Energy Regulation Act of 1995, 
Chapter 436 of the Laws of Zambia. 

An essential component of operational technology is 
industrial control systems (ICS) [5]. Systems for monitoring 
and managing industrial operations are included. SCADA 
systems are industrial systems that record and analyze real-time 
data using control devices, network protocols, and graphical 
user interfaces. Hydropower facilities, telecommunications, 
water and waste management, oil and gas refining, and energy 
are all monitored and controlled by SCADA systems [6]. A 
paradigm shift brought about by cloud computing and the 
Internet of Things (IoT) is fostering innovation, enabling more 
adaptable resources, and reducing operating costs. ICS is 
transitioning to cloud computing and IoT to improve operation 
supervision and control by sharing real-time data among 
machines, industrial chains, suppliers, and customers. ICS is 
converting to cloud computing and IoT to improve monitoring 
and control operations. SCADA systems may present a security 
concern when connected to the internet since they were 
designed as air-gapped or isolated systems with unique cyber 
and physical interactions [7]-[9]. 

Since Stuxnet's first exposure, there has been a huge global 
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surge of cyber security incidents that have impacted electric 
grids. Black Energy breached the ICS of numerous national 
critical infrastructures in the United States in 2011. Three-
quarters of corporate Windows-based PCs at Saudi Aramco, 
one of the biggest oil companies in the world, were infected by 
Shamoon, a self-replicating piece of malware [10]. A similar 
assault on Saudi Aramco was begun in August 2017. In 
February 2013, JEA was the victim of a distributed denial-of-
service (DDoS) assault, which briefly shut down the online and 
telephone payment systems [11]. 

It is becoming more and more obvious that many tiers of 
intelligent countermeasures are required to protect SCADA 
infrastructure components and the essential applications they 
enable. Numerous government assessments have found severe 
cyber security problems in the electric sector as a result of the 
emergence of Advanced Persistent Threats (APTs) and the 
urgent need to protect against them [12]. For example, in the 
United States, the Department of Energy (DOE) created a cyber 
security Risk Management Process (RMP) for the electric 
sector in tandem with the requirements in [13] and [14]. 
National programs such as the NERC Critical Infrastructure 
Protection (CIP) [14] and the NIST Interagency Report 
(NISTIR) 7628 [15] guarantee that suitable standards and 
safeguards are in place to protect the electric power system from 
potential cyber vulnerabilities and threats. 

We adopt a network-based analysis methodology in this 
paper and create SEADS, an edge-based multi-level anomaly 
detection system for SCADA networks. The remote 
substations, which are the limits of the SCADA network, are 
where SEADS is situated. To keep track of the condition of 
SCADA assets, it includes a stochastic anomaly detector. We 
also present the idea of confidence in the metrics for system 
evaluation used to measure availability, maintainability, and 
dependability. 

The contributions of this paper are as follows: 
1. Implementation of the stochastic reasoning in cyber risk 

modeling and assessment 
2. Use of both transient and steady-state probabilities to 

evaluate system availability, maintainability, and 
reliability. 

3. Novel modeling of intrusions in SCADA. 
In Section II, we describe the structure of the smart grid 

system and its key benefits as well as its vulnerabilities. Section 
III summarizes related key anomaly detection and risk 
assessment frameworks. Then, we propose a stochastic edge-
based framework for the SCADA systems in Section IV. In 
Section V, we compare the proposed framework with the 
existing management schemes and frameworks. Finally, 
Section VI concludes this work.  

II. SCADA SYSTEM 

A. The Smart Grid Systems  
A smart grid is created by fusing information and 

communication technology with conventional electrical 
infrastructure. It exchanges data on grid issues and customer 
requests via networking techniques. Power production and 

electricity loss reduction are the key goals of this integration. 
To address the rising electricity demand, the smart grid also 
incorporates traditional power plants with renewable energy 
sources. Additionally, the smart grid helps to reduce carbon 
dioxide (CO2) emissions and save the environment. To meet the 
rising electricity demand, more distributed generators (DGs) 
are being added to smart grids; the bulk of these DGs are 
renewable resource-based generators, such as wind turbines and 
solar panels. Furthermore, original techniques, such as 
microgrids and vehicle-to-grid (V2G) connection, are utilized 
in smart grids. The micro-grid offers electrical self-sufficiency 
for a specific area using one or more DGs and storage units and 
allows the area to be isolated or connected to the main grid 
according to the current status of the grid; this feature protects 
the micro-grid in case of a blackout and assists the self-healing 
of the grid. In addition, the smart grid utilizes the EVs' batteries 
as temporary storage units for the extra generated power during 
low demand periods; V2G networks organize the charging/ 
discharging operations of the EVs' batteries to guarantee a 
balanced electricity level in the grid [16]-[18]. 

B. Smart Grid Benefits  
A smart grid can improve the efficiency of the maintenance 

and replacement operations for the involved devices in the grid. 
For example, there are many deployed sensors in the smart grid 
for monitoring purposes; they monitor the performance of the 
different devices and send an alarm message to the control 
center in case of an error. Finally, a smart grid is a friend to the 
environment, as it organizes electricity production and uses 
renewable generation resources. Accordingly, the smart grid 
plays a significant role in CO2 emission reduction. To conclude, 
utility companies are interested in smart grids to assure the 
optimal usage of electrical power and provide more luxury 
services to the customers, and consequently, increase their 
financial profits [16]-[18], [20]. 

C. Smart Grid Architecture 
To accomplish its functions, the smart grid adds new 

elements and protocols to the electrical grid (see Fig. 1). The 
reference model for the smart grid, its various layers, and their 
purposes, and, finally, the systems of the smart grid are all 
introduced in this part. 

Numerous frameworks have been proposed to define the 
smart grid's structure. The smart grid reference model, 
according to [19], consists of seven functional domains:  
1. Bulk Generation: Electricity is usually generated from non-

renewable resources, such as coal and gas generators. In a 
smart grid, renewable sources, e.g., wind turbines and solar 
panels, are merged with the traditional ones to satisfy the 
increased demands and reduce CO2 emissions. 

2. Transmission: Several substations and transmission lines 
are utilized to transmit the produced power to consumers. 

3. Distribution: The distribution domain spreads the 
electricity to individual customers and communicates with 
suppliers and users via communication infrastructure. 

4. Operation: This domain controls and monitors the 
transmission and distribution domains to obtain 
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information about the power system's activities. 
5. Market: This domain contains all the parties involved in the 

electricity-trade operation to sustain the balance between 
supply and demand. 

6. Customer: Customers in the smart grid not only consume 

electricity but also generate it by DGs and store the extra 
power in rechargeable batteries. 

7. Service Provider: The electricity is provided to customers 
via a service provider that is responsible for services, such 
as billing and customer accounts management. 

 

 

Fig. 1 Structure of the Smart Grid System 
 

D. Assets and Categories 
In this section, we describe the assets and categories for 

SCADA cyber security.  
 

TABLE I 
ASSET AND CATEGORIES FOR SCADA 

Category Asset Category Asset 
System ICCP server Security User Account 

HMI  Admin Account 
RTU  Service Account 

Communication front end  Vulnerability 
Alarm Communication Firewall 

App Server  Zones 
Database  Router 

Antivirus server  Data diodes 
Directory service   

Backup server   
Product   

DNS Server   
NIS Server   
NTP server   
DE server   

nHMI server   
Software   

E. Actors 
Table II focuses on actors who primarily work with such 

assets that can serve as an entrance point for prospective 
assaults. For simplicity, we only chose actors that are key to a 
SCADA since they have access to many system components. In 
this work, we do not focus on all actors in a SCADA system. 

 
 

TABLE II 
LIST OF MAIN ACTORS IN SCADA 

Actor Description 
HMI Operator monitoring and controlling the power 

transmission network 
Admin User monitoring system health and updating control 

system configuration 
Admin Directory Service 

User 
monitoring service account and access through 

directory service 
Trainer and students running simulations 

Data engineer updating the power system model 
Production planner viewing historical data and creating plans 

Field engineer sending the data from RTU to the 
communication front end 

F. Attacker Profiles 
Rogue actors that we consider for this work are as follows: 

• HMI Operator can be considered rouge when the accounts 
to HMI were leaked. This way the attack path can start from 
HMI. 

• Field engineer can also be a rogue actor to generate the 
attacks starting from RTU to the CC. 

• Admin User of other SCADA that is connected to the 
current SCADA can be rogue when the first system got 
compromised. 

External SCADA is another system that communicates with 
the current SCADA through ICCP. Having a connection to 
another SCADA system is necessary to ensure the guaranteed 
availability of the service in case of any critical issues. If the 
secondary SCADA fails to attack, the primary SCADA 
becomes vulnerable to attacks through ICCP. 

Field units include all components of SCADA that collect 
information about the state of the system in the field. Therefore, 
we can assume that malicious actors could misconfigure the 

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:17, No:4, 2023 

282International Scholarly and Scientific Research & Innovation 17(4) 2023 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r 

E
ng

in
ee

ri
ng

 V
ol

:1
7,

 N
o:

4,
 2

02
3 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

04
3.

pd
f



data that field units send to CC. 

G. Attacks 
In this section, we describe attack techniques and 

vulnerability exploits for SCADA.  
1) The attack techniques vary based on the target's key assets. 

Most importantly, the availability of the SCADA is the 
main priority of CIA properties. This is due to the necessity 
to continuously preserve the industrial processes putting 
data loss and confidentiality aside as less priority. Overall, 
we summarized the goals of attackers into the following 
categories: 

a) Manipulating sensitive data, 
 Loss of view, 
 Manipulation of view, 
 Theft of Operational Information 

b) Disrupting the safety of operation in SCADA 
 Damage to property  
 Loss of safety 

c) Disrupting the availability of the system. 
 Loss of Productivity and Revenue 
 Denial of control 

H. Entry Surface 
Entry surface refers to the resources and methods that, either 

because of the setup of the system (such as front-end web 
servers or applications for external users) or because of 
vulnerabilities, are most accessible to hostile actors (e.g. the 
kernel version, malicious library version found, the possibility 
of buffer overflow due to weak code, lack of data sanitizing and 
validation). Regarding SCADA, three entry surfaces are the 
focus of this work.: 
1) External SCADA 
2) Field units 
3) HMI 

III. RELATED WORKS 

A. SCADA Network-Based IDSs 
A SCADA network-based IDS [20], [21] captures the data 

packets that are communicated between devices such as point-
to-point between RTU/PLC, and between RTU/PLCs and the 
MTU. If a packet is suspicious, the security team will be sent 
an alarm for further investigation. An advantage of a SCADA 
network-based IDS is its lower computation costs, as only 
information in the packet’s header is needed during the 
investigation process, and therefore a SCADA network packet 
can be analyzed on-the-fly. Consequently, traffic from larger 
networks can be inspected within a short period [22]. When 
there is high network traffic, however, a SCADA network-
based IDS may experience issues in monitoring all the packets 
and might miss some attacks. However, the key weakness is that 
the operational behavior of the underlying SCADA processes 
cannot be inferred from the information provided at the network 
level (e.g., IP address, protocol, port, and so on). For example, 
if the payload of the SCADA network packet contains a 
malicious message, which is crafted at the application level, the 
SCADA network-based IDS cannot detect it, particularly when 

this is not violating the specifications of the protocol being 
used, or the communication pattern between SCADA 
networked devices [21].  

B. SCADA Application-Based IDSs 
SCADA data, which comprise the measurements and control 

data generated by sensors and actuators, represent the majority 
of the information. Using these data, the operational behavior 
of a given SCADA system can be inferred [21]. In contrast to 
SCADA network-based IDSs that only inspect network-level 
information, a SCADA application-based IDS can inspect high-
level data (i.e., SCADA data) to detect the presence of unusual 
behavior. For example, SCADA network-based IDSs are often 
unable to detect high-level control attacks [22] from packet 
headers; which can be detected by analyzing SCADA data [22].  

The following are the several methods to deploy a SCADA 
application-based IDS since the information source of a 
SCADA application-based IDS can be acquired from various 
remote field devices [23]. It can be installed on the historian 
server because this server receives periodic updates from the 
MTU server, which collects data and system status for the 
monitored system using field devices like PLCs and RTUs. 
When the data and status kept in the historian diverge from the 
real-time information in the field, this type of deployment poses 
a security concern. This could occur when the MTU server has 
been compromised or the data has been changed using False 
Data Injection attacks [23]; (ii) It can also be deployed in an 
independent security-hardened server, which from time to time 
acquires information and statuses from the monitored field 
devices [24]. Consequently, the large number of requests from 
this server might increase the network overheads resulting in 
degraded performance of the IDS; (iii) Similar to the approach 
suggested in [25] and [26], each neighboring field device can 
be connected to a server running a SCADA application-based 
IDS. The main problem, however, is that SCADA data are 
directly or indirectly connected, thus occasionally an abnormal 
value in one parameter is caused by an abnormal value in 
another parameter [21], [22]. The identification and monitoring 
of associated parameters, such as sensor readings on a single 
process, would therefore be acceptable.  

C. Signature-Based vs. Anomaly-Based SCADA IDS 
Approaches 

The many SCADA-based IDS that have been described in 
the literature may be roughly categorized into two types based 
on the detection method: signature-based detection and 
anomaly-based detection. 

A SCADA system's network traffic or application events can 
be investigated by an IDS that employs signatures to spot 
malicious activity. This is done by looking for warning signs 
and comparing patterns to a database of accepted attack 
signatures or fingerprints. In this kind of IDS, the false positive 
rate—the percentage of times a regular event is mistakenly 
classified as an attack—is extremely low and may even be nil. 
Additionally, since only a matching procedure is used during 
the detection phase, the detection time can be quick. Despite the 
benefits of signature-based IDSs noted above, they frequently 
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miss new attacks (like zero-days) whose signatures are 
unknown or do not already exist in their database. As a result, 
the database needs to be updated frequently with new attack 
patterns [27]. 

An anomaly-based IDS assumes that the actions of invasive 
activities may be easily distinguished from regular actions. 
Using sophisticated mathematical and statistical procedures, the 
"normal model" is produced using a realistic training set. This 
model is identified as an anomaly or a potential attack whenever 
there is a considerable departure from it. To create the regular 
SCADA network profiles, a modeling technique, for instance, 
can be used to acquire the normal SCADA network traffic for 
normal operations. During the detection phase, the deviation 
degree between the current network traffic and the created 
normal network profile is computed: if the deviation exceeds 
the predefined threshold, the current network traffic will be 
flagged as an intrusive activity. The primary advantage of 
anomaly-based IDSs compared to signature-based ones is that 
new or unknown attacks can be detected, although it generally 
suffers from a higher false positive rate (i.e., detecting normal 
behavior as malicious) [28].  

IV. FRAMEWORK DESIGN 
In this study, we present a unique approach to measuring and 

analyzing cyber risk that is based on stochastic reasoning. One 
MTU and many SUB-MTUs, as well as one SUB-MTU and 
many RTUs, can use the suggested architecture as an interface. 

 

 

Fig. 2 SEADS Deployment 

A. The Framework 
The framework's main objectives are to represent all 

potential attack vectors in the digital control network (smart 
grid topologies), score the security of the smart grid using 
security metrics, and evaluate the efficacy of defense measures. 
The suggested framework, which can be implemented in layer 
3.5 of the Purdue design, is seen in Fig. 3. The framework 
consists of five steps: preprocessing; development of security 
models; visualization and storage; security analysis; and, 
changes and updates. Each step is described as follows: 
Step1. The security decision-maker offers the inputs required to 

build a smart network in step 1. The total number of 

nodes, the network topology, and each node's 
vulnerability data are the essential inputs. The SG 
Generator receives the inputs. A smart grid network with 
a specific network topology made up of levels and nodes 
with information on their vulnerabilities is created using 
the SG Generator. After generation, the topology of the 
network is fixed. The security decision-maker also 
chooses the security metrics that will be utilized as input 
in the security analysis phase from a pre-defined metric 
pool. 

 

 

Fig. 3 The Proposed Framework 
 

Step2. The security model has been created and is complete. 
Our security strategy is built on the architecture of the 
SCADA network. The constructed network, coupled 
with inputs about the topology and vulnerabilities, is 
used by the Security Model Generator to automatically 
compute all possible attack paths in the SG network. 

Step3. The reachability/coverability graph that represents the 
tangible and vanishing states is used to display the attack 
paths produced by the security model generator. 

Step4. The SG network is the subject of the security analysis. 
Along with the established security metrics, the attack 
vectors are entered into the security evaluator. The 
security analysts can carry out one of the two choices 
based on the metrics. One option is to output the analysis 
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results directly, and the other is to create a text file and 
import it into the Platform Independent Petri net Editor 
(PIPE) [29] analytical modeling and evaluation tool, 
which computes the security analysis results. A 
predefined metric database is used to choose the security 
metric. 

Step5. This step involves updating the model's inputs to reflect 
any changes brought on by the defense strategies. The 
security decision-maker can choose the best defense 
tactics because they are aware of which area of the SG 
is most vulnerable based on the findings of the security 
analysis. The implementation of the defense strategy 
modifies either the topology information, which should 
be updated and used as input to the Security Model 
Generator or the vulnerability information (e.g., 
eliminates a specific vulnerability in a smart grid node 
or mitigates the effect caused by the vulnerability). The 
security decision-maker can compare the results of 
several protection measures utilizing security metrics 
while selecting the optimal one by assessing each one's 
effectiveness using the framework. 

B. Stochastic Process 
A stochastic process (also known as a chance or random 

process) is a group of random variables that are indexed by a 
parameter like time [30]. 

X(t) | t  T, defined on a certain probability space, indexed 
by the parameter t, where t fluctuates over an index set, T [30], 
is a family of random variables that make up a stochastic 
process. 

States are the values that the random variable X(t) assumes, 
and the state space of the process is the set of all possible values. 
The letter I [30] will stand in for the state space. 

A stochastic process is referred to as a discrete-state process, 
often known as a "chain," if the state space is discrete. The state 
space in this situation is frequently thought to be {0, 1, 2, . . .} 
etc. As an alternative, we have a continuous-state process if the 
state space is continuous. Similar to this, we have a discrete-
time (parameter) process if the index set T is discrete; 
otherwise, we have a continuous-time (parameter) process. The 
symbol for a discrete-time process, commonly known as a 
stochastic sequence, is {Xn| n  T} [30]. As indicated in Table 
III, this results in four different kinds of stochastic processes. 

 
TABLE III 

CATEGORIES OF STOCHASTIC PROCESSES 

Time Parameters 
Index set T (state space) 

Discrete-time 
Stochastic chain Continuous state 

Discrete-Time Discrete-time 
Stochastic chain 

Discrete-time 
Stochastic process 

Continuous Time Continuous 
Stochastic chain 

Continuous 
Stochastic process 

Classification of Stochastic Processes 
For a fixed time t = t1, the term X(t1) is a simple random 

variable that describes the state of the process at time t1. For a 
fixed number x1, the probability of the event [X(t1) ≤ x1] gives 
the CDF of the random variable X(t1), denoted by [30]. 

 

P(X(t1) x1) = F(x1;t1) = FX(t1) (x1) 
 
The first-order distribution of the process {X(t) | t ≥ 0} is 

denoted as F(x1; t1). X(t1) and X(t2) are two random variables 
on the same probability space given two-time instants, t1, and 
t2. The formula for the process' second-order distribution, also 
referred to as its joint distribution, is F(x1, x2; t1, t2) = P[X(t1) 
≤ 1,X(t2) ≤ x2. 

In general, we define the nth-order joint distribution of the 
stochastic process X(t), t  T by 

 
F(x; t) = P[X(t1) ≤ x1, . . . , X(tn) ≤ xn]   (1) 

 
for all x = (x1, . . . , xn)  _n and t = (t1, t2, . . . , tn)  Tn such 
that t1 < t2 <    < tn. Such a complete description of a 
process is no small task. Many processes of practical interest, 
however, permit a much simpler description. For instance, the 
nth-order joint distribution function is often found to be 
invariant under shifts of the time origin. Such a process is said 
to be a strict-sense stationary stochastic process [30]. 
Definition (Strictly Stationary Process). A stochastic process 
{X(t) | t  T} is said to be stationary in the strict sense if for n ≥ 
1, its nth-order joint CDF satisfies the condition: 
 

F(x; t) = F(x; t + τ ) 
 
for all vectors x  _n and t  Tn, and all scalars τ such that ti + 
τ  T. The notation t + τ implies that the scalar τ is added to all 
components of vector t. 

We write μ(t) = E[X(t)] to represent the stochastic process' 
time-dependent mean. The stochastic process ensemble average 
is usually referred to as μ(t). When the strictly stationary 
process definition is applied to the first-order CDF, we obtain 
F(x; t) = F(x; t + τ) or FX(t) = FX(t+τ) for all τ. It follows that a 
strict-sense stationary stochastic process has a time-
independent mean; that is, μ(t) = μ for all t  T. 

By restricting the nature of dependence among the random 
variables {X(t)}, a simpler form of the nth-order joint 
cumulative distribution function (CDF) can be obtained. 

The simplest form of the joint distribution corresponds to a 
family of independent random variables. Then the joint 
distribution is given by the product of individual distributions 
[30]. 

A stochastic process {X(t) | t  T} is said to be an independent 
process provided its nth-order joint distribution satisfies the 
condition: 

 
F(x;t)=    (2) 

 
A discrete-time independent process known as a renewal 

process is denoted by the notation {Xn| n = 1, 2, ...} where X1, 
X2, ..., are independent, identically distributed, nonnegative 
random variables. 

As an example of such a process, we consider a system in 
which the repair (or replacement) after a failure is performed, 
requiring negligible time. Now, the gaps between subsequent 
failures could very well be independent random variables 
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created by a renewal process with identical distributions {Xn| n 
= 1, 2, . . .}. Although assuming an independent process makes 
analysis much simpler, this assumption is frequently 
unfounded, and we are compelled to take some type of 
dependence among these random variables into consideration. 
First-order reliance, also known as Markov dependence, is the 
most fundamental and significant type of dependence [30]. 

C. The Markov Chain 
The stationery distribution is often discussed in the Markov 

chain. To obtain a clearer picture, let us assume that substation 
attacks consist of three states, as shown in Fig. 4 as depicted by 
[30]. 

 

 

Fig. 2 Example of attack transitions to Hydro Power station network 
 

The state space is shown in this case as S = {S1,S2,S3} where, 
• S1: being the search for a targeted hydropower facility 
• S2: hacking into hydropower station servers 
• S3: turning off the breakers at the hydroelectric plant 

The probability of this state as well as the likelihood of 
changing from one state to another is both expressed as P(Xm) 
and P(Xm+1|Xm), respectively. In this example in Fig. 4, P(Xm+1 

= S2|Xm = S1) = 0.1 and P(Xm+1 = S2|Xm = S2) = 0.8. 
The Markov chain is defined as (3) using a state at time m, 

{Xm}. 
 

P(Xm+1|Xm,...,X1,X0) = P(Xm+1)   (3) 
 
The meaning of this equation can be summarized as two 

bullet points: 
 Xm+1 is determined by Xm only 
 Xm−1,Xm−2,Xm−3... are nothing to do with Xm+1 

In this example, it can be stated that disconnecting breakers 
is nothing to do with searching for the targeted HPstation but 
has much to do with cracking the server at the Hydro Power 
station only. These characteristics shown in (4) are called 
Markov properties. When the Markov chain and its relevant 
theorems are used, the Markov property for the created Markov 
chain model needs to be tested first. If the Markov property is 
not justified, the Markov chain model needs to be further 
updated, and segmentalizing the states, i.e., increasing the 
number of states is known as a general countermeasure. 
Therefore, the Markov chain can be utilized, especially when 
the action flow or procedure is clarified. 

To obtain a clear image, let’s use the previous example in 
Fig. 4. In the transition probability matrix, P is expressed as (5). 
It can be realized that the summation of each row is always one. 
In other words, the summation of the probabilities from one 
state to another (including the same state) needs to be always 
one. This is an important property that the Markov chain owns. 
 

P =     (4) 

 
We assume that our hacker starts at state (search for the target 

HPstation). In other words, the initial distribution is (0) = 
(1,0,0). From discovering the hydropower station, the hacker 
can go to hacking the server at the HPstation and further 
disconnect circuit breakers at the HPstation with equal 
probability, i.e., 
 

(1) = (1,0,0)  = (0.9,0.1,0) 

 
If we analyzed further, the vector (m) of state probabilities 

tends to a limit of m . Even more, one can show that for 
specific discrete-time Markov chains (DTMCs) the effect of 

(0) on the vector (m) completely vanishes. 

D. Modeling in SEADS 
We applied the steps outlined in the framework in Section IV 

A. The intrusion is assumed to emanate from the HMI through 
the RTU and into the IED. The resulting model is depicted in 
Fig. 5. Table IV describes the parameters applied to the model 
in Fig. 5. 

 

 

Fig. 3 SEADS Model 

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:17, No:4, 2023 

286International Scholarly and Scientific Research & Innovation 17(4) 2023 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r 

E
ng

in
ee

ri
ng

 V
ol

:1
7,

 N
o:

4,
 2

02
3 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

04
3.

pd
f



TABLE IV 
DESCRIPTION OF PLACES AND TRANSITIONS 

Places Description Rates 
PI1 Intrusion attempts begin   P_Begin  
P12 Intrusion failed  
P13 Intrusion successful   
P14 Intrusion into the FW begins  
PI5 Intrusion into the FW successful   
PI6 Intrusion into the FW failed  
PI7 FW restored  
PI8 Intrusion into the Substation begins  
PI9 Intrusion into the Substation failed  
PI10 Reconnaissance begins  
PI11 Execution of IED attack  
PI12 IED under attack recovered  
PI13 Intrusion toward the HMI begins  
Transition Description Rate 
Tr1 From begin to intrusion failed  (0.01) 
Tr2 System recovery and reset after failed attempt  (0.001) 
Tr3 transition into MTU succeeded   (0.001) 
Tr4 From MTU to FW  (0.001) 
Tr5 the transition from MTU into FW succeeded  (0.001) 
Tr6 the transition from MTU into FW failed  (0.001) 
Tr7 From failed to recovery  (0.01) 
Tr8 FW recovery   (0.001) 
Tr9 From FW to S/S network     (0.001) 
Tr10 S/S attack begins to IED attack successful   (0.001) 
Tr11 S/S attack begins to IED attack successful  (0.01) 
Tr12 Attack successful   
Tr13 IED attack to recovery  
Tr14 Recovery from an attack  
Tr15 Reset from a failed attack  
Tr16 From IED to HMI  
Tr17 From attacked IED to initial state  

E. Simulation Results 
Simulations are conducted following the detailed steps of the 

framework given in Section IV A. The simulation is done using 
the scenarios in Table VI. 

 
TABLE VI 

SIMULATION SCENARIOS 
 Number of histories First random number Maximum 

calculation time 
Scenario 1 10 12345681 10 
Scenario 2 100 12345681 10 
Scenario 3 1000 12345681 10 

F. Metrics 
In this part, we look at three dependability criteria for digital 

control networks in smart grids, namely reliability, availability, 
and maintainability. The ability to constantly supply services 
without interruptions is assessed by reliability [31]. It can be 
specifically described as the likelihood that the digital control 
networks function successfully across the period [0, t], or, 

 
R(t) = Pr{X > t} = e−λt and R(0) = 1  (5) 

 
When failure is exponentially distributed with a constant 

failure rate  and the system is operational at time zero.  
 

Rel = R(∞) = 0 and MTTF = 1/λ    (6) 
 

TABLE V 
STEADY STATE PROBABILITIES OF THE SCENARIOS 

Name Probabilities 
Scenario 1 

Probabilities 
Scenario 2 

Probabilities 
Scenario 3 

Pl1 0.051196576 0.036051431 0.037315122 
Pl2 0.338140172 0.357981292 0.356126014 
Pl3 0.0350389 0.060711856 0.073966504 
Pl4 0.015546133 0.013348975 0.020544781 
Pl5 0 0.072463596 0.045247957 
Pl6 0.103760954 0.176213323 0.166132557 
Pl7 0.250079113 0.172444476 0.173307633 
Pl8 0 0.02125842 0.015960483 
Pl9 0 0.168220049 0.116335319 

Pl10 0 0.008386059 0.028047419 
Pl11 0 0.002931009 0.001981801 
Pl12 0 0.015639034 0.011841172 
Pl13 0 0 0 

 

 

Fig. 4 Comparison of Scenario Probabilities 
 

According to [32], maintainability is the likelihood that a 
malfunctioning system will be repaired and made operational 
within a given downtime t. 
 

M(t) = 1 − e−μt    (7) 
 
where t denotes the downtime (i.e., time to repair) and the repair 
distribution is exponentially distributed with a constant repair 
rate μ. The probability of maintainability (Mnt) as t approaches 
infinity and the mean time to repair (MTTR) is given by [32]: 
 

Mnt = M(∞) = 1 and MTTR = 1/    (8) 
 

Availability is determined by dependability and 
maintainability and is defined as the percentage of time the 
system delivers the right services throughout an observation 
period [31]. The dependability of each component is measured 
by MTTF, while the maintainability is measured by MTTR. The 
MTTF and MTTR should be designed as high and low as 
possible, respectively, to achieve high steady-state availability. 
To ensure that the system offers accurate data transmission 
services from the plant network to the corporate network or vice 
versa, we are interested in the steady-state availability analysis. 
Given the steady-state availability: 
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AVL =      (9) 
 
where j is the steady-state solution corresponding to the state 
j where the system is available, i.e., providing correct services. 
The steady-state solution  can be calculated by using (1)-(4).  

VI. CONCLUSION 
A SCADA system is a significantly important system used in 

national infrastructures such as electric grids, water supplies, 
and pipelines. However, the SCADA systems have lots of 
security vulnerabilities. Any faults or damages to the SCADA 
system can affect society severely. The study of the security of 
the SCADA system is essential for that reason.  

In this paper, we discussed the cyber-physical security and 
dependability issues of SCADA systems. We used stochastic 
processes to model intrusions into digital control networks. The 
cyber framework that we then suggest is compliant with the 
NIST framework. Additionally, we assess the steady-state 
availability using GSPNs and demonstrate the excellent 
dependability of the suggested framework. In further work, we 
will model resilience and provide mitigation to enhance the 
RAM metrics using statistics from a functioning power plant in 
Zambia, including failure rates, repair rates, failed login 
attempts, and firewall rates. Additionally, we will offer a better 
framework based on Generalized Stochastic Petri Nets and 
Bayesian Nets and compare the results with our current work. 
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